生物技术通报 ›› 2023, Vol. 39 ›› Issue (6): 1-11.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1352
• 综述与专论 • 下一篇
丁凯鑫(), 王立春(), 田国奎, 王海艳, 李凤云, 潘阳, 庞泽, 单莹
收稿日期:
2022-11-03
出版日期:
2023-06-26
发布日期:
2023-07-07
通讯作者:
王立春,男,硕士,副研究员,研究方向:马铃薯遗传育种;E-mail: potato2008@126.com作者简介:
丁凯鑫,男,硕士,研究实习员,研究方向:作物遗传育种;E-mail: 584039625@qq.com
基金资助:
DING Kai-xin(), WANG Li-chun(), TIAN Guo-kui, WANG Hai-yan, LI Feng-yun, PAN Yang, PANG Ze, SHAN Ying
Received:
2022-11-03
Published:
2023-06-26
Online:
2023-07-07
摘要:
全球气候变化异常引起全球范围内水循环状况剧烈改变,极端天气和旱涝灾害频发,其中干旱已经成为农业生产中最常见的非胁迫生物胁迫之一。干旱胁迫对植物的光合作用、渗透调节和内源激素水平等相关生理过程可产生直接或间接影响,进而降低作物产量和品质,严重制约农业生产。烯效唑具有高效、广谱、快速的特性,具有矮化植株、防止倒伏、提高叶绿素含量的作用,同时也在植物对胁迫耐受性和抗性中发挥着重要作用。外源烯效唑能够缓解干旱胁迫对植物理化进程造成的损伤。本综述系统概述了干旱胁迫对植物理化进程的影响,分别从光合作用、碳代谢、逆境生理、内源激素水平及抗逆基因表达等方面阐明了植物对干旱胁迫的应激反应,分析了干旱胁迫下外源烯效唑在调控活性氧代谢和抗氧化防御系统、提高渗透调节物质含量、调节内源激素水平以及诱导基因表达的积极效应。指出了外源烯效唑缓解干旱胁迫的研究现状和发展趋势,为今后作物生产抗旱研究提供方向和依据。
丁凯鑫, 王立春, 田国奎, 王海艳, 李凤云, 潘阳, 庞泽, 单莹. 烯效唑缓解植物干旱损伤的研究进展[J]. 生物技术通报, 2023, 39(6): 1-11.
DING Kai-xin, WANG Li-chun, TIAN Guo-kui, WANG Hai-yan, LI Feng-yun, PAN Yang, PANG Ze, SHAN Ying. Research Progress in Uniconazole Alleviating Plant Drought Damage[J]. Biotechnology Bulletin, 2023, 39(6): 1-11.
图1 干旱胁迫对植物生理代谢的影响 ROS:活性氧物质;H2O2:过氧化氢;MDA:丙二醛;O2-:超氧阴离子;SOD:超氧化物歧化酶;POD:过氧化物酶;CAT:过氧化氢酶;APX:抗坏血酸过氧化物酶;AsA:抗坏血酸;DHAR:单脱氢抗坏血酸还原酶;GR:谷胱甘肽还原酶;GSH:谷胱甘肽;SS:可溶性糖;SP:可溶性蛋白;Pro:脯氨酸;GB:甜菜碱
Fig. 1 Effects of drought stress on plant physiological metabolism ROS: Reactive oxygen species. H2O2: Hydrogen peroxide. MDA: Malondialdehyde. O2-: Superoxide anion. SOD: Superoxide dismutase. POD: Peroxidase. CAT: Catalase. APX: Ascorbate peroxidase. AsA: Ascorbic acid. DHAR: Monodehydroascorbate reductase. GR: Glutathione reductase. GSH: Gluta-thione. SS: Soluble sugar. SP: Soluble protein. Pro: Proline. GB: Glycine betaine
[1] |
Dietz KJ, Zörb C, Geilfus CM. Drought and crop yield[J]. Plant Biol J, 2021, 23(6): 881-893.
doi: 10.1111/plb.v23.6 URL |
[2] | 廖要明, 张存杰. 基于MCI的中国干旱时空分布及灾情变化特征[J]. 气象, 2017, 43(11): 1402-1409. |
Liao YM, Zhang CJ. Spatio-temporal distribution characteristics and disaster change of drought in China based on meteorological drought composite index[J]. Meteorol Mon, 2017, 43(11): 1402-1409. | |
[3] |
张强, 姚玉璧, 李耀辉, 等. 中国西北地区干旱气象灾害监测预警与减灾技术研究进展及其展望[J]. 地球科学进展, 2015, 30(2): 196-213.
doi: 10.11867/j.issn.1001-8166.2015.02.0196 |
Zhang Q, Yao YB, Li YH, et al. Research progress and prospect on the monitoring and early warning and mitigation technology of meteorological drought disaster in northwest China[J]. Adv Earth Sci, 2015, 30(2): 196-213.
doi: 10.11867/j.issn.1001-8166.2015.02.0196 |
|
[4] |
Todoroki Y, Kobayashi K, Shirakura M, et al. Abscinazole-F1, a conformationally restricted analogue of the plant growth retardant uniconazole and an inhibitor of ABA 8'-hydroxylase CYP707A with no growth-retardant effect[J]. Bioorg Med Chem, 2009, 17(18): 6620-6630.
doi: 10.1016/j.bmc.2009.07.070 URL |
[5] |
Hassanpour H, Khavari-Nejad RA, Niknam V, et al. Penconazole induced changes in photosynthesis, ion acquisition and protein profile of Mentha pulegium L. under drought stress[J]. Physiol Mol Biol Plants, 2013, 19(4): 489-498.
doi: 10.1007/s12298-013-0192-4 URL |
[6] |
王诗雅, 郑殿峰, 冯乃杰, 等. 植物生长调节剂S3307对苗期淹水胁迫下大豆生理特性和显微结构的影响[J]. 作物学报, 2021, 47(10): 1988-2000.
doi: 10.3724/SP.J.1006.2021.04233 |
Wang SY, Zheng DF, Feng NJ, et al. Effects of uniconazole on physiological characteristics and microstructure under waterlogging stress at seedling stage in soybean[J]. Acta Agron Sin, 2021, 47(10): 1988-2000. | |
[7] |
Hu HQ, Feng NJ, Shen XF, et al. Transcriptomic analysis of Vigna radiata in response to chilling stress and uniconazole application[J]. BMC Genomics, 2022, 23(1): 205.
doi: 10.1186/s12864-022-08443-6 |
[8] |
He J, Lin LJ, Ma QQ, et al. Uniconazole(S-3307)strengthens the growth and cadmium accumulation of accumulator plant Malachium aquaticum[J]. Int J Phytoremediation, 2017, 19(4): 348-352.
doi: 10.1080/15226514.2016.1225287 URL |
[9] | Al-Rumaih MM. Physiological response of two species of Datura to uniconazole and salt stress[J]. J Food Agric Environ, 2007, 5(3): 450-453. |
[10] |
Huseynova IM. Photosynthetic characteristics and enzymatic antioxidant capacity of leaves from wheat cultivars exposed to drought[J]. Biochim Biophys Acta, 2012, 1817(8): 1516-1523.
doi: 10.1016/j.bbabio.2012.02.037 pmid: 22417798 |
[11] | 魏育新, 纪永福, 姜生秀, 等. 干旱胁迫和风沙吹袭对白刺光合作用的影响[J]. 干旱区资源与环境, 2022, 36(2): 136-140. |
Wei YX, Ji YF, Jiang SX, et al. Effect of drought stress and windblown sand on photosynthesis of Nitraria tangutorum[J]. J Arid Land Resour Environ, 2022, 36(2): 136-140. | |
[12] | 赵成凤, 王晨光, 李红杰, 等. 干旱及复水条件下外源褪黑素对玉米叶片光合作用的影响[J]. 生态学报, 2021, 41(4): 1431-1439. |
Zhao CF, Wang CG, Li HJ, et al. Effects of exogenous melatonin on photosynthesis of maize leaves under drought stress and rewatering[J]. Acta Ecol Sin, 2021, 41(4): 1431-1439. | |
[13] | Li J, Peng ZH, Gao J, et al. Photosynthetic parameters and chlorophyll fluorescence characteristics of Pleioblastus kongosanensis f. aureostriaus under drought stress[J]. Ying Yong Sheng Tai Xue Bao, 2011, 22(6): 1395-1402. |
[14] |
Kong DX, Li YQ, Wang ML, et al. Effects of light intensity on leaf photosynthetic characteristics, chloroplast structure, and alkaloid content of Mahonia bodinieri(Gagnep.) Laferr[J]. Acta Physiol Plant, 2016, 38(5): 1-15.
doi: 10.1007/s11738-015-2023-4 URL |
[15] | Zhang CS, Liu GB, Xue S, et al. Photosynthetic characteristics of Bothriochloa ischaemum under drought stress and elevated CO2 concentration[J]. Ying Yong Sheng Tai Xue Bao, 2012, 23(11): 3009-3015. |
[16] | Makbul S, Güler NS, Durmuş N, et al. Changes in anatomical and physiological parameters of soybean under drought stress[J]. Turkish J Bot, 2011, 35(4): 369-377. |
[17] | 李思忠, 高卫时, 张立明, 等. 干旱对甜菜叶丛期光系统II及光合作用的影响[J]. 草业科学, 2021, 38(8): 1548-1558. |
Li SZ, Gao WS, Zhang LM, et al. Effects of drought stress on photosystem II and photosynthesis in Beta vulgaris during the vegetative development period[J]. Pratacultural Sci, 2021, 38(8): 1548-1558. | |
[18] | Duan W, Wang Q, Zhang H, et al. Comparative study on carbon-nitrogen metabolism and endogenous hormone contents in normal and overgrown sweetpotato[J]. S Afr N J Bot, 2018, 115: 199-207. |
[19] |
Yang H, Guo XT, Ding MQ, et al. Weakened carbon and nitrogen metabolisms under post-silking heat stress reduce the yield and dry matter accumulation in waxy maize[J]. J Integr Agric, 2020, 19(1): 78-88.
doi: 10.1016/S2095-3119(19)62622-5 |
[20] |
Martins SJ, Rocha GA, de Melo HC, et al. Plant-associated bacteria mitigate drought stress in soybean[J]. Environ Sci Pollut Res Int, 2018, 25(14): 13676-13686.
doi: 10.1007/s11356-018-1610-5 |
[21] |
Du YL, Zhao Q, Chen LR, et al. Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings[J]. Plant Physiol Biochem, 2020, 146: 1-12.
doi: 10.1016/j.plaphy.2019.11.003 URL |
[22] |
Baslam M, Mitsui T, Sueyoshi K, et al. Recent advances in carbon and nitrogen metabolism in C3 plants[J]. Int J Mol Sci, 2020, 22(1): 318.
doi: 10.3390/ijms22010318 URL |
[23] |
Aliche EB, Theeuwen TPJM, Oortwijn M, et al. Carbon partitioning mechanisms in POTATO under drought stress[J]. Plant Physiol Biochem, 2020, 146: 211-219.
doi: 10.1016/j.plaphy.2019.11.019 URL |
[24] |
Kärkönen A, Kuchitsu K. Reactive oxygen species in cell wall metabolism and development in plants[J]. Phytochemistry, 2015, 112: 22-32.
doi: 10.1016/j.phytochem.2014.09.016 pmid: 25446232 |
[25] |
李鹏程, 毕真真, 梁文君, 等. DNA甲基化参与调控马铃薯干旱胁迫响应[J]. 作物学报, 2019, 45(10): 1595-1603.
doi: 10.3724/SP.J.1006.2019.94024 |
Li PC, Bi ZZ, Liang WJ, et al. DNA methylation involved in regulating drought stress response of potato[J]. Acta Agron Sin, 2019, 45(10): 1595-1603. | |
[26] | 李青, 秦玉芝, 王万兴, 等. 马铃薯(Solanum tuberosum L.)干旱胁迫生理特性及耐旱性分析[J]. 分子植物育种, 2021, 19(1): 259-268. |
Li Q, Qin YZ, Wang WX, et al. Analysis of physiological characteristics and drought tolerance of potato(Solanum tuberosum L.) under drought stress[J]. Mol Plant Breed, 2021, 19(1): 259-268. | |
[27] |
Song S, Qu ZP, Zhou XY, et al. Effects of weak and strong drought conditions on physiological stability of flowering soybean[J]. Plants, 2022, 11(20): 2708.
doi: 10.3390/plants11202708 URL |
[28] | 文竹梅, 冯玉超, 刘青青, 等. 3种草本植物种子萌发及幼苗生长生理对干旱胁迫的响应[J]. 福建农林大学学报: 自然科学版, 2022, 51(4): 562-569. |
Wen ZM, Feng YC, Liu QQ, et al. Changes in seed germination, seedling growth and physiology of 3 herbaceous species in response to drought stress[J]. J Fujian Agric For Univ Nat Sci Ed, 2022, 51(4): 562-569. | |
[29] |
杨伟, 刘文辉, 马祥, 等. 干旱胁迫对2种不同抗旱性老芒麦幼苗ROS积累及抗氧化系统的影响[J]. 草地学报, 2020, 28(3): 684-693.
doi: 10.11733/j.issn.1007-0435.2020.03.012 |
Yang W, Liu WH, Ma X, et al. Effects of ROS accumulation and antioxidant system in two different drought resistant Elymus sibiricus under drought stress[J]. Acta Agrestia Sin, 2020, 28(3): 684-693. | |
[30] | 江登辉, 刘晓颖, 陈乾, 等. 干旱胁迫对福建山樱花和日本樱花叶片渗透调节物质的影响[J]. 福建农林大学学报: 自然科学版, 2020, 49(6): 772-778. |
Jiang DH, Liu XY, Chen Q, et al. Effects of drought stress on osmoregulatory substances in leaves of Prunus campanulata and Prunus yedoensis[J]. J Fujian Agric For Univ Nat Sci Ed, 2020, 49(6): 772-778. | |
[31] |
孙晓梵, 张一龙, 李培英, 等. 不同施氮量对干旱下狗牙根抗氧化酶活性及渗透调节物质含量的影响[J]. 草业学报, 2022, 31(6): 69-78.
doi: 10.11686/cyxb2021179 |
Sun XF, Zhang YL, Li PY, et al. Effects of different nitrogen application rates on antioxidant activity and content of substances involved in osmotic adjustment in Cynodon dactylon under drought stress[J]. Acta Prataculturae Sin, 2022, 31(6): 69-78. | |
[32] |
Klingler JP, Batelli G, Zhu JK. ABA receptors: the START of a new paradigm in phytohormone signalling[J]. J Exp Bot, 2010, 61(12): 3199-3210.
doi: 10.1093/jxb/erq151 pmid: 20522527 |
[33] |
Shani E, Salehin M, Zhang YQ, et al. Plant stress tolerance requires auxin-sensitive Aux/IAA transcriptional repressors[J]. Curr Biol, 2017, 27(3): 437-444.
doi: S0960-9822(16)31463-4 pmid: 28111153 |
[34] |
孙晓春, 张惠惠, 黄文静, 等. 干旱胁迫下水杨酸对桔梗种子萌发及植物激素的影响[J]. 中国农业科技导报, 2019, 21(10): 74-79.
doi: 10.13304/j.nykjdb.2018.0548 |
Sun XC, Zhang HH, Huang WJ, et al. Influence of salicylic acid on seed germination and plant hormones of Platycodon grandiflorum under drought stress[J]. J Agric Sci Technol, 2019, 21(10): 74-79. | |
[35] | 张海燕, 段文学, 解备涛, 等. 不同时期干旱胁迫对甘薯内源激素的影响及其与块根产量的关系[J]. 作物学报, 2018, 44(1): 126-136. |
Zhang HY, Duan WX, Xie BT, et al. Effects of drought stress at different growth stages on endogenous hormones and its relationship with storage root yield in sweetpotato[J]. Acta Agron Sin, 2018, 44(1): 126-136.
doi: 10.3724/SP.J.1006.2018.00126 URL |
|
[36] | 汪堃, 南丽丽, 李景峰, 等. 干旱胁迫对不同根型苜蓿内源激素含量的影响[J]. 干旱地区农业研究, 2022, 40(3): 30-36. |
Wang K, Nan LL, Li JF, et al. Effects of drought stress on endogenous hormonecontents of different root-type alfalfa[J]. Agric Res Arid Areas, 2022, 40(3): 30-36. | |
[37] |
Zhang XZ, Goatley M, Wu WL, et al. Drought-induced injury is associated with hormonal alteration in Kentucky bluegrass[J]. Plant Signal Behav, 2019, 14(10): e1651607.
doi: 10.1080/15592324.2019.1651607 URL |
[38] | Zhou Q, Li YP, Wang XJ, et al. Effects of different drought degrees on physiological characteristics and endogenous hormones of soybean[J]. Plants(Basel), 2022, 11(17): 2282. |
[39] |
Xiong HY, Li JJ, Liu PL, et al. Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice[J]. PLoS One, 2014, 9(3): e92913.
doi: 10.1371/journal.pone.0092913 URL |
[40] |
Qin YX, Wang MC, Tian YC, et al. Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis[J]. Mol Biol Rep, 2012, 39(6): 7183-7192.
doi: 10.1007/s11033-012-1550-y URL |
[41] | 苏小雨. 干旱胁迫下褪黑素对玉米幼苗生理生化的调控及蛋白组分析[D]. 郑州: 河南农业大学, 2018. |
Su XY. The role of melatonin on regulation mechanism of physiological and proteome analysis in maize seedlings under drought stress[D]. Zhengzhou: Henan Agricultural University, 2018. | |
[42] |
Zhao X, Xu MM, Wei RR, et al. Expression of OsCAS(calcium-sensing receptor)in an Arabidopsis mutant increases drought tolerance[J]. PLoS One, 2015, 10(6): e0131272.
doi: 10.1371/journal.pone.0131272 URL |
[43] |
Du H, Wang N, Cui F, et al. Characterization of the beta-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice[J]. Plant Physiol, 2010, 154(3): 1304-1318.
doi: 10.1104/pp.110.163741 URL |
[44] | 姜南. 脯氨酸合成酶基因在玉米中的遗传转化与功能验证[D]. 长春: 吉林农业大学, 2020. |
Jiang N. Genetic transformation and functional verification of proline synthase gene in maize[D]. Changchun: Jilin Agricultural University, 2020. | |
[45] | 商成慧, 周泽宇, 崔文雪, 等. 大豆脯氨酸积累相关基因家族鉴定及干旱胁迫表达分析[J]. 植物遗传资源学报, 2022(6):1793-1806. |
Shang CH, Zhou ZY, Cui WX, et al. Identification and expression analysis of proline accumulation related gene families in soybean under drought stress[J]. J Plant Genet Resour, 2022(6):1793-1806.
doi: 10.13430/j.cnki.jpgr.20220328003 |
|
[46] |
Sasaki E, Ogura T, Takei K, et al. Uniconazole, a cytochrome P450 inhibitor, inhibits trans-Zeatin biosynthesis in Arabidopsis[J]. Phytochemistry, 2013, 87: 30-38.
doi: 10.1016/j.phytochem.2012.11.023 pmid: 23280040 |
[47] |
Sun J, Zhang A, Zhang J, et al. Enantiomeric resolution and growth-retardant activity in rice seedlings of uniconazole[J]. J Agric Food Chem, 2012, 60(1): 160-164.
doi: 10.1021/jf203742x URL |
[48] |
Ahmad I, Kamran M, Meng XP, et al. Hormonal changes with uniconazole trigger canopy apparent photosynthesis and grain filling in wheat crop in a semi-arid climate[J]. Protoplasma, 2021, 258(1): 139-150.
doi: 10.1007/s00709-020-01559-0 |
[49] | Ahmad I, Ahmad S, Yang XN, et al. Effect of uniconazole and nitrogen level on lodging resistance and yield potential of maize under medium and high plant density[J]. Plant Biol(Stuttg), 2021, 23(3): 485-496. |
[50] |
Wang SY, Zhou H, Feng NJ, et al. Physiological response of soybean leaves to uniconazole under waterlogging stress at R1 stage[J]. J Plant Physiol, 2022, 268: 153579.
doi: 10.1016/j.jplph.2021.153579 URL |
[51] |
Chen YL, Yu HX, Wang Y, et al. Uniconazole augments abscisic acid in promoting somatic embryogenesis in cotton(Gossypium hirsutum L.)[J]. Front Plant Sci, 2022, 13: 865778.
doi: 10.3389/fpls.2022.865778 URL |
[52] |
Wei YZ, Dong C, Zhang HN, et al. Transcriptional changes in Litchi(Litchi chinensis Sonn.) inflorescences treated with uniconazole[J]. PLoS One, 2017, 12(4): e0176053.
doi: 10.1371/journal.pone.0176053 URL |
[53] |
Wijayanti L, Fujioka S, Kobayashi M, et al. Effect of uniconazole and gibberellin on the flowering of Pharbitis nil[J]. Biosci Biotechnol Biochem, 1996, 60(5): 852-855.
doi: 10.1271/bbb.60.852 URL |
[54] | 李宁毅, 宋妍, 韩晓芳. 干旱胁迫下烯效唑对矮牵牛幼苗水分状况和光合特性的影响[J]. 江西农业大学学报, 2011, 33(6): 1062-1066, 1076. |
Li NY, Song Y, Han XF. Effects of uniconazole on water status and photosynthetic parameters of petunias seedlings under drought stress[J]. Acta Agric Univ Jiangxiensis, 2011, 33(6): 1062-1066, 1076. | |
[55] |
Zuo QS, Wang L, Zheng JD, et al. Effects of uniconazole rate on agronomic traits and physiological indexes of rapeseed blanket seedling[J]. Oil Crop Sci, 2020, 5(4): 198-204.
doi: 10.1016/j.ocsci.2020.12.003 URL |
[56] |
李琬, 项洪涛, 何宁, 等. 烯效唑(S3307)提高作物抗逆性研究进展[J]. 中国农学通报, 2020, 36(20): 101-106.
doi: 10.11924/j.issn.1000-6850.casb20190500106 |
Li W, Xiang HT, He N, et al. Uniconazole(S3307)improving resistance of crops: a review[J]. Chin Agric Sci Bull, 2020, 36(20): 101-106. | |
[57] |
Jiang Y, Sun YF, Zheng DF, et al. Physiological and transcriptome analyses for assessing the effects of exogenous uniconazole on drought tolerance in hemp(Cannabis sativa L.)[J]. Sci Rep, 2021, 11(1): 14476.
doi: 10.1038/s41598-021-93820-6 pmid: 34262091 |
[58] | 刘丽琴, 张永清, 李鑫, 等. 烯效唑浸种对干旱胁迫下红小豆生长及其根系生理特性的影响[J]. 西北植物学报, 2017, 37(1): 144-153. |
Liu LQ, Zhang YQ, Li X, et al. Influence of seed soaking with uniconazole on growth and root physiological characteristics of adzuki bean under drought stress[J]. Acta Bot Boreali Occidentalia Sin, 2017, 37(1): 144-153. | |
[59] | 王佳旭, 张飞, 王艳秋, 等. 外源生长调节剂对高粱光合参数及产量的影响[J]. 干旱地区农业研究, 2022, 40(2): 78-86. |
Wang JX, Zhang F, Wang YQ, et al. Effects of exogenous growth regulators on photosynthetic parameters and yield of sorghum[J]. Agric Res Arid Areas, 2022, 40(2): 78-86. | |
[60] |
Keshavarz H, Khodabin G. The role of uniconazole in improving physiological and biochemical attributes of bean(Phaseolus vulgaris L.) subjected to drought stress[J]. J Crop Sci Biotechnol, 2019, 22(2): 161-168.
doi: 10.1007/s12892-019-0050-0 |
[61] | 李宁毅, 时彦平, 王吉振. 水分胁迫下烯效唑对百日草幼苗光合特性及叶解剖结构的影响[J]. 西北植物学报, 2012, 32(8): 1626-1631. |
Li NY, Shi YP, Wang JZ. Effect of uniconazole on photosynthetic characters and leaf anatomical structure of Zinnia seedlings under water stress[J]. Acta Bot Boreali Occidentalia Sin, 2012, 32(8): 1626-1631. | |
[62] |
Liu Y, Fang Y, Huang MJ, et al. Uniconazole-induced starch accumulation in the bioenergy crop duckweed(Landoltia punctata)II: transcriptome alterations of pathways involved in carbohydrate metabolism and endogenous hormone crosstalk[J]. Biotechnol Biofuels, 2015, 8: 64.
doi: 10.1186/s13068-015-0245-8 URL |
[63] | 姜颖. 烯效唑缓解工业大麻苗期干旱损伤效应与机制[D]. 大庆: 黑龙江八一农垦大学, 2021. |
Jiang Y. Effects and mechanisms of uniconazole on alleviating drought damage in Cannabis sativa L. at seedling stage[D]. Daqing: Heilongjiang Bayi Agricultural University, 2021. | |
[64] |
Ahmad I, Kamran M, Yang XN, et al. Effects of applying uniconazole alone or combined with manganese on the photosynthetic efficiency, antioxidant defense system, and yield in wheat in semiarid regions[J]. Agric Water Manag, 2019, 216: 400-414.
doi: 10.1016/j.agwat.2019.02.025 URL |
[65] | 王景伟, 黄玉兰, 金喜军, 等. 干旱胁迫下烯效唑拌种对芸豆保护酶活性及渗透调节物质的影响[J]. 江苏农业科学, 2017, 45(12): 59-61. |
Wang JW, Huang YL, Jin XJ, et al. Effects of enbutazole seed dressing on protective enzyme activities and osmoregulatory substances in kidney bean under drought stress[J]. Jiangsu Agric Sci, 2017, 45(12): 59-61. | |
[66] | 黄玉兰, 向君亮, 殷奎德. 烯效唑(S3307)对干旱胁迫下薏苡幼苗生长及生理特性的影响(英文)[J]. 农业生物技术学报, 2017, 25(2): 231-239. |
Huang YL, Xiang JL, Yin KD. Effect of uniconazole(S3307)on growth and physiological characteristics of Coix(Coix lachryma-jobi)seedlings under drought stress[J]. J Agric Biotechnol, 2017, 25(2): 231-239. | |
[67] | 姜颖, 左官强, 王晓楠, 等. 烯效唑浸种对干旱胁迫下工业大麻幼苗形态、渗透调节物质及内源激素的影响[J]. 干旱地区农业研究, 2020, 38(3): 74-80. |
Jiang Y, Zuo GQ, Wang XN, et al. Effects of soaking seeds with uniconazole on morphology, osmotic regulators and endogenous hormones of industrial hemp seedlings under drought stress[J]. Agric Res Arid Areas, 2020, 38(3): 74-80. | |
[68] |
Sheikh Mohammadi MH, Etemadi N, Arab MM, et al. Molecular and physiological responses of Iranian perennial ryegrass as affected by trinexapac ethyl, paclobutrazol and abscisic acid under drought stress[J]. Plant Physiol Biochem, 2017, 111: 129-143.
doi: 10.1016/j.plaphy.2016.11.014 URL |
[69] | 杜召海, 汪宝卿, 解备涛, 等. 模拟干旱条件下植物生长调节剂对夏薯苗期根系生理生化特性的影响[J]. 西北农业学报, 2014, 23(10): 97-104. |
Du ZH, Wang BQ, Xie BT, et al. Effects of plant growth regulators on physiological and biochemical characteristics of roots in summer sweetpotato seedlings under simulated drought stress[J]. Acta Agric Boreali Occidentalis Sin, 2014, 23(10): 97-104. | |
[70] | 梁晓艳. 烯效唑对干旱胁迫下苗期大豆根系的调控[D]. 大庆: 黑龙江八一农垦大学, 2019. |
Liang XY. Regulation of uniconazole of soybean root at seedling stage under drought stress[D]. Daqing: Heilongjiang Bayi Agricultural University, 2019. | |
[71] |
Ahmad I, Kamran M, Ali S, et al. Seed filling in maize and hormones crosstalk regulated by exogenous application of uniconazole in semiarid regions[J]. Environ Sci Pollut Res Int, 2018, 25(33): 33225-33239.
doi: 10.1007/s11356-018-3235-0 |
[72] |
Zhou H, Liang XY, Feng NJ, et al. Effect of uniconazole to soybean seed priming treatment under drought stress at VC stage[J]. Ecotoxicol Environ Saf, 2021, 224: 112619.
doi: 10.1016/j.ecoenv.2021.112619 URL |
[73] |
Chiu RS, Saleh Y, Gazzarrini S. Inhibition of FUSCA3 degradation at high temperature is dependent on ABA signaling and is regulated by the ABA/GA ratio[J]. Plant Signal Behav, 2016, 11(11): e1247137.
doi: 10.1080/15592324.2016.1247137 URL |
[74] | 姜颖, 王晓楠, 张晓艳, 等. 烯效唑浸种对干旱胁迫下大麻叶片的转录组调控分析[J]. 分子植物育种, 2021, 19(19): 6376-6385. |
Jiang Y, Wang XN, Zhang XY, et al. Transcriptome regulation analysis of uniconazole seed soaking on hemp leaves under drought stress[J]. Mol Plant Breed, 2021, 19(19): 6376-6385. | |
[75] | 黄玉兰. PEG模拟干旱条件下烯效唑对薏苡幼苗生理生化的调控及转录组分析[D]. 大庆: 黑龙江八一农垦大学, 2017. |
Huang YL. The physiological and biochemical regulation of uniconazole to Coix lachrymal-jobi L.Seedlings and transcriptome analysis under PEG drought stress[D]. Daqing: Heilongjiang Bayi Agricultural University, 2017. | |
[76] |
Jahan A, Komatsu K, Wakida-Sekiya M, et al. Archetypal roles of an abscisic acid receptor in drought and sugar responses in liverworts[J]. Plant Physiol, 2019, 179(1): 317-328.
doi: 10.1104/pp.18.00761 pmid: 30442644 |
[77] |
Pizzio GA, Rodriguez L, Antoni R, et al. The PYL4 A194T mutant uncovers a key role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA interaction for abscisic acid signaling and plant drought resistance[J]. Plant Physiol, 2013, 163(1): 441-455.
doi: 10.1104/pp.113.224162 pmid: 23864556 |
[78] |
Dai XY, Xu YY, Ma QB, et al. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis[J]. Plant Physiol, 2007, 143(4): 1739-1751.
doi: 10.1104/pp.106.094532 URL |
[79] |
Niu X, Luo TL, Zhao HY, et al. Identification of wheat DREB genes and functional characterization of TaDREB3 in response to abiotic stresses[J]. Gene, 2020, 740: 144514.
doi: 10.1016/j.gene.2020.144514 URL |
[80] |
Okay S, Derelli E, Unver T. Transcriptome-wide identification of bread wheat WRKY transcription factors in response to drought stress[J]. Mol Genet Genomics, 2014, 289(5): 765-781.
doi: 10.1007/s00438-014-0849-x pmid: 24748053 |
[1] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[2] | 刘雯锦, 马瑞, 刘升燕, 杨江伟, 张宁, 司怀军. 马铃薯StCIPK11的克隆及响应干旱胁迫分析[J]. 生物技术通报, 2023, 39(9): 147-155. |
[3] | 王春语, 李政君, 王平, 张丽霞. 高粱表皮蜡质缺失突变体sb1抗旱生理生化分析[J]. 生物技术通报, 2023, 39(5): 160-167. |
[4] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[5] | 王琪, 胡哲, 富薇, 李光哲, 郝林. 伯克霍尔德氏菌GD17对黄瓜幼苗耐干旱的调节[J]. 生物技术通报, 2023, 39(3): 163-175. |
[6] | 于波, 秦晓惠, 赵杨. 植物感应干旱信号的机制[J]. 生物技术通报, 2023, 39(11): 6-17. |
[7] | 陈楚怡, 杨小梅, 陈胜艳, 陈斌, 岳莉然. ABA和干旱胁迫下菊花脑ZF-HD基因家族的表达分析[J]. 生物技术通报, 2023, 39(11): 270-282. |
[8] | 冯策婷, 江律, 刘鑫颖, 罗乐, 潘会堂, 张启翔, 于超. 单叶蔷薇NAC基因家族鉴定及干旱胁迫响应分析[J]. 生物技术通报, 2023, 39(11): 283-296. |
[9] | 鄢梦雨, 韦晓薇, 曹婧, 兰海燕. 异子蓬SabHLH169基因的克隆及抗旱功能分析[J]. 生物技术通报, 2023, 39(11): 328-339. |
[10] | 关志秀, 汪燕, 梁成刚, 韦春玉, 黄娟, 陈庆富. 苦荞FtCBL基因的鉴定及对干旱与高钙胁迫的响应[J]. 生物技术通报, 2022, 38(8): 101-109. |
[11] | 陈佳敏, 刘永杰, 马锦绣, 李丹, 公杰, 赵昌平, 耿洪伟, 高世庆. 小麦组蛋白甲基化酶在杂交种中干旱胁迫表达模式分析[J]. 生物技术通报, 2022, 38(7): 51-61. |
[12] | 于国红, 刘朋程, 李磊, 李明哲, 崔海英, 郝洪波, 郭安强. 不同基因型马铃薯对干旱胁迫的生理响应[J]. 生物技术通报, 2022, 38(5): 56-63. |
[13] | 董亚茹, 赵东晓, 耿兵, 李云芝, 王照红. 桑树MnERF2的表达分析[J]. 生物技术通报, 2022, 38(11): 112-121. |
[14] | 张彤彤, 郑登俞, 吴忠义, 张中保, 于荣. 玉米NF-Y转录因子基因ZmNF-YB13响应干旱和盐胁迫的功能分析[J]. 生物技术通报, 2022, 38(10): 115-123. |
[15] | 杨馥榕, 王晓红, 肖琪, 方娟, 李立华. 木槿品种对镉胁迫的生理响应及耐镉能力评价[J]. 生物技术通报, 2022, 38(1): 98-107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||