生物技术通报 ›› 2019, Vol. 35 ›› Issue (12): 159-168.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0481
张文君, 吴梦婷, 吕春艳, 王晴, 陈泳霖
收稿日期:
2019-05-30
出版日期:
2019-12-26
发布日期:
2019-12-03
作者简介:
张文君,女,副教授,研究方向:新型药物传输系统;E-mail:wenjun0501@126.com
基金资助:
ZHANG Wen-jun, WU Meng-ting, LÜ Chun-yan, WANG Qing, CHEN Yong-lin
Received:
2019-05-30
Published:
2019-12-26
Online:
2019-12-03
摘要: 介孔二氧化硅纳米粒因比表面积大、孔隙率高、介孔结构可调、表面易修饰等特点,近年来在生物医学领域受到广泛的关注。介孔二氧化硅作为一种新型载体,相比于传统的纳米载体不仅可以改善难溶性药物的溶解度,有效地提高药物的生物利用度,还可以通过修饰或包覆功能性物质实现对肿瘤细胞的靶向性及控制药物的吸附、释放,且其稳定的框架结构可以递送和保护核酸分子,达到基因治疗的目的。然而,要将介孔二氧化硅纳米粒应用于临床,还需要做进一步的工作来预测和评估潜在的毒性和不良反应,明确介孔二氧化硅纳米粒在体内的吸收、分布、代谢、排泄及生物相容性和毒性,以确保其在患者中的有效性和安全性。综述了介孔二氧化硅纳米粒在药物递送系统及基因治疗的应用,着重介绍了靶向型介孔二氧化硅以及刺激响应型介孔二氧化硅的一些研究成果,并对介孔二氧化硅的药物代谢动力学、生物相容性和毒性的研究情况进行了深入的总结,旨为介孔二氧化硅在生物医学的应用提供参考。
张文君, 吴梦婷, 吕春艳, 王晴, 陈泳霖. 介孔二氧化硅在药物递送系统及其体内外研究进展[J]. 生物技术通报, 2019, 35(12): 159-168.
ZHANG Wen-jun, WU Meng-ting, LÜ Chun-yan, WANG Qing, CHEN Yong-lin. Research Progress on Mesoporous Silica in Drug Delivery System and in vitro/in vivo[J]. Biotechnology Bulletin, 2019, 35(12): 159-168.
[1] Singh Y, Meher JG, Raval K, et al.Nanoemulsion:concepts, development and applications in drug delivery[J]. Journal of Controlled, 2017, 252(5):28-49. [2] Janjic JM, Vasudeva K, Saleem M, et al.Low-dose NSAIDs reduce pain via macrophage targeted nanoemulsion delivery to neuroinflammation of the sciatic nerve in rat[J]. Journal of Neuroimmunology, 2018, 318:72-79. [3] Chen CT, Duan ZQ, Yuan Y, et al.Peptide-22 and Cyclic RGD functionalized liposomes for glioma targeting drug delivery overco-ming BBB and BBTB[J]. ACS Appl Mater Inter, 2017, 9(7):5864-5873. [4] Yin XL, Feng SS, Chi YY, et al.Estrogen-functionalizaed liposomes grafted with glutathione-respnsive sheddable chotooligosaccharides for the therapy of osteosarcoma[J]. Drug Delivery, 2018, 25(1):900-908. [5] Vrbata D, Uchman M.Preparation of lactic acid- and glucose-responsive poly(ε-caprolactone)-b-Poly(ethylene oxide)block copolymer micelles using phenylboronic ester as a sensitive block linkage[J]. Nanoscale, 2018, 10(18):8428-8442. [6] Liu LL, He HM, Liang RJ, et al.ROS-Inducing micelles sensitize tumor-associated macrophages to TLR3 stimulation for potent immunotherapy[J]. Biomacromolecules, 2018, 6:2146-2155. [7] Zhou YX, Quan GL, Wu QL, et al.Mesoporous silica nanoparticles for drug and gene delivery[J]. Acta Pharmaceutica Sinica B, 2018, 8(2):165-177. [8] Lee JE, Lee N, Kim T, et al.Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications[J]. Acc Chem Res, 2011, 44(10):893-902. [9] Meng H, Liong M, Xia T, et al.Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line[J]. Acs Nano, 2010, 4:4539-4550. [10] Lee AL, Gee CT, Weegman BP, et al.Oxygen sensing with perfluorocarbon-loaded ultraporous mesostructured silica na-noparticles[J]. Acs Nano, 2017, 11:5623-5632. [11] Wu SH, Hung Y, Mou CY.Mesoporous silica nanoparticles as nanocarriers[J]. Chemical Communications, 2011, 47(36):9972-9985. [12] Jia ZR, Lin P, Xiang Y, et al.A novel nanomatrix system consisted of colloidal silica and pH-sensitive polymethylacrylate improves the oral bioavailability of fenofibrate[J]. Eur J Pharm Biopharm, 2011, 79:126 34. [13] Hu YC, Zhi ZZ, Wang TY, et al.Incorporation of indomethacin nanoparticles into 3-D ordered macroporous silica for enhanced dissolution and reduced gastric irritancy[J]. Eur J Pharm Biopharm, 2011, 79:544-551. [14] Sliwinska-Bartkowiak M, Dudziak G, Sikorski R, et al.Melting/freezing behavior of a fluid confined in porous glasses and MCM-41:dielectric spectroscopy and molecular simulation[J]. J Chem Phys, 2001, 114:950-962. [15] He YJ, Liang SQ, Long MQ, et al.Mesoporous silica nanoparticles as potential carriers for enhanced drug solubility of paclitaxel[J]. Mater Sci Eng C, 2017;78:12-17. [16] Tzankov B, Voycheva C, Aluani D, et al.Improvement of dissolution of poorly soluble glimepiride by loading on two types of mesoporous silica carriers[J]. J Solid State Chem, 2010, 271:253-259. [17] Meka A, Jenkins L, Dàvalos-Salas M, et al.Enhanced solubility, permeability and anticancer activity of vorinostat using tailored mesoporous silica nanoparticles[J]. Pharmaceutics, 2018, 10(4):283. [18] Li ZY, Hu JJ, Xu Q, et al.A redox-responsive drug delivery system based on RGD containing peptide-capped mesoporous silica nanoparticles[J]. J Mater Chem B, 2015, 3(1):39-44. [19] Ma M, Chen HR, Chen Y, et al.Hyaluronic acid-conjugated mesoporous silica nanoparticles:excellent colloidal dispersity in physiological fluids and targeting efficacy[J]. J Mater Chem, 2012, 22:5615-5621. [20] 姚琳通, 刘娅婷, 刘雅静, 等. 介孔二氧化硅在肿瘤治疗领域的研究进展[J]. 生物技术通报, 2019, 35(2):182-191. [21] Tao W, Zeng XW, Wu J, et al.Polydopamine-based surface modification of novel nanoparticle-aptamer bioconjugates for in vivo breast cancer targeting and enhanced therapeutic effects[J]. Theranostics, 2016, 6(4):470-484. [22] Zhang J, Sun Y, Tian B, et al.Multifunctional mesoporous silica nanoparticles modified with tumor-shedable hyaluronic acid as carriers for doxorubicin[J]. Colloids and Surfaces B:Biointerfaces, 2016, 144:293-302. [23] Wei Y, Gao L, Wang L, et al.Polydopamine and peptide decorated doxorubicin-loaded mesoporous silica nanoparticles as a targeted drug delivery system for bladder cancer therapy[J]. Drug Deliv, 2017, 24(1):681-691. [24] Mandal T, Beck M, Kirsten N, et al.Targeting murine leukemic stem cells by antibody functionalized mesoporous silica nanoparticles[J]. Sci Rep, 2018, 8:989. [25] Zhao Y, Jiang Y, Lv W, et al.Dual Targeted Nanocarrier for Brain Ischemic Stroke Treatment[J]. J Control Release, 2016, 233:64-71. [26] López V, Villegas MR, Rodríguez V, et al.Janus mesoporous silica nanoparticles for dual targeting of tumor cells and mitochondria[J]. ACS Appl. Mater. Interfaces, 2017, 9(32):26697-26706. [27] Avedian N, Zaaeri F, Daryasari MP, et al.pH-sensitive biocompatible mesoporous magnetic nanoparticles labeled with folic acid as an efficient carrier for controlled anticancer drug delivery[J]. J Drug Delivery Sci Technol, 2018, 44:323-332. [28] Brunella V, Jadhav SA, Miletto I, et al.Hybrid drug carriers with temperature-controlled on-off release:a simple and reliable synthesis of PNIPAM-functionalized mesoporous silica nanoparticles[J]. React Funct Polym, 2016, 98:31-37. [29] Castillo RR, Lozano D, González B, et al.Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery:an update[J]. Expert Opin Drug Deliv, 2019, 16(4):415-439. [30] Song YH, Li YH, Xu Q, et al.Mesoporous silica nanoparticles for stimuliresponsive controlled drug delivery:advances, challenges, and outlook[J]. Int J Nanomed, 2017, 12:87-110. [31] Zhao TC, Chen L, Li Q, et al.Near-infrared light triggered drug release from mesoporous silica nanoparticles[J]. J Mater Chem B, 2018, 44:7112-7121. [32] Chen L, Wang W, Su B, et al.A light-responsive release platform by controlling the wetting behavior of hydrophobic surface[J]. ACS Nano, 2014, 8(1):744-751. [33] Li H, Tan LL, Jia P, et al.Near-infrared light-responsive supramolecular nanovalve based on mesoporous silica-coated gold nanorods[J]. Chemical Science, 2014, 5(7):2804-2808. [34] Chang DF, Gao YF, Wang LJ, et al.Polydopamine-based surface modification of mesoporous silica nanoparticles as pH-sensitive drug delivery vehicles for cancer therapy[J]. J Colloid Interface Sci, 2016, 463:279-287. [35] Wang Y, Han N, Zhao QF, et al.Redox-responsive mesoporous silica as carriers for controlled drug delivery:A comparative study based on silica and PEG gatekeepers[J]. Eur J Pharm Sci, 2015, 72:12-20. [36] Rijt SHV, Bolukbas DA, Argyo C, et al.Protease-mediated release of chemotherapeutics from mesoporous silica nanoparticles to ex vivo human and mouse lung tumors[J]. ACS Nano, 2015, 9(3):2377-2389. [37] Paris JL., Cabañas MV, Manzano M, et al. Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers[J]. ACS Nano, 2015, 9(11):11023-11033. [38] Kim MH, Na HK, Kim YK, et al.Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery[J]. ACS Nano, 2011, 5:3568-3576. [39] Kesse S, Boakye-Yiadom K, Ochete B, et al.Mesoporous silica nanomaterials:versatile nanocarriers for cancer theranostics and drug and gene delivery[J]. Pharmaceutics, 2019, 11(2):77-102. [40] Li YJ, Hei MY, Xu YF, et al.Ammonium salt modified mesoporous silica nanoparticles for dual intracellular-responsive gene delivery[J]. Int J Pharm, 2016, 511(2):689-702. [41] Wang MQ, Li X, Ma YJ, et al.Endosomal escape kinetics of mesoporous silica-based system for efficient siRNA delivery[J]. Int J Pharm 2013, 448:51-57. [42] Xia T, Kovochich M, Liong M, et al.Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs[J]. ACS Nano, 2009, 3:3273-3286. [43] Hartono SB, Gu W, Kleitz F, et al.Poly- L -lysine functionalized large pore cubic mesostructured silica nanoparticles as biocompatible carriers for gene delivery[J]. ACS Nano, 2012, 6:2104-2117. [44] Lin JT, Liu ZK, Zhu QL, et al.Redox-responsive nanocarriers for drug and gene co-delivery based on chitosan derivatives modified mesoporous silica nanoparticles[J]. Colloids and Surfaces B:Biointerfaces, 2017, 155:41-50. [45] Zarei H, Kazemi Oskuee R, Hanafi-Bojd MY, et al.Enhanced gene delivery by polyethyleneimine coated mesoporous silica nanoparticles[J]. Pharm Dev Technol, 2019, 24(1):127-132. [46] Zheng N, Li J, Xu C, et al.Mesoporous silica nanorods for improved oral drug absorption[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2018, 46(6):1132-1140. [47] Fu CH, Liu TL, Li LL, et al.The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes[J]. Biomaterials, 2013, 34(10):2565-2575. [48] He QJ, Zhang ZW, Gao F, et al.In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles:effects of particle size and PEGylation[J]. Small, 2010, 7(2):271-280. [49] Cong VT, Gaus K, Tilley RD, et al.Rod-shaped mesoporous silica nanoparticles for nanomedicine:recent progress and perspectives[J]. Expert Opin Drug Deliv, 2018, 15(9):881-892. [50] Huang X, Li L, Liu T, et al.The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo[J]. ACS Nano, 2011, 5(7):5390-5399. [51] Nairi V, Medda S, Piludu M, et al.Interactions between bovine serum albumin and mesoporous silica nanoparticles functionalized with biopolymers[J]. Chem Eng J, 2018, 340:42-50. [52] Fonseca LC, de Araújo MM, de Moraes ACM, et al. Nanocomposites based on graphene oxide and mesoporous silica nanoparticles:preparation, characterization and nanobiointeractions with red blood cells and human plasma proteins[J]. Applied Surface Science, 2018, 437:110-121. [53] Croissant JG, Fatieiev Y, Almalik A, et al.Mesoporous silica and organosilica nanoparticles:physical chemistry, biosafety, delivery strategies, and biomedical applications[J]. Advanced Healthcare Materials, 2017, 7(4):1700831. [54] Lindén M.Biodistribution and excretion of intravenously injected mesoporous silica nanoparticles:implications for drug delivery efficiency and safety[J]. the enzymes, 2018, 43:80-155. [55] Li LL, Liu TL, Fu CH, et al.Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape[J]. Nanomedicine, 2015, 11(8):1915-1924. [56] Cho M, Cho WS, Choi M, et al.The impact of size on tissue distribution and elimination by single intravenous injection of silica nanoparticles[J]. Toxicology Letters, 2009, 189(3):177-183. [57] Zhao YT, Wang Y, Ran F, et al.A comparison between sphere and rod nanoparticles regarding their in vivo biological behavior and pharmacokinetics[J]. Sci Rep, 2017, 7(1):4131-4142. [58] Lee JA., Kim MK, Paek HJ, et al. Tissue distribution and excretion kinetics of orally administered silica nanoparticles in rats[J]. International Journal of Nanomedicine, 2014, 9(2):251-260. [59] Greish K, Thiagarajan G, Herd H, et al.Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles[J]. Nanotoxicology, 2012, 6(7):713-723. [60] Ye YY, Liu JW, Chen MC, et al.In vitro toxicity of silica nanoparticles in myocardial cells[J]. Environmental Toxicology and Pharmacology, 2010, 29(2):131-137. [61] Yu T, Malugin A, Ghandehari H.Impact of silica nanoparticle design on cellular toxicity and hemolytic activity[J]. ACS Nano, 2011, 5(7):5717-5728. [62] Shao D, Lu MM, Zhao YW, et al.The shape effect of magnetic mesoporous silica nanoparticles on endocytosis, biocompatibility and biodistribution[J]. Acta Biomaterialia, 2017, 49:531-540. [63] Li H, Wu XQ, Yang BX, et al.Evaluation of biomimetically synthesized mesoporous silica nanoparticles as drug carriers:structure, wettability, degradation, biocompatibility and brain distribution[J]. Mater Sci Eng C Mater Biol Appl, 2019, 94:453-464. [64] Pisani C, Rascol E, Dorandeu C, et al.Biocompatibility assessment of functionalized magnetic mesoporous silica nanoparticles in human HepaRG cells[J]. Nanotoxicology, 2017, 11(7):871-890. [65] Kim IY, Joachim E, Choi H, et al.Toxicity of silica nanoparticles depends on size, dose, and cell type[J]. Nanomedicine, 2015, 11(6):1407-1416. [66] Chen Y, Chen HR, Shi JL.In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles[J]. Advanced Materials, 2013, 25(23):3144-3176. [67] Tamarov K, Näkki S, Xu W, et al.Approaches to improve the biocompatibility and systemic circulation of inorganic porous nanoparticles[J]. J Mater Chem B, 2018, 6(22):3632-3649. [68] He QJ, Zhang JM, Shi JL, et al.The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses[J]. Biomaterials, 2010, 31(6):1085-1092. [69] Lehman SE, Morris AS, Mueller PS, et al.Silica nanoparticle-generated ROS as a predictor of cellular toxicity:mechanistic insights and safety by design[J]. Environmental Science:Nano, 2016, 3(1):56-66. [70] Shi Y, Miller ML, Di Pasqua AJ.Biocompatibility of Mesoporous Silica Nanoparticles?[J]. Comments on Inorganic Chemistry, 2015, 36(2):61-80. [71] Passagne I, Morille M, Rousset M, et al.Implication of oxidative stress in size-dependent toxicity of silica nanoparticles in kidney cells[J]. Toxicology, 2012, 299(2-3):112-124. [72] Morishige T, Yoshioka Y, Inakura H, et al.The effect of surface modification of amorphous silica particles on NLRP3 inflammasome mediated IL-1β production, ROS production and endosomal rupture[J]. Biomaterials, 2010, 31(26):6833-6842. [73] Sergent J, Paget V, Chevillard S.Toxicity and genotoxicity of nano-SiO2 on human epithelial intestinal HT-29 cell line[J]. Ann Occup Hyg, 2012, 56(5):622-630. [74] Zhang QN, Xu HF, Zheng SQ, et al.Genotoxicity of mesoporous silica nanoparticles in human embryonic kidney 293 cells[J]. Drug Test Anal, 2015, 7(9):787-796. [75] 李舒婷, 贺万崇, 黄昆仑, 等. 介孔二氧化硅介导的功能核酸检测技术研究进展[J]. 生物技术通报, 2018, 34(9):139-148. [76] Downs TR, Crosby ME, Hu T, et al.Silica nanoparticles administered at the maximum tolerated dose induce genotoxic effects through an inflammatory reaction while gold nanoparticles do not[J]. Mutat Res, 2012, 745(1-2):38-50. [77] Pinto SR, Helal-Neto E, Paumgartten F, et al.Cytotoxicity, genotoxicity, transplacental transfer and tissue disposition in pregnant rats mediated by nanoparticles:the case of magnetic core mesoporous silica nanoparticles[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2018, 46:527-538. |
[1] | 陈宝强, 李莹莹, 马博雅, 肉扎古丽·马利克, 优丽图孜·乃比, 宋金迪, 刘君, 王希东. 西瓜食酸菌III型分泌效应物基因aop2功能分析[J]. 生物技术通报, 2023, 39(6): 286-297. |
[2] | 王万顺, 付强, 魏玉荣, 胡新艳, 陈俊贞, 李泽宇, 史慧君. 慢病毒介导Occludin过表达影响BVDV感染BALB/c小鼠的研究[J]. 生物技术通报, 2022, 38(6): 291-298. |
[3] | 孙德权, 陆新华, 李伟明, 胡玉林, 段雅婕, 庞振才, 胡会刚. 介孔二氧化硅纳米粒在农业中的应用[J]. 生物技术通报, 2022, 38(5): 228-239. |
[4] | 龚晓惠, 杨敏, 李舒婷, 林晟豪, 许文涛. 银纳米簇抗菌机理、活性及其应用的研究进展[J]. 生物技术通报, 2021, 37(5): 212-220. |
[5] | 付强, 陈俊贞, 郭妍婷, 姚刚, 冉多良, 史慧君. 应用CRISPR/Cas9技术敲除SERPINF2基因对牛病毒性腹泻病毒复制的影响[J]. 生物技术通报, 2021, 37(5): 267-272. |
[6] | 付强, 郭妍婷, 陈俊贞, 王金泉, 史慧君. 牛病毒性腹泻病毒离子孔道蛋白p7多肽多克隆抗体的制备和鉴定[J]. 生物技术通报, 2021, 37(10): 137-142. |
[7] | 杨悦, 高郡茹, 杨柳. CRISPR技术在生物学与医学中的研究进展[J]. 生物技术通报, 2020, 36(3): 38-44. |
[8] | 伍婷婷, 桂哲, 秦迎秋, 谢志雄. σ Factor SigW/Anti-σ Factor RsiW参与东湖假单胞菌HYS对秀丽隐杆线虫毒性作用[J]. 生物技术通报, 2020, 36(10): 142-149. |
[9] | 王亚楠, 文海若, 王雪. 基于L5178Y细胞体外Pig-a基因突变试验方法的建立与初步探索[J]. 生物技术通报, 2020, 36(1): 220-228. |
[10] | 姚琳通, 刘娅婷, 刘雅静, 陈真真. 介孔二氧化硅在肿瘤治疗领域的研究进展[J]. 生物技术通报, 2019, 35(2): 182-191. |
[11] | 林胜红, 潘晓梅, 石晓玲, Ihsan Ali, 刘震飞, 于爽, 张锦锋, 牛振峰, 田永强. 土壤霉菌菌丝球的筛选、鉴定及固定化菌丝球的应用[J]. 生物技术通报, 2019, 35(1): 76-81. |
[12] | 李舒婷, 贺万崇, 黄昆仑, 许文涛. 介孔二氧化硅介导的功能核酸检测技术研究进展[J]. 生物技术通报, 2018, 34(9): 139-148. |
[13] | 梁丽琴,阎婧,张鑫,郝泽婷,段江燕. CRISPR技术的发展及应用研究进展[J]. 生物技术通报, 2018, 34(5): 9-16. |
[14] | 任亚林, 李耘, 吴静. AFB1和ZEN对HepG2细胞体外联合毒性效应及机制研究[J]. 生物技术通报, 2018, 34(11): 160-167. |
[15] | 吕鹏, 徐嘉擎, 王森, 闫艳春. 杀菌剂苯并异噻唑啉酮对斑马鱼胚胎的急性毒性和氧化应激效应研究[J]. 生物技术通报, 2018, 34(1): 172-182. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||