生物技术通报 ›› 2020, Vol. 36 ›› Issue (5): 193-204.doi: 10.13560/j.cnki.biotech.bull.1985.2019-1007
陈慧玲, 张青云, 孙凯
收稿日期:
2019-10-22
出版日期:
2020-05-26
发布日期:
2020-06-03
作者简介:
陈慧玲,女,研究方向:漆酶介导腐殖化反应中有机污染物的偶联机制;E-mail:ahx1427@sina.com
基金资助:
CHEN Hui-ling, ZHANG Qing-yun, SUN Kai
Received:
2019-10-22
Published:
2020-05-26
Online:
2020-06-03
摘要: 漆酶(Laccase,p-diphenol dioxygen oxidoreductases,EC 1.10.3.2)是一类包含三核铜簇位点的多酚氧化还原酶,广泛存在于细菌、真菌、高等植物和昆虫体内。该类酶不仅能够促进生态系统中高分子木质素和腐殖质聚合物的生物分解,还可以催化有机体内单酚和多酚类化合物参与黑色素、木质素、黄酮类和角质层等功能酚聚合物的生物合成。漆酶介导有机物的分解代谢和合成代谢机制有益于生态环境中碳循环和生物形态发生变化。在生物体内,漆酶催化天然酚类单电子氧化形成苯氧活性自由基或醌类中间体,随后这些活性中间体发生自我偶联或交叉偶联反应,生成多种结构复杂的大分子C-C、C-O-C或C-N-C功能聚合产物。因此,通过人工模拟漆酶催化生物体内的绿色合成代谢机理和路径,合理设计和定向改造漆酶在生物体外催化酚类底物偶联形成大分子功能聚合产物的结构和特性,有望为拓展和研发漆酶在绿色合成化学中的多功能应用提供丰富的参考价值和新颖的见解思路。
陈慧玲, 张青云, 孙凯. 漆酶介导生物体内酚类氧化偶联的基本原理及其在绿色合成中的应用[J]. 生物技术通报, 2020, 36(5): 193-204.
CHEN Hui-ling, ZHANG Qing-yun, SUN Kai. Laccase-Mediated Oxidative Coupling of Phenolic Compounds in vivo:from Fundamentals to Multifunctional Applications in Green Synthesis[J]. Biotechnology Bulletin, 2020, 36(5): 193-204.
[1] 张泽雄, 刘红艳, 邢贺, 等. 漆酶可降解底物种类的研究进展[J]. 生物技术通报, 2017, 33(10):97-102. [2] Strong PJ, Claus H.Laccase:A review of its past and its future in bioremediation[J]. Critical Reviews in Environmental Science and Technology, 2011, 41(4):373-434. [3] Sharma A, Jain KK, Jain A, et al.Bifunctional in vivo role of laccase exploited in multiple biotechnological applications[J]. Applied Microbiology and Biotechnology, 2018, 102(24):10327-10343. [4] 芦光新, 王军邦, 陈秀蓉, 等. 东祁连山高寒草地土壤产漆酶真菌的筛选, 鉴定及产酶条件的初步研究[J]. 草业学报, 2014, 23(2):243-252. [5] Tortella G, Durán N, Rubilar O, et al.Are white-rot fungi a real biotechnological option for the improvement of environmental health?[J]. Critical Reviews in Biotechnology, 2015, 35(2):165-172. [6] Asano T, Seto Y, Hashimoto K, et al.Mini-review an insect-specific system for terrestrialization:Laccase-mediated cuticle formation[J]. Insect Biochemistry and Molecular Biology, 2019, 108:61-70. [7] Munk L, Sitarz AK, Kalyani DC, et al.Can laccases catalyze bond cleavage in lignin?[J]. Biotechnology Advances, 2015, 33(1):13-24. [8] Eisenman HC, Casadevall A.Synthesis and assembly of fungal melanin[J]. Applied Microbiology and Biotechnology, 2012, 93 (3):931-940. [9] Schuetz M, Benske A, Smith R A, et al.Laccases direct lignification in the discrete secondary cell wall domains of protoxylem[J]. Plant Physiology, 2014, 166(2):798-807. [10] Zavarzina AG, Semenova TA, Belova OV, et al.Laccase production and humic acids decomposition by microscopic soil fungi[J]. Microbiology, 2018, 87(3):308-316. [11] Abdel-Mohsen HT, Conrad J, Harms K, et al.Laccase-catalyzed green synthesis and cytotoxic activity of novel pyrimidobenzothiazoles and catechol thioethers[J]. RSC Advances, 2017, 7(28):17427-17441. [12] 司静, 李伟, 崔宝凯, 等. 真菌漆酶性质, 分子生物学及其应用研究进展[J]. 生物技术通报, 2011(2):48-55. [13] Su J, Fu J, Wang Q, et al.Laccase:A green catalyst for the biosynthesis of poly-phenols[J]. Critical Reviews in Biotechnology, 2018, 38(2):294-307. [14] 龚睿, 孙凯, 谢道月. 真菌漆酶在绿色化学中的研究进展[J]. 生物技术通报, 2018, 34(4):24-34. [15] 孙凯, 程行, 余家琳, 等. 漆酶催化生物体内有机物合成与分解代谢的双功能机制及其在生物技术领域中的应用[J]. 农业环境科学学报, 2019, 38(6):1202-1210. [16] 孙凯, 李舜尧. 漆酶催化氧化水溶液中三氯生转化的作用机理[J]. 中国环境科学, 2017, 37(8):2947-2954. [17] Baldrian P.Fungal laccases-occurrence and properties[J]. FEMS Microbiology Reviews, 2006, 30(2):215-242. [18] 林先贵, 吴宇澄, 曾军, 等. 多环芳烃的真菌漆酶转化及污染土壤修复技术[J]. 微生物学通报, 2017, 44(7):1720-1727. [19] Jones SM, Solomon EI.Electron transfer and reaction mechanism of laccases[J]. Cellular and Molecular Life Sciences, 2015, 72(5):869-883. [20] Madhavi V, Lele SS.Laccase:Properties and applications[J]. Bio Resources, 2009, 4(4):1694-1717. [21] Mate DM, Alcalde M.Laccase:A multi-purpose biocatalyst at the forefront of biotechnology[J]. Microbial Biotechnology, 2017, 10(6):1457-1467. [22] 李欣, 姚世庭, 党宁, 等. 漆酶生物转化酚类化合物的研究进展[J]. 微生物前沿, 2017, 6(3):79-89. [23] Jeon J R, Baldrian P, Murugesan K, et al.Laccase-catalysed oxidations of naturally occurring phenols:From in vivo biosynthetic pathways to green synthetic applications[J]. Microbial Biotechnology, 2012, 5(3):318-332. [24] 徐鑫, 陈青君, 胡渤洋, 等. 野生槐耳的分离, 鉴定, 培养条件及产漆酶能力[J]. 应用与环境生物学报, 2018, 24(3):570-575. [25] Chen M, Waigi MG, Li S, et al.Fungal laccase-mediated humification of estrogens in aquatic ecosystems[J]. Water Research, 2019, 166:115040. [26] Luo Q, Wang Z, Feng M, et al.Factors controlling the rate of perfluorooctanoic acid degradation in laccase-mediator systems:The impact of metal ions[J]. Environmental Pollution, 2017, 224:649-657. [27] Rodrigues EM, Karp SG, Malucelli LC, et al.Evaluation of laccase production by Ganoderma lucidum in submerged and solid-state fermentation using different inducers[J]. Journal of Basic Microbiology, 2019, 59(8):784-791. [28] Jeon JR, Chang YS.Laccase-mediated oxidation of small organics:Bifunctional roles for versatile applications[J]. Trends in Biotechnology, 2013, 31(6):335-341. [29] Wang T, Xiang Y, Liu X, et al.A novel fluorimetric method for laccase activities measurement using Amplex Red as substrate[J]. Talanta, 2017, 162:143-150. [30] Baiocco P, Barreca AM, Fabbrini M, et al.Promoting laccase activity towards non-phenolic substrates:A mechanistic investigation with some laccase-mediator systems[J]. Organic & Biomolecular Chemistry, 2003, 1(1):191-197. [31] Wei D, Houtman CJ, Kapich AN, et al.Laccase and its role in production of extracellular reactive oxygen species during wood decay by the brown rot basidiomycete Postia placenta[J]. Applied and Environmental Microbiology, 2010, 76(7):2091-2097. [32] Sun K, Kang F, Waigi MG, et al.Laccase-mediated transformation of triclosan in aqueous solution with metal cations and humic acid[J]. Environmental Pollution, 2017, 220:105-111. [33] Chen H, Ji A, Qiu S, et al.Covalent conjugation of bovine serum album and sugar beet pectin through Maillard reaction/laccase catalysis to improve the emulsifying properties[J]. Food Hydrocolloids, 2018, 76:173-183. [34] Jia W, Wang Q, Fan X, et al.Mechanism and analysis of laccase-mediated coloration of silk fabrics[J]. Fibers and Polymers, 2018, 19(4):868-876. [35] Dou RN, Wang JH, Chen YC, et al.The transformation of triclosan by laccase:Effect of humic acid on the reaction kinetics, products and pathway[J]. Environmental Pollution, 2018, 234:88-95. [36] Catherine H, Penninckx M, Frédéric D.Product formation from phenolic compounds removal by laccases:A review[J]. Environmental Technology & Innovation, 2016, 5:250-266. [37] Rekadwad B, Khobragade C.Fungi imperfecti laccase:Biotechnological potential and perspectives[M]. Microbial Applications Vol. 2. Springer, Cham, 2017, 203-212. [38] 陈映丹, 陆春, 冯佩英. 黑素与真菌抗药性的研究进展[J]. 中国真菌学杂志, 2016, 11(4):248-251. [39] 朱显忠, 席丽艳, 鲁莎, 等. 真菌黑色素及其与巨噬细胞免疫研究进展[J]. 菌物学报, 2019, 38(8):1264-1269. [40] Langfelder K, Streibel M, Jahn B, et al.Biosynthesis of fungal melanins and their importance for human pathogenic fungi[J]. Fungal Genetics and Biology, 2003, 38(2):143-158. [41] Sone Y, Nakamura S, Sasaki M, et al.Identification and characterization of bacterial enzymes catalyzing the synthesis of 1, 8-dihydroxynaphthalene, a key precursor of dihydroxynaphthalene melanin, from Sorangium cellulosum[J]. Applied and Environmental Microbiology, 2018. doi:10. 1128/AEM. 00258-18. [42] Ma S, Cao K, Liu N, et al.The StLAC2 gene is required for cell wall integrity, DHN-melanin synthesis and the pathogenicity of Setosphaeria turcica[J]. Fungal Biology, 2017, 121(6-7):589-601. [43] 陈映丹, 陆春, 冯佩英. 黑素与真菌抗药性的研究进展[J]. 中国真菌学杂志, 2016, 11(4):248-251. [44] 康子腾, 姜黎明, 罗义勇, 等. 植物病原链格孢属真菌的致病机制研究进展[J]. 生命科学, 2013, 25(9):908-914. [45] Bao W, O’Malley DM, Whetten R, et al. A laccase associated with lignification in loblolly pine xylem[J]. Science, 1993, 260(5108):672-674. [46] Yan Q, Tang X, Zhang B, et al.Biocatalytic oxidation of flavone analogues mediated by general biocatalysts:Horseradish peroxidase and laccase[J]. RSC Advances, 2019, 9(23):13325-13331. [47] Boerjan W, Ralph J, Baucher M.Lignin biosynthesis[J]. Annual Review of Plant Biology, 2003, 54(1):519-546. [48] Thakur VK, Thakur MK.Recent advances in green hydrogels from lignin:A review[J]. International Journal of Biological Macromolecules, 2015, 72:834-847. [49] Pan X, Du L, Tao J, et al.Dynamic changes of flavonoids in Abelmoschus manihot different organs at different growth periods by UPLC-MS/MS[J]. Journal of Chromatography B, 2017, 1059:21-26. [50] Brunetti C, Fini A, Sebastiani F, et al.Modulation of phytohormone signaling:A primary function of flavonoids in plant-environment interactions[J]. Frontiers in Plant Science, 2018, 9:1042. [51] Wang T, Li Q, Bi K.Bioactive flavonoids in medicinal plants:Structure, activity and biological fate[J]. Asian Journal of Pharmaceutical Sciences, 2018, 13(1):12-23. [52] Guo Y, Qiu LJ.Allele-specific marker development and selection efficiencies for both flavonoid 3'-hydroxylase and flavonoid 3', 5'-hydroxylase genes in soybean subgenus soja[J]. Theoretical and Applied Genetics, 2013, 126(6):1445-1455. [53] Mottiar Y, Vanholme R, Boerjan W, et al.Designer lignins:Harnessing the plasticity of lignification[J]. Current Opinion in Biotechnology, 2016, 37:190-200. [54] 刘清泉. 铜胁迫下水稻木质素合成的响应机制及水稻漆酶在植物重金属耐性中的作用[D]. 南京:南京农业大学, 2015. [55] Vanholme R, De Meester B, Ralph J, et al.Lignin biosynthesis and its integration into metabolism[J]. Current Opinion in Biotechnology, 2019, 56:230-239. [56] Li C, Chen C, Wu X, et al.Recent advancement in lignin biorefinery:With special focus on enzymatic degradation and valorization[J]. Bioresource Technology, 2019, 291:121898. [57] Verma N, Shukla S.Impact of various factors responsible for fluctuation in plant secondary metabolites[J]. Journal of Applied Research on Medicinal and Aromatic Plants, 2015, 2(4):105-113. [58] Ma Y, Chen K, Ma J, et al.A biomass based free radical scavenger binder endowing a compatible cathode interface for 5 V lithium-ion batteries[J]. Energy & Environmental Science, 2019, 12(1):273-280. [59] Senda M, Yamaguchi N, Hiraoka M, et al.Accumulation of proanthocyanidins and/or lignin deposition in buff-pigmented soybean seed coats may lead to frequent defective cracking[J]. Planta, 2017, 245(3):659-670. [60] 刘清明, 苑园园, 林健荣, 等. 昆虫表皮蛋白及其基因表达调控机理的研究进展[J]. 昆虫知识, 2010, 47(2):247-255. [61] 于孟兰, 倪金凤. 昆虫漆酶的研究进展[J]. 生物加工过程, 2014, 12(1):81-85. [62] Arakane Y, Lomakin J, Beeman RW, et al.Molecular and functional analyses of amino acid decarboxylases involved in cuticle tanning in Tribolium castaneum[J]. J Biol Chem, 2009, 284(24):16584-16594. [63] Kramer KJ, Kanost MR, Hopkins TL, et al.Oxidative conjugation of catechols with proteins in insect skeletal systems[J]. Tetrahedron, 2001, 57(2):385-392. [64] Noh MY, Muthukrishnan S, Kramer KJ, et al.Cuticle formation and pigmentation in beetles[J]. Current Opinion in Insect Science, 2016, 17:1-9. [65] Mun S, Noh MY, Dittmer NT, et al.Cuticular protein with a low complexity sequence becomes cross-linked during insect cuticle sclerotization and is required for the adult molt[J]. Scientific Reports, 2015, 5:10484. [66] Gorman MJ, Arakane Y.Tyrosine hydroxylase is required for cuticle sclerotization and pigmentation in Tribolium castaneum[J]. Insect Biochemistry and Molecular Biology, 2010, 40(3):267-273. [67] Du MH, Yan ZW, Hao YJ, et al.Suppression of laccase 2 severely impairs cuticle tanning and pathogen resistance during the pupal metamorphosis of Anopheles sinensis(Diptera:Culicidae)[J]. Parasites & Vectors, 2017, 10(1):171. [68] Nakhleh J, El Moussawi L, Osta MA.Chapter three-the melanization response in insect immunity[J]. Academic in Insect Physiology, 2017, 52:83-109. [69] Kudanga T, Nemadziva B, Le Roes-Hill M. Laccase catalysis for the synthesis of bioactive compounds[J]. Applied Microbiology and Biotechnology, 2017, 101(1):13-33. [70] Lassouane F, Aït-Amar H, Amrani S, et al.A promising laccase immobilization approach for bisphenol A removal from aqueous solutions[J]. Bioresource Technology, 2019, 271:360-367. [71] Laganà P, Anastasi G, Marano F, et al.Phenolic substances in foods:Health effects as anti-inflammatory and antimicrobial agents[J]. Journal of AOAC International, 2019, 102(5):1378-1387. [72] Izquierdo-Hernández A, Peña-Neira Á, López-Solís R, et al.Comparative determination of anthocyanins, low molecular weight phenols, and flavanol fractions in Vitis vinifera L. cv Carménère skins and seeds by differential solvent extraction and high-performance liquid chromatography[J]. Analytical Letters, 2016, 49(8):1127-1142. [73] 华晓雨, 陶爽, 孙盛楠, 等. 植物次生代谢产物-酚类化合物的研究进展[J]. 生物技术通报, 2017, 33(12):22-29. [74] 赵天瑶, 毛圣培, 王佑成, 等. 酚类化合物的提取方法及其生物活性研究进展[J]. 食品工业, 2017, 12:211-215. [75] Suwal S, Marciniak A.Technologies for the extraction, separation and purification of polyphenols:A review[J]. Nepal Journal of BioTechnology, 2018, 6(1):74-91. [76] Rangelov S, Nicell JA.Modelling the transient kinetics of laccase-catalyzed oxidation of four aqueous phenolic substrates at low concentrations[J]. Biochemical Engineering Journal, 2018, 132:233-243. [77] Marjasvaara A, Torvinen M, Hanne Kinnunen A, et al.Laccase-catalyzed polymerization of two phenolic compounds studied by matrix-assisted laser desorption/ionization time-of-flight and electrospray ionization fourier transform ion cyclotron resonance mass spectrometry with collision-induced dissociation experiments[J]. Biomacromolecules, 2006, 7(5):1604-1609. [78] Fillat A, Roncero MB, Vidal T.Elucidating the effects of laccase-modifying compounds treatments on bast and core fibers in flax pulp[J]. Biotechnology and Bioengineering, 2012, 109(1):225-233. [79] Bai R, Yu Y, Wang Q, et al.Laccase-catalyzed poly(ethylene glycol)-templated ‘zip’ polymerization of caffeic acid for functionalization of wool fabrics[J]. Journal of Cleaner Production, 2018, 191:48-56. [80] Kalia S, Thakur K, Kumar A, et al.Laccase-assisted surface functionalization of lignocellulosics[J]. Journal of Molecular Catalysis B:Enzymatic, 2014, 102:48-58. [81] Costa JB, Lima MJ, Sampaio MJ, et al.Enhanced biocatalytic sustainability of laccase by immobilization on functionalized carbon nanotubes/polysulfone membranes[J]. Chemical Engineering Journal, 2019, 355:974-985. [82] Li N, Xia Q, Niu M, et al.Immobilizing laccase on different species wood biochar to remove the chlorinated biphenyl in wastewater[J]. Scientific Reports, 2018, 8(1):13947. [83] Bhutto AA, Kalay Ş, Sherazi STH, et al.Quantitative structure-activity relationship between antioxidant capacity of phenolic compounds and the plasmonic properties of silver nanoparticles[J]. Talanta, 2018, 189:174-181. [84] Mahmoudi S, Khali M, Benkhaled A, et al.Phenolic and flavonoid contents, antioxidant and antimicrobial activities of leaf extracts from ten Algerian Ficus carica L. varieties[J]. Asian Pacific Journal of Tropical Biomedicine, 2016, 6(3):239-245. [85] Rättö M, Ritschkoff AC, Viikari L.Enzymatically polymerized phenolic compounds as wood preservatives[J]. Holzforschung, 2004, 58(4):440-445. [86] Li H, Fu S, Peng L.Fiber modification of unbleached kraft pulp with laccase in the presence of ferulic acid[J]. Bio Resources, 2013, 8(4):5794-5806. [87] Gogoi P, Hazarika S, Dutta NN, et al.Kinetics and mechanism on laccase catalyzed synthesis of poly(allylamine)-catechin conjugate[J]. Chemical Engineering Journal, 2010, 163(1-2):86-92. [88] Kim S, Lee H, Kim J, et al.Laccase-mediated grafting of polyphenols onto cationized cotton fibers to impart UV protection and antioxidant activities[J]. Journal of Applied Polymer Science, 2018, 135(6):45801. [89] Schröder M, Pereira L, Couto SR, et al.Enzymatic synthesis of Tinuvin[J]. Enzyme and Microbial Technology, 2007, 40(7):1748-1752. [90] Jeon JR, Kim EJ, Murugesan K, et al.Laccase-catalysed polymeric dye synthesis from plant-derived phenols for potential application in hair dyeing:Enzymatic colourations driven by homo- or hetero-polymer synthesis[J]. Microbial Biotechnology, 2010, 3(3):324-335. [91] Kidwai M, Jain A, Sharma A, et al.Laccase-a natural source for the synthesis of benzofuro[2, 3-c]pyrazolin-5-ones[J]. Catalysis Science & Technology, 2013, 3(1):230-234. [92] Kim S, Silva C, Evtuguin DV, et al.Polyoxometalate/laccase-mediated oxidative polymerization of catechol for textile dyeing [J]. Applied Microbiology and Biotechnology, 2011, 89(4):981-987. [93] López J, Alonso-Omlin EM, Hernández-Alcántara JM, et al.Novel photoluminescent material by laccase-mediated polymerization of 4-fluoroguaiacol throughout defluorination[J]. Journal of Molecular Catalysis B:Enzymatic, 2014, 109:70-75. [94] Jadhav SB, Singhal RS.Laccase-gum Arabic conjugate for preparation of water-soluble oligomer of catechin with enhanced antioxidant activity[J]. Food Chemistry, 2014, 150:9-16. [95] Adelakun OE, Kudanga T, Parker A, et al.Laccase-catalyzed dimerization of ferulic acid amplifies antioxidant activity[J]. Journal of Molecular Catalysis B:Enzymatic, 2012, 74(1-2):29-35. [96] Zheng F, An Q, Meng G, et al.A novel laccase from white rot fungus Trametes orientalis:Purification, characterization, and application[J]. International Journal of Biological Macromolecules, 2017, 102:758-770. [97] Beisl S, Friedl A, Miltner A.Lignin from micro-to nanosize:Applications[J]. International Journal of Molecular Sciences, 2017, 18(11):2367. [98] 余成华. 漆酶催化氧化促进壳聚糖-酚类物质接枝的研究[D]. 天津:天津科技大学, 2014. [99] Sagui F, Chirivì C, Fontana G, et al.Laccase-catalyzed coupling of catharanthine and vindoline:An efficient approach to the bisindole alkaloid anhydrovinblastine[J]. Tetrahedron, 2009, 65(1):312-317. [100] 陈成龙, 孙澍雨, 周维增, 等. 漆酶催化合成生物活性化合物的研究进展[J]. 化学通报, 2018, 81(10):896-902. [101] Pezzella C, Giacobbe S, Giacobelli VG, et al.Green routes towards industrial textile dyeing:A laccase based approach[J]. Journal of Molecular Catalysis B:Enzymatic, 2016, 134:274-279. [102] 袁萌莉, 王强, 范雪荣, 等. 羊毛织物的漆酶催化没食子酸原位染色与改性[J]. 印染, 2016, 42(22):8-12. [103] Bai R, Yu Y, Wang Q, et al.Effect of laccase on dyeing properties of polyphenol-based natural dye for wool fabric[J]. Fibers and Polymers, 2016, 17(10):1613-1620. [104] 陈浩, 卓婷烨, 邱爽, 等. 漆酶诱导大豆分离蛋白-甜菜果胶双网络凝胶的构建[J]. 现代食品科技, 2016, 32(11):162-169. [105] Sun K, Luo Q, Gao Y, et al.Laccase-catalyzed reactions of 17 [106] Ma HF, Meng G, Cui BK, et al.Chitosan crosslinked with genipin as supporting matrix for biodegradation of synthetic dyes:Laccase immobilization and characterization[J]. Chemical Engineering Research and Design, 2018, 132:664-676. [107] Zheng F, Cui BK, Wu XJ, et al.Immobilization of laccase onto chitosan beads to enhance its capability to degrade synthetic dyes[J]. International Biodeterioration & Biodegradation, 2016, 110:69-78. |
[1] | 李焕敏, 高峰涛, 李伟忠, 王金庆, 封佳丽. 天然生物质材料作为固定化载体的研究应用进展[J]. 生物技术通报, 2023, 39(7): 105-112. |
[2] | 李雨真, 梅天秀, 李治文, 王淇, 李俊, 邹岳, 赵心清. 红酵母基因组和代谢工程改造研究进展[J]. 生物技术通报, 2023, 39(7): 67-79. |
[3] | 王晓梅, 杨小薇, 李辉尚, 何微, 辛竹琳. 全球合成生物学发展现状及对我国的启示[J]. 生物技术通报, 2023, 39(2): 292-302. |
[4] | 唐瑞琪, 赵心清, 朱笃, 汪涯. 大肠杆菌对木质纤维素水解液抑制物的胁迫耐受性[J]. 生物技术通报, 2023, 39(11): 205-216. |
[5] | 王雨辰, 丁尊丹, 关菲菲, 田健, 刘国安, 伍宁丰. 耐热漆酶ba4基因鉴定与酶学性质分析[J]. 生物技术通报, 2022, 38(8): 252-260. |
[6] | 贾晨波, 苏一黄, 马秀梅, 王春利, 徐春燕. 端梗霉Z45产漆酶培养基的优化及其对染料的脱色[J]. 生物技术通报, 2022, 38(6): 252-260. |
[7] | 孙德权, 陆新华, 李伟明, 胡玉林, 段雅婕, 庞振才, 胡会刚. 介孔二氧化硅纳米粒在农业中的应用[J]. 生物技术通报, 2022, 38(5): 228-239. |
[8] | 毛国涛, 王杰, 王凯, 王方园, 曹乐言, 张宏森, 宋安东. 水生栖热菌漆酶TaLac的性质分析及对孔雀石绿染料的脱除[J]. 生物技术通报, 2022, 38(4): 261-268. |
[9] | 熊和丽, 沙茜, 刘韶娜, 相德才, 张斌, 赵智勇. 单细胞转录组测序技术在动物上的应用研究[J]. 生物技术通报, 2022, 38(3): 226-233. |
[10] | 罗雪琮, 安梦楠, 吴元华, 夏子豪. 重组酶聚合酶扩增技术在植物病毒检测中的应用[J]. 生物技术通报, 2022, 38(2): 269-280. |
[11] | 徐进益, 那彬彬, 刘顺, 陈超, 孙红, 郑玉龙. 青贮饲料的优良乳酸菌及其应用[J]. 生物技术通报, 2021, 37(9): 39-47. |
[12] | 田嘉慧, 封佳丽, 卢俊桦, 毛林静, 胡著然, 王莹, 楚杰. 一色齿毛菌漆酶LacT-1的分离纯化与性质研究[J]. 生物技术通报, 2021, 37(8): 186-194. |
[13] | 袁恺, 何伟, 杨云丽, 朱威宇, 彭超, 安泰, 李丽, 周卫强. 灵芝酸生物合成及代谢调控研究进展[J]. 生物技术通报, 2021, 37(8): 46-54. |
[14] | 陈明雨, 倪烜, 司友斌, 孙凯. 固定化真菌漆酶在环境有机污染修复中的应用研究进展[J]. 生物技术通报, 2021, 37(6): 244-258. |
[15] | 翟旭航, 李霞, 元英进. 木质纤维素预处理及高值化技术研究进展[J]. 生物技术通报, 2021, 37(3): 162-174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||