生物技术通报 ›› 2021, Vol. 37 ›› Issue (8): 46-54.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0734

• 代谢生物学专题 • 上一篇    下一篇

灵芝酸生物合成及代谢调控研究进展

袁恺1,2(), 何伟1,2, 杨云丽3, 朱威宇1,2, 彭超1,2, 安泰1,2, 李丽3, 周卫强1,2()   

  1. 1.中粮营养健康研究院有限公司,北京102209
    2.营养健康与食品安全北京市重点实验室,北京 102209
    3.北京工商大学化学与材料工程学院,北京 100048
  • 收稿日期:2021-06-07 出版日期:2021-08-26 发布日期:2021-09-10
  • 作者简介:袁恺,男,硕士,初级工程师,研究方向:生物化工;E-mail: yuankai@cofco.com
  • 基金资助:
    中国轻工业化妆品重点实验室2020开放课题(KLC-2020-YB3)

Research Progress on Biosynthesis and Metabolic Regulation of Ganoderic Acids

YUAN Kai1,2(), HE Wei1,2, YANG Yun-li3, ZHU Wei-yu1,2, PENG Chao1,2, AN Tai1,2, LI Li3, ZHOU Wei-qiang1,2()   

  1. 1. Nutrition and Health Research Institute,COFCO,Beijing 102209
    2. Beijing Key Laboratory of Nutrition,Health and Food Safety,Beijing 102209
    3. College of Chemistry and Materials Engineering of Beijing Technology & Business University,Beijing 100048
  • Received:2021-06-07 Published:2021-08-26 Online:2021-09-10

摘要:

灵芝酸是药用灵芝菌的次级代谢产物,是灵芝菌的主要活性成分之一,已经在抗癌以及其他医药领域进行了深入研究。为了解决灵芝孢子、子实体生长周期长,生长环境要求高以及灵芝酸含量低等问题,灵芝菌深层液体发酵技术应运而生。尽管已经取得了一定的突破,但是发酵生产灵芝酸的低产量问题依然存在。灵芝酸生物合成途径的解析和调控对于解决发酵生产灵芝酸低产量问题意义重大,本文系统综述了近年来在灵芝酸生物合成和代谢调控方面的研究进展,并提出未来研究重点方向,为进一步通过基因工程手段和代谢通路调控手段实现灵芝酸的高浓度积累提供参考。

关键词: 灵芝酸, 合成代谢, 基因工程, 代谢调控

Abstract:

Ganoderic acid(GA)is the secondary metabolites from medicinal Ganoderma lucidum and main active component of it,which has been studied deeply in anti-cancer and other medical fields. However,due to the low yield of GAs,long growth cycle of spores and fruiting bodies,and high growth environment requirements,and the submerged liquid fermentation of G. Lucidum was developed. Although some breakthroughs have been made,the problem of low GAs yield is still existed. The analysis and regulation of GAs biosynthesis pathway is of significance for solving low yield in the fermentation of producing GAs. Therefore,this paper reviews the research progress of GAs biosynthesis and metabolic regulation,proposes the direction of future research,and provides a reference for further improving GAs yield through genetic engineering and metabolic pathway regulation.

Key words: ganoderic acids, synthesis metabolism, genetic engineering, metabolic regulation