[1] Das AJ, Kumar M, Kumar R.Plant growth promoting PGPR:an alternative of chemical fertilizer for sustainable environment friendly agriculture[J]. Turkish Journal of Agriculture and Forestry, 2013, 1:21-23. [2] Adesemoye AO, Torbert HA, Kloepper JW.Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers[J]. Microbial Ecology, 2009, 58:921-929. [3] Huang XF, Zhou D, Guo J, et al.Bacillus spp. from rainforest soil promote plant growth under limited nitrogen conditions[J]. Journal of Applied Microbiology, 2014, 118:672-684. [4] Ryu CM, Farag MA, Hu CH, et al.Bacterial volatiles promote growth in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100:4927-4932. [5] Canbolat MY, Bilen S, Akmak R, et al.Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora[J]. Biology and Fertility of Soils, 2006, 42:350-357. [6] Shahzad SM, Khalid A, Arshad M, et al.Improving nodulation, growth and yield of Cicer arietinum L. through bacterial ACC-deaminase induced changes in root architecture[J]. European Journal of Soil Biology, 2010, 46:342-347. [7] Berendsen RL, van Verk MC, Stringlis IA, et al. Unearthing the genomes of plant beneficial Pseudomonas model strains WCS358, WCS374 and WCS417[J]. BMC Genomics, 2015, 16:539 [8] Zamioudis C, Mastranesti P, Dhonukshe P, et al.Unraveling root developmental programs initiated by beneficial Pseudomonas spp. bacteria[J]. Plant Physiology, 2013, 162:304-318. [9] López-Bucio J, Camposcuevas JC, HernándezCalderón E, et al. Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana[J]. Molecular Plant-Microbe Interactions, 2007, 20:207-217. [10] Patten CL, Glick BR.Role of Pseudomonas putida indole acetic acid in development of the host plant root system[J]. Applied and Environmental Microbiology, 2002, 68:3795-3801. [11] Zou C, Li U, Yu D, et al.Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran[J]. Journal of Microbiology, 2010, 48:460-466. [12] Zúñiga A, Poupin MJ, Raúl AD, et al.Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN[J]. Molecular Plant-Microbe Interactions, 2013, 26:546-553. [13] Gutierrez-Luna FM, López-Bucio J, Altamirano-Hernández J, et al.Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission[J]. Symbiosis, 2010, 51:75-83. [14] 李晓倩. 茶树根际促生菌研究展望[J]. 山东农业大学学报:自然科学版, 2009, 40(2):301-303. Li XQ.Studies and prospects on plant growth-promoting rhizobacteria of tea rhizosphere(Camelia sinensis)[J]. Journal of Shandong Agricultural University:Natural Science Edition, 2009, 40(2):301-303. [15] De Salamone IEG, Hynes RK, Nelson LM, et al.Cytokinin production by plant growth promoting rhizobacteria and selected mutants[J]. Canadian Journal of Microbiology, 2001, 47:404-411. [16] Timmusk S, Nicander B, Granhall U, et al.Cytokinin production by Paenibacillus polymyxa[J]. Soil Biology Biochemistry, 1999, 31:1847-1852. [17] Arkhipova TN, Veselov SU, Melentiev AI, et al.Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants[J]. Plant Soil, 2005, 272:201-209. [18] Joo GJ, Kim YM, Lee IJ, et al.Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus[J]. Biotechnology Letters, 2004, 26:487. [19] Khalid A, Arshad M, Zahir ZA.Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat[J]. Journal of Applied Microbiology, 2004, 96:73-480. [20] Asghar H, Zahir Z, Arshad M, et al.Relationship between in vitro production of auxins by rhizobacteria and their growth-promoting activities in Brassica juncea L.[J]. Biology and Fertility of Soils, 2002, 35:231-237. [21] Remans R, Beebe S, Blair M, et al.Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean(Phaseolus vulgaris L.)[J]. Plant Soil, 2007, 302:149-161. [22] Spaepen S, Bossuyt S, Engelen K, et al.Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxin-producing bacterium Azospirillum brasilense[J]. New Phytologist, 2014, 201:850-861. [23] Lim JH, Kim SD.Synergistic plant growth promotion by the indigenous auxins-producing PGPR Bacillus subtilis AH18 and Bacillus licheniforims K11[J]. Journal of the Korean Society for Applied Biological Chemistry, 2009, 52:531-538. [24] Zhao Q, Zhang C, Jia Z, et al.Involvement of calmodulin in regulation of primary root elongation by N-3-oxo-hexanoyl homoserine lactone in Arabidopsis thaliana[J]. Frontier in Plant Science, 2015, 5:1-11 [25] Ortiz-Castro R, Diaz-Perez C, Martinez-Trujillo M, et al.Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108:7253-7258. [26] Meldau DG, Meldau S, Hoang LH, et al.Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition[J]. Plant Cell, 2013, 25:2731-2747. [27] Pérez-Flores P, Valencia-Cantero E, Altamirano-Hernandez J, et al.Bacillus methylotrophicus M4-96 isolated from maize(Zea mays)rhizoplane increases growth and auxin content in Arabidopsis thaliana via emission of volatiles[J]. Protoplasma, 2017, 254:2201-2213. [28] Raya-González J, Velázquez-Becerra C, Barrera-Ortiz S, et al.N, N-dimethyl hexadecylamine and related amines regulate root morphogenesis via jasmonic acid signaling in Arabidopsis thaliana[J]. Protoplasma, 2017, 254:1399-1410. [29] Grieneisen VA, Xu J, Maree AFM, et al.Auxin transport is sufficient to generate a maximum and gradient guiding root growth[J]. Nature, 2007, 449:1008-1013. [30] Aida M, Beis D, Heidstra R, et al.The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche[J]. Cell, 2004, 119:109-120. [31] Galinha C, Hofhuis H, Luijten M, et al.PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development[J]. Nature, 2007, 449:1053-1057. [32] Verbelen JP, Cnodder TD, Le J, et al.Root apex of Arabidopsis thaliana consists of four distinct zones of growth activities[J]. Plant Signaling & Behavior, 2006, 1:296-304. [33] Moubayidin L, Di Mambro R, Sozzani R, et al.Spatial coordination between stem cell activity and cell differentiation in the root meristem[J]. Development Cell, 2013, 26:405-415. [34] Dello IR, Nakamura K, Moubayidin L, et al.A genetic framework for the control of cell division and differentiation in the root meristem[J]. Science, 2008, 322:1380-1384. [35] Zhang H, Kim MS, Krishnamachari V, et al.Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis[J]. Planta, 2007, 226:839-851. [36] Ortiz-Castro R, Pelagio-Flores R, Mendez-Bravo A, et al.Pyocyanin, a virulence factor produced by Pseudomonas aeruginosa, alters root development through reactive oxygen species and ethylene signaling in Arabidopsis[J]. Molecular Plant-Microbe Interactions, 2014, 27:364-378. [37] Dubrovsky JG, Sauer M, Napsucialy-Mendivil S, et al.Auxin acts as a local morphogenetic trigger to specify lateral root founder cells.[J]Proceedings of the National Academy of Sciences of the United States of America, 2008, 105:8790-8794. [38] Péret B, De Rybel B, Casimiro L, et al.Arabidopsis lateral root development:an emerging story[J]. Trends in Plant Science, 2009, 14:399-408. [39] Moreno-Risueno MA, Van Norman JM, Moreno A, et al.Oscillating gene expression determines competence for periodic Arabidopsis root branching[J]. Science, 2010, 329:1306-1311. [40] Xuan W, Audenaert D, Parizot B, et al.Root cap-derived auxin pre-patterns the longitudinal axis of the Arabidopsis root[J]. Current Biology, 2015, 25:1381-1388. [41] Benková E, Michniewicz M, Sauer M, et al.Local, efflux-dependent auxin gradients as a common module for plant organ formation[J]. Cell, 2003, 115:591-602. [42] De Rybel B, Vassileva V, Parizot B, et al.A novel Aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity[J]. Current Biology, 2010, 20:1697-1706. [43] Hofhuis H, Laskowski M, Du YJ, et al.Phyllotaxis and rhizotaxis in Arabidopsis are modified by three PLETHORA transcription factors[J]. Current Biology, 2013, 23:956-962. [44] Du Y, Scheres B.PLETHORA transcription factors orchestrate de novo organ patterning during Arabidopsis lateral root outgrowth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114:11709-11714. [45] Van Norman JM, Xuan W, Beeckman T, et al.To branch or not to branch:the role of pre-patterning in lateral root formation[J]. Development, 2013, 140:4301-4310. [46] Bailly A, Groenhagen U, Schulz S, et al.The inter-kingdom volatile signal indole promotes root development by interfering with auxin signaling[J]. Plant Journal, 2014, 80:758-771. [47] Felten J, Legué V, Ditengou FA, et al.Lateral root stimulation in the early interaction between Arabidopsis thaliana and the ectomycorrhizal fungus Laccaria bicolor:is fungal auxin the trigger[J]. Plant Signaling & Behavior, 2009, 5:864-867. [48] Splivallo R, Fischer U, Gobel C, et al.Truffles regulate plant root morphogenesis via the production of auxin and ethylene[J]. Plant Physiology, 2009, 150:2018-2029. [49] Contreras-Cornejo HA, Lopez-Bucio JS, Mendez-Bravo A, et al.Mitogen-activated protein kinase 6 and ethylene and auxin signaling pathways are involved in Arabidopsis root-system architecture alterations by Trichoderma atroviride[J]. Molecular Plant-Microbe Interactions, 2015, 28:701-710. [50] D’Angelo-Picard C, Faure D, Penot L, et al. Diversity of N-acyl homoserine lactone-producing and -degrading bacteria in soil and tobacco rhizosphere[J]. Environmental Microbiology, 2005, 7:1796-1808. |