生物技术通报 ›› 2020, Vol. 36 ›› Issue (11): 133-140.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0392
普天磊(), 韩学琴, 廖承飞, 邓红山, 罗会英, 金杰()
收稿日期:
2019-04-08
出版日期:
2020-11-26
发布日期:
2020-11-20
作者简介:
普天磊,女,硕士,研究方向:药用植物资源开发与利用;E-mail: 基金资助:
PU Tian-lei(), HAN Xue-qin, LIAO Cheng-fei, DEN Hong-shan, LUO Hui-ying, JIN Jie()
Received:
2019-04-08
Published:
2020-11-26
Online:
2020-11-20
摘要:
辣木(Moringa oleifera Lam)属于热带、亚热带速生树种,具有耐高温、耐贫瘠、耐旱等优良抗性,营养成分和功能性成分含量丰富,可应用于食品、保健品、饲料等多种领域。全球环境变化和人类活动使非生物胁迫加剧,辣木的非生物胁迫抗性越来越受关注,包括干旱胁迫、低温胁迫和盐胁迫抗性。同时,辣木提取物可作为安全有效的生长调节剂,缓解非生物胁迫对植物的损伤,促进植物生长,提高抗逆性,改善产量和品质。无论是辣木的抗逆性研究还是辣木生长调节剂的应用研究,主要通过植物的形态、产量/品质、渗透调节系统、酶保护系统、光合系统、分子水平等相关参数的变化来评价辣木植株或品种的抗性及对逆境损伤植物的改善程度。综述了近年来辣木抗逆研究现状及其提取物在植物抗逆上的应用进展,对其中存在的问题进行讨论,并提出展望,以期为辣木抗逆育种研究、抗逆机制研究及诱导植物抗逆性的应用研究提供参考。
普天磊, 韩学琴, 廖承飞, 邓红山, 罗会英, 金杰. 辣木抗逆相关研究现状及应用[J]. 生物技术通报, 2020, 36(11): 133-140.
PU Tian-lei, HAN Xue-qin, LIAO Cheng-fei, DEN Hong-shan, LUO Hui-ying, JIN Jie. Research Status on the Stress Resistance of Moringa oleifera and Its Application[J]. Biotechnology Bulletin, 2020, 36(11): 133-140.
[1] |
Paliwal R, Sharma V. A review on horse radish tree(Moringa oleifera):A multipurpose tree with high economic and commercial importance[J]. Asian J Biotechnol, 2011,3:317-328.
doi: 10.3923/ajbkr.2011.317.328 URL |
[2] | 董竹平, 李超, 扶雄. 不同品种辣木叶多糖的理化性质和抗氧化活性研究[J]. 现代食品科技, 2018,34(1):38-44. |
Dong ZP, Li C, Fu X, et al. Physicochemical characterization and antioxidant activity of polysaccharides from different varieties of Moringa oleifera leaves[J]. Modern Food Science and Technology, 2018,34(1):38-44. | |
[3] | 李书琦. 饲用辣木品种、密度、刈割试验与营养成分快速检测[D]. 广州:华南农业大学, 2016. |
Li SQ. Forage moringavarieties, density, mowing test and the application of near infrared technology[D]. Guangzhou:South China Agricultural University, 2016. | |
[4] | 马崇坚, 王玉珍, 任安祥, 等. 辣木的组织培养与快速繁殖[J]. 植物生理学通讯, 2007,43(4):748. |
Ma CJ, Wang YZ, Ren AX, et al. Tissue culture and rapid propagation of Moringa oleifera Lam.[J]. Plant Physiology Journal, 2007,43(4):748. | |
[5] | 张德, 龙会英, 郑益兴, 等. 不同种植密度和栽培管理对辣木农艺性状的影响[J]. 西南农业学报, 2014,27(5):1870-1873. |
Zhang D, Long HY, Zheng YX, et al. Effects of planting density and cultivation technology on agronomic characters of Moringa oleifera in dry-hot valley of Yuanmou[J]. Southwest China Journal of Agricultural Sciences, 2014,27(5):1870-1873. | |
[6] | 刘昌芬, 李国华. 辣木的研究现状及其开发前景[J]. 云南热作科技, 2002,25(3):20-24. |
Liu CF, Li GH. Actuality of study on Moringa oleifera and their exploitive foreground[J]. Tropical Agricultural Science & Technology, 2002,25(3):20-24. | |
[7] | 段琼芬, 李迅, 陈思多, 等. 辣木营养价值的开发利用[J]. 安徽农业科学, 2008,36(29):12670-12672. |
Duan QF, Li X, Chen SD, et al. Development and utilization of nutritive value for Moringa oleifera[J]. Journal of Anhui Agricultural Sciences, 2008,36(29):12670-12672. | |
[8] |
刘凤霞, 王苗苗, 赵有为, 等. 辣木中功能性成分提取及产品开发的研究进展[J]. 食品科学, 2015,36(19):282-286.
doi: 10.7506/spkx1002-6630-201519051 URL |
Liu FX, Wang MM, Zhao YW, et al. Extraction of functional components from Moringa oleifera and development of Moringa oleifera-based products[J]. Food Science, 2015,36(19):282-286.
doi: 10.7506/spkx1002-6630-201519051 URL |
|
[9] |
Gadjev I, Stone M, Gechev TS. Programmed cell death in plants:New insights into redox regulation and the role of hydrogen peroxide[J]. International Review of Cell and Molecular Biology, 2008,270:87-144.
doi: 10.1016/S1937-6448(08)01403-2 URL pmid: 19081535 |
[10] |
Veselin P, Jacques H, Bernd M, et al. ROS-mediated abiotic stress-induced programmed cell death in plants[J]. Frontiers in Plant Science, 2015,6:69.
doi: 10.3389/fpls.2015.00069 URL pmid: 25741354 |
[11] |
El-Sayed MD, Elrys AS, Mostafa MR. Integrative moringa and licorice extracts application improves Capsicum annuum fruit yield and declines its contaminant contents on a heavy metals-contaminated saline soil[J]. Ecotoxicology and Environmental Safety, 2019,169:50-60.
doi: 10.1016/j.ecoenv.2018.10.117 URL pmid: 30419506 |
[12] |
Mostafa MR, Gamal FM. Modulation of salt stress effects on the growth, physio-chemical attributes and yields of Phaseolus vulgaris L. plants by the combined application of salicylic acid and Moringa oleifera leaf extract[J]. Scientia Horticulturae, 2015,193(22):105-113.
doi: 10.1016/j.scienta.2015.07.003 URL |
[13] | 秦树香, 沈文杰, 刘敏君, 等. 辣木的研究开发应用与展望[J]. 长江蔬菜, 2016(18):32-38. |
Qin SX, Shen WJ, Liu MJ, et al. Research, exploitation, application and prospects of Moringa oleifera[J]. Journal of Changjiang Vegetables, 2016(18):32-38. | |
[14] | 任开磊. 辣木施肥效应及其不同种源的抗旱性研究[D]. 北京:中国林业科学研究院, 2017. |
Ren KL. The fertilization effects of Moringa oleifera and its drought resistance from different provenances[D]. Beijing:Chinese Academy of Forestry, 2017. | |
[15] | 韩学琴, 赵广, 廖承飞, 等. 水分胁迫对辣木生物量分配和水分利用效率的影响[J]. 热带作物学报, 2018,39(6):1045-1049. |
Han XQ, Zhao G, Liao CF, et al. Effect of soil water stress on biomass allocation and water use efficient in Moringa oleifera Lam.[J]. Chinese Journal of Tropical Crops, 2018,39(6):1045-1049. | |
[16] |
Rebeca R, Marciel TO, Mauro GS. Three cycles of water deficit from seed to young plants of Moringa oleifera woody species improves stress tolerance[J]. Plant Physiol Biochem, 2013,63:200-208.
doi: 10.1016/j.plaphy.2012.11.026 URL pmid: 23274248 |
[17] | 王鹏翔, 艾复清, 钟蕾, 等. 成熟期干旱胁迫对烤烟叶绿素含量及相关酶活性的影响[J]. 安徽农业科学, 2007,35(31):9945-9946. |
Wang PX, Ai FQ, Zhong L, et al. Effects of drought stress on chlorophyll content and relative enzymes activity of flue-cured tobacco in maturing stage[J]. Journal of Anhui Agricultural Sciences, 2007,35(31):9945-9946. | |
[18] | 吕亚, 张祖兵, 任保兰, 等. 水分胁迫对辣木苗期生长及叶绿素荧光特性的影响[J]. 云南农业大学学报:自然科学, 2019,34(3):503-508. |
Lv Y, Zhang ZB, Ren BL, et al. Effects of water stress on the growth and chlorophyll fluorescence characteristics of Moringa oleifera seedlings[J]. Journal of Yunnan Agricultural University:Natural Science, 2019,34(3):503-508. | |
[19] | 翁爱芳, 李源, 张力, 等. 干旱及复水对辣木幼苗生理特性的影响[J]. 安徽农业科学, 2018,46(5):130-132. |
Wen AF, Li Y, Zhang L, et al. Effects of drought stress and rehydration on physiological characteristics of Moringa oleifera seedlings[J]. Journal of Anhui Agricultural Sciences, 2018,46(5):130-132. | |
[20] | 夏菁, 张静美, 施蕊, 等. 多油辣木幼苗在干旱胁迫下的生理生化响应[J]. 西部林业科学, 2019,48(1):106-113. |
Xia J, Zhang JM, Shi R, et al. Physiological and biochemical responses of Moringa oleifera seedling under the drought stress[J]. Journal of West China Forestry Science, 2019,48(1):106-113. | |
[21] | 宿爱芝. 辣木栽培技术与生物量关系的研究[D]. 北京:中国林业科学研究院, 2012. |
Su AZ. The study of output compose physiology of Moringa oleifera cultivated for leaves[D]. Beijing:Chinese Academy of Forestry, 2012. | |
[22] | 王凯悦, 陈芳泉, 黄五星. 植物干旱胁迫响应机制研究进展[J]. 中国农业科技导报, 2019,21(2):19-25. |
Wang KR, Chen FQ, Huang WX. Research advance on drought stress response mechanism in plants[J]. Journal of Agricultural Science and Technology, 2019,21(2):19-25. | |
[23] |
Cecilia B, Francesco L, Francesco F, et al. Metabolic plasticity in the hygrophyte Moringa oleifera exposed to water stress[J]. Tree Physiology, 2018,38(11):1640-1654.
doi: 10.1093/treephys/tpy089 URL pmid: 30137639 |
[24] |
Nakabayashi R, Yonekura SK, Urano K, et al. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids[J]. The Plant Journal, 2014,77:367-379.
doi: 10.1111/tpj.12388 URL pmid: 24274116 |
[25] |
Loreto F, Fineschi S. Reconciling functions and evolution of isoprene emission in higher plants[J]. New Phytol, 2015,206:578-582.
doi: 10.1111/nph.13242 URL pmid: 25557381 |
[26] |
Zeinali N, Altarawneh M, Li D, et al. New mechanistic insights:why do plants produce isoprene[J]. ACS Omega, 2016,1:220-225.
doi: 10.1021/acsomega.6b00025 URL pmid: 31457127 |
[27] |
Vickers CE, Possell M, Cojocariu CI, et al. Isoprene synjournal protects transgenic tobacco plants from oxidative stress[J]. Plant Cell Environ, 2009,32:520-531.
doi: 10.1111/j.1365-3040.2009.01946.x URL pmid: 19183288 |
[28] |
Brunetti C, Guidi L, Sebastiani F, et al. Isoprenoids and phenylpropanoids are key components of the antioxidant defense system of plants facing severe excess light stress[J]. Environ Exp Bot, 2015,119:54-62.
doi: 10.1016/j.envexpbot.2015.04.007 URL |
[29] |
Fini A, Ferrini F, Di Ferdinando M, et al. Acclimation to partial shading or full sunlight determines the performance of container-grown Fraxinus ornus to subsequent drought stress[J]. Urban for Urban Green, 2014,13:63-70.
doi: 10.1016/j.ufug.2013.05.008 URL |
[30] | 刘永红, 李会珍. 辣木的利用价值与栽培技术[J]. 福建热作科技, 2004,29(2):34-35. |
Liu YH, Li HZ. The utility value and cultivation techniques of Moringa oleifera[J]. Fujian Science & Technology of Tropical Crops, 2004,29(2):34-35. | |
[31] | 张天翔, 林艺华, 林宗铿, 等. 不同温度对辣木种子萌发、幼苗生长及其生理特性的影响[J]. 热带作物学报, 2017,38(3):438-443. |
Zhang TX, Lin YH, Lin ZJ, et al. Effects of different temperature treatments on seed germination, seedling growth and physiological characteristics of M. oleifera Lam.[J]. Chinese Journal of Tropical Crops, 2017,38(3):438-443. | |
[32] | 杨朴丽, 张祖兵, 杨焱, 等. 低温对辣木种子萌发和出苗的影响[J]. 热带农业科技, 2018,41(4):38-42. |
Yang PL, Zhang ZB, Yang Y, et al. The effect of low temperature on seed germination and seeding emergence of Moringa oleifera[J]. Tropical Agricultural Science & Technology, 2018,41(4):38-42. | |
[33] | 李帅. 湖南辣木苗木繁育与生理生化及光合特性研究[D]. 长沙:中南林业科技大学, 2019. |
Li S. Breeding, physiological, biochemical and photosynthetic characteristics of Moringa seedling in Hunan province[D]. Changsha:Central South University of Forestry and Technology, 2019. | |
[34] | 程习梅. 3个辣木品种耐寒性评价[J]. 亚热带农业研究, 2019,15(2):91-95. |
Cheng XM. Evaluation of cold tolerance of three cultivars of Moringa oleifera[J]. Subtropical Agriculture Research, 2019,15(2):91-95. | |
[35] | 王晓辉, 郭启高, 何桥, 等. 电导法结合Logistic方程鉴定三倍体枇杷的抗寒性研究[J]. 西南师范大学学报:自然科学版, 2012,37(6):121-124. |
Wang XH, Guo QG, He Q, et al. Measurement of the logisticcold tolerance based on rec and equation in triploid loquat[J]. Journal of Southwest China Normal University:Natural Science Edition, 2012,37(6):121-124. | |
[36] | 林宗铿, 张天翔, 杨俊杰. 应用Logistic方程确定辣木的抗寒性[J]. 福建农业学报, 2018,33(5):512-515. |
Lin ZJ, Zhang TX, Yang JJ. Low-temperature tolerances of Moringa spp. Determined by a logistic model[J]. Fujian Journal of Agricultural Sciences, 2018,33(5):512-515. | |
[37] |
郭瑞, 李峰, 周际, 等. 亚麻响应盐、碱胁迫的生理特征[J]. 植物生态学报, 2016,40(1):69-79.
doi: 10.17521/cjpe.2015.0240 URL |
Guo R, Li F, Zhou J, et al. Eco-physiological responses of linseed(Linum usitatissimum)to salt and alkali stresses[J]. Chinese Journal of Plant Ecology, 2016,40(1):69-79.
doi: 10.17521/cjpe.2015.0240 URL |
|
[38] | Capula-Rodriguez R, Valdez-Aguilara LA, Cartmill DL, et al. Supplementary calcium and potassium improve the response of tomato(Solanum lycopersicum L.)to simultaneous alkalinity, salinity, and boron stress[J]. Communications in Soil Science and Plant, 2016,47(4):501-511. |
[39] | Zhang JL, Shi HZ. Physiological and molecular mechanisms of plant salt tolerance[J]. Photosynjournal Research, 2013,115:1-22. |
[40] |
Kronzucker HJ, Britto DT. Sodium transport in plants:A critical review[J]. New Phytologist, 2011,189:54-81.
doi: 10.1111/j.1469-8137.2010.03540.x URL pmid: 21118256 |
[41] |
Letizia Z, Angelo G, Gabriele DM, et al. Induction of antioxidant metabolites in Moringa oleifera callus by abiotic stresses[J]. J Nat Prod, 2019,82(9):2379-2386.
doi: 10.1021/acs.jnatprod.8b00801 URL pmid: 31430152 |
[42] | 孙洁, 胡捷. 不同盐度处理对辣木苗生长及抗氧化酶活性的影响[J]. 现代园艺, 2017(19):20-22. |
Sun J, Hu J. Effects of different salt treatments on growth and antioxidant enzyme activity of Moringa oleifera seedlings[J]. Xiandai Horticulture, 2017(19):20-22. | |
[43] |
张金林, 李惠茹, 郭姝媛, 等. 高等植物适应盐逆境研究进展[J]. 草业学报, 2015,24(12):220-236.
doi: 10.11686/cyxb2015233 URL |
Zhang JL, Li HR, Guo SY, et al. Research advances in higher plant adaptation to salt stress[J]. Acta Prataculturae Sinica, 2015,24(12):220-236.
doi: 10.11686/cyxb2015233 URL |
|
[44] |
Latif HH, Mohamed HI. Exogenous applications of moringa leaf extract effect on retrotransposon, ultrastructural and biochemical contents of common bean plants under environmental stresses[J]. South African Journal of Botany, 2016,106:221-231.
doi: 10.1016/j.sajb.2016.07.010 URL |
[45] |
Brockman HG, Brennan RF. The effect of foliar application of Moringa leaf extract on biomass, grain yield of wheat and applied nutrient efficiency[J]. Journal of Plant Nutrition, 2017,40(19):2728-2736.
doi: 10.1080/01904167.2017.1381723 URL |
[46] |
Rady MM, Mohamed GF. Modulation of salt stress effects on the growth, physio-chemical attributes and yields of Phaseolus vulgaris L. plants by the combined application of salicylic acid and Moringa oleifera leaf extract[J]. Scientia Horticulturae, 2015,193:105-113.
doi: 10.1016/j.scienta.2015.07.003 URL |
[47] | Batool S, Khan S, Basrac SMA. Foliar application of moringa leaf extract improves the growth of moringa seedlings in winter[J]. South African Journal of Botany, 2019,9:13. |
[48] |
Saad MH. A novel Moringa Oleifera leaf extract can mitigate the stress effects of salinity and cadmium in bean(Phaseolus Vulgaris L.)plants[J]. Ecotoxicol Environ Saf, 2014,100:69-75.
doi: 10.1016/j.ecoenv.2013.11.022 URL pmid: 24433793 |
[49] |
Taia A, El-Mageed A, Semida WM, et al. Moringa leaf extract as biostimulant improves water use efficiency, physio-biochemical attributes of squash plants under deficit irrigation[J]. Agricultural Water Management, 2017,193:46-54.
doi: 10.1016/j.agwat.2017.08.004 URL |
[50] |
Iqbal J, Irshad J, Bashir S, et al. Comparative study of water extracts of Moringa leaves and roots to improve the growth and yield of sunflower[J]. South African Journal of Botany, 2019,129:221-224.
doi: 10.1016/j.sajb.2019.06.032 URL |
[51] |
Rady MM, Varma CB, Howladar SM. Common bean(Phaseolus vulgaris L.)seedlings overcome NaCl stress as a result of presoaking in Moringa oleifera leaf extract[J]. Scientia Horticulturae, 2013,162(23):63-70.
doi: 10.1016/j.scienta.2013.07.046 URL |
[52] |
Iftikhar A, Muhammad U, Madiha L, et al. Comparison of corm soaks with preharvest foliar application of moringa leaf extract for improving growth and yield of cut Freesia hybrida[J]. Scientia Horticulturae, 2019,254(25):21-25.
doi: 10.1016/j.scienta.2019.04.074 URL |
[53] |
Zulfiqar F, Casadesús A, Brockman H, et al. An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf extracts[J]. Plant Science, 2020,295:110194.
doi: 10.1016/j.plantsci.2019.110194 URL pmid: 32534612 |
[54] | Yasmeen A, Basra SMA, Wahid A, et al. Exploring the potential of moringa(Moringa oleifera)leaf extract(MLE)as seed priming agent in improving wheat performance[J]. Turkish Journal of Botany, 2012,37:512-520. |
[55] | Ali Z, Basra SMA, Munir H, et al. Mitigation of drought stress in maize by natural and synthetic growth promoters[J]. Journal of Agriculture and Social Sciences, 2011,7(2):56-62. |
[56] |
Alkuwayti MA, El-Sherif F, Yap YK, et al. Foliar application of Moringa oleifera leaves extract altered stress-responsive gene expression and enhanced bioactive compounds composition in Ocimum basilicum[J]. South African Journal of Botany, 2019,129:291-298.
doi: 10.1016/j.sajb.2019.08.001 URL |
[57] | Amira MS, Abdul Qados. Effects of salicylic acid on growth, yield and chemical contents of pepper(Capsicum annuum L.)plants grown under salt stress conditions[J]. International Journal of Agriculture and Crop Science, 2015,8:107-113. |
[58] | Wang YX, Frei M. Stressed food-The impact of abiotic environmental stresses on crop quality[J]. Agriculture, Ecosystems & Environment, 2011,14(3):271-286. |
[59] |
Kerchev P, van Der MT, Sujeeth N, et al. Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants[J]. Biotechnology Advances, 2020,40:107503.
doi: 10.1016/j.biotechadv.2019.107503 URL pmid: 31901371 |
[60] | 普天磊, 韩学琴, 邓红山, 等. 辣木抗氧化成分提取方法和抗氧化能力研究进展[J]. 食品工业科技, 2019,40(19):310-315. |
Pu TL, Han XQ, Deng HS, et al. Extraction method of antioxidant components and antioxidant activity of Moringa oleifera[J]. Science and Technology of Food Industry, 2019,40(19):310-315. | |
[61] | Ramabulana T, Mavunda RD, Steenkamp PA, et al. Perturbation of pharmacologically relevant polyphenolic compounds in Moringa oleifera against photo-oxidative damages imposed by gamma radiation[J]. Journal of Photochemistry and Photobiology B-Biology, 2016,156:78-86. |
[62] |
Ramabulana T, Mavunda RD, Steenkamp PA, et al. Gamma radiation treatment activates glucomoringin synjournal in Moringa oleifera[J]. Revista Brasileira de Farmacognosia, 2017,27(5):569-575.
doi: 10.1016/j.bjp.2017.05.012 URL |
[1] | 王晨宇, 周楚源, 何堤, 樊梓豪, 王梦梦, 杨柳燕. 多聚磷酸盐在微生物抗环境胁迫中的作用及机制[J]. 生物技术通报, 2023, 39(11): 168-181. |
[2] | 谢田朋, 柳娜, 刘越敏, 曲馨, 薄双琴, 景明. 化肥减量配施中药源植物生长调节剂对当归质量和根际土壤细菌群落的影响[J]. 生物技术通报, 2022, 38(3): 79-91. |
[3] | 甘诚燕, 张心慧, 王沙, 樊瑶羽薇, 招雪晴, 苑兆和. 石榴花发育相关基因PgSPL2的克隆及功能研究[J]. 生物技术通报, 2022, 38(12): 194-203. |
[4] | 伊帕热·帕尔哈提, 祖力胡玛尔·肉孜, 田永芝, 朱艳蕾, 李远婷, 马晓林. 荒漠植物内生菌多样性及其增强农作物抗旱和耐盐性的研究进展[J]. 生物技术通报, 2022, 38(12): 88-99. |
[5] | 马勤, 雷瑞峰, 迪力热巴·阿不都肉苏力, 穆耶赛尔·奥斯曼, 祖力胡玛尔·肉孜, 安登第. 环境胁迫下内生菌与宿主代谢相互作用研究进展[J]. 生物技术通报, 2021, 37(3): 153-161. |
[6] | 许涛, 夏冬健, 万菁, 姜书涵, 宋江华. F-box蛋白参与植物逆境胁迫研究进展[J]. 生物技术通报, 2021, 37(12): 205-211. |
[7] | 常瀚文, 郑鑫铃, 骆健美, 王敏, 申雁冰. 抗逆元件及其在高效微生物细胞工厂构建中的应用进展[J]. 生物技术通报, 2020, 36(6): 13-34. |
[8] | 杨树萍, 张琳, 徐继林. 藻类中添加剂的应用研究进展[J]. 生物技术通报, 2020, 36(2): 178-187. |
[9] | 徐秀倩, 吴小芹, 吴天宇, 曾梦嫚. 林木根际细菌JYZ-SD5的促生抗逆性能及种类鉴定[J]. 生物技术通报, 2019, 35(3): 31-38. |
[10] | 兰玉婷, 王双蕾, 李征珍, 冯金朝, 王晓东, 石莎. 沙冬青属植物响应非生物胁迫的蛋白质组学研究进展[J]. 生物技术通报, 2019, 35(1): 112-119. |
[11] | 陈水红, 曹莹, 陈泰祥, 李春杰. 内生真菌提高禾草抗盐碱性研究进展[J]. 生物技术通报, 2018, 34(4): 35-42. |
[12] | 周振宇, 胡金丽, 苏昕, 刘冬雪, 卜宁, 马莲菊. 一株野大豆内生真菌YD02菌株的鉴定及抗逆性研究[J]. 生物技术通报, 2017, 33(11): 106-111. |
[13] | 王艳霞, 王红玲, 王敏, 骆健美,. 简单节杆菌groEL基因表达对大肠杆菌抗逆性能的影响[J]. 生物技术通报, 2016, 32(5): 180-186. |
[14] | 栗振义, 龙瑞才, 张铁军, 杨青川, 康俊梅. 植物热激蛋白研究进展[J]. 生物技术通报, 2016, 32(2): 7-13. |
[15] | 刘丽萍, 张东智, 张冲, 陈金焕. 黑果枸杞抗逆性及栽培育种研究进展[J]. 生物技术通报, 2016, 32(10): 118-127. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||