生物技术通报 ›› 2021, Vol. 37 ›› Issue (3): 153-161.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0973
马勤(), 雷瑞峰, 迪力热巴·阿不都肉苏力, 穆耶赛尔·奥斯曼, 祖力胡玛尔·肉孜, 安登第()
收稿日期:
2020-08-04
出版日期:
2021-03-26
发布日期:
2021-04-02
作者简介:
马勤,女,硕士研究生,研究方向:共生生态学;E-mail:基金资助:
MA qin(), LEI Rui-feng, Dilireba Abudourousuli, Muyesaier Aosiman, Zulihumaer Rouzi, AN Deng-di()
Received:
2020-08-04
Published:
2021-03-26
Online:
2021-04-02
摘要:
植物体内成分是实时反映其生理状态的最直接指标,是其遭受生物或非生物胁迫应激状态的体现,微生物与植物的共生抗逆亦由代谢的重置与调控得以实现。内生菌可以自身细胞功能或代谢产物调控宿主代谢,其自身可产生独特的、显著区别于宿主的代谢成分参与抗逆;而宿主内环境的长期“驯化”亦可改变内生菌的表型和代谢。较全面地分析了植物与微生物共生抗逆在代谢层面的相互作用,旨为同一领域工作者提供有价值的参考。
马勤, 雷瑞峰, 迪力热巴·阿不都肉苏力, 穆耶赛尔·奥斯曼, 祖力胡玛尔·肉孜, 安登第. 环境胁迫下内生菌与宿主代谢相互作用研究进展[J]. 生物技术通报, 2021, 37(3): 153-161.
MA qin, LEI Rui-feng, Dilireba Abudourousuli, Muyesaier Aosiman, Zulihumaer Rouzi, AN Deng-di. Research Progress on the Symbiotic Metabolic of Endophytes and Plants Under Stress[J]. Biotechnology Bulletin, 2021, 37(3): 153-161.
菌株 | 宿主植物 | 调控模式 | 主要基因/成分 | 参考文献 |
---|---|---|---|---|
Streptomyces sp. EN27 | 拟南芥 Arabidopsis thaliana | 激活系统获得性抗性(SAR) | 诱导PR-1基因 | [ |
Streptomyces sp. EN28 | 拟南芥 Arabidopsis thaliana | 触发茉莉酸/乙烯(JA/ET)防卫信号途径 | 诱导PDF1.2基因 | [ |
Bacillus thuringiensis GS1 | 黄瓜 Cucumis sativus L. | 诱导病程相关蛋白和酶,引起防御反应 | 诱导PR蛋白、愈疮木酚过氧化物酶(GPOD)、多酚氧化酶(PPO) | [ |
Pseudomonasfluorescens SS101 | 拟南芥 Arabidopsis thaliana | 促进植物生长 | 释放13-Tetradecadien-1-ol,2-butanone 和2-甲基-n-1-十三碳烯等挥发性有机物 | [ |
Pseudomonas fluorescens FPT9601-T5 | 拟南芥 Arabidopsis thaliana | 激活系统抗性 | 升高内源性SA水平、上调PR蛋白的表达和SAR相关基因(例如咖啡酰辅酶A 3-O-甲基转移酶) | [ |
Piriformospora indica | 大麦Hordeum vulgare L. | 糖、氮代谢和激素生物合成 | 海藻糖-6-磷酸合酶(TPS)、海藻糖磷酸磷酸酯酶(TPP)的表达升高;谷氨酰胺合成酶1(GS1)下调,谷氨酰胺合成酶2(GS2)上调;ABA基因HV22D表达下调,正调控ACC氧化酶 | [ |
Pseudomonas putida 1290 | 萝卜Raphanus sativus L. | 植物激素 | 升高加氧酶降解IAA | [ |
Bacillus licheniformis SA03 | 菊花 Chrysanthemum sp. | 激活非生物胁迫和铁获取相关途径 | 通过ABA和NO激活适应性反应 | [ |
Pseudonocardia sp. | 黄花蒿 Artemisia annua L. | 诱导次生代谢 | 诱导紫穗槐-4,11-二烯合酶(ADS)、细胞色素P450羟化酶(CYP71AV1)、细胞色素P450氧化还原酶(CPR)的调控基因,提高青蒿素的产量 | [ |
Clavicipitilean endophytes | 黑麦草 Lolium perenne | 诱导宿主的次生代谢 | 诱导具有抗氧化活性的绿原酸的合成 | [ |
Taxomyces andreanae | 短叶红豆杉 Taxus brevifolia | 与宿主共享代谢 | 持续产生紫杉醇 | [ |
Trichoderma | 喜树 Camptotheca acuminata | 与宿主共享代谢 | 持续产生喜树碱 | [ |
Diaporthe sp. | 山茶树 Oiltea camellia | 转化宿主代谢物 | C4 -黄烷选择性反应生成二氢黄烷衍生物 | [ |
B. subtilis Roh-1 | 大豆 Glycine max | 转化宿主代谢产物 | 将大豆苷元转化为正二羟基异黄酮和大豆黄素 | [ |
P. variabile | 柱冠粗榧 Cephalotaxus harringtonia | 转化宿主代谢产物 | 通过脱糖作用将糖基化黄酮类化合物转化为相应苷元 | [ |
表1 内生菌对宿主植物代谢的调控模式
菌株 | 宿主植物 | 调控模式 | 主要基因/成分 | 参考文献 |
---|---|---|---|---|
Streptomyces sp. EN27 | 拟南芥 Arabidopsis thaliana | 激活系统获得性抗性(SAR) | 诱导PR-1基因 | [ |
Streptomyces sp. EN28 | 拟南芥 Arabidopsis thaliana | 触发茉莉酸/乙烯(JA/ET)防卫信号途径 | 诱导PDF1.2基因 | [ |
Bacillus thuringiensis GS1 | 黄瓜 Cucumis sativus L. | 诱导病程相关蛋白和酶,引起防御反应 | 诱导PR蛋白、愈疮木酚过氧化物酶(GPOD)、多酚氧化酶(PPO) | [ |
Pseudomonasfluorescens SS101 | 拟南芥 Arabidopsis thaliana | 促进植物生长 | 释放13-Tetradecadien-1-ol,2-butanone 和2-甲基-n-1-十三碳烯等挥发性有机物 | [ |
Pseudomonas fluorescens FPT9601-T5 | 拟南芥 Arabidopsis thaliana | 激活系统抗性 | 升高内源性SA水平、上调PR蛋白的表达和SAR相关基因(例如咖啡酰辅酶A 3-O-甲基转移酶) | [ |
Piriformospora indica | 大麦Hordeum vulgare L. | 糖、氮代谢和激素生物合成 | 海藻糖-6-磷酸合酶(TPS)、海藻糖磷酸磷酸酯酶(TPP)的表达升高;谷氨酰胺合成酶1(GS1)下调,谷氨酰胺合成酶2(GS2)上调;ABA基因HV22D表达下调,正调控ACC氧化酶 | [ |
Pseudomonas putida 1290 | 萝卜Raphanus sativus L. | 植物激素 | 升高加氧酶降解IAA | [ |
Bacillus licheniformis SA03 | 菊花 Chrysanthemum sp. | 激活非生物胁迫和铁获取相关途径 | 通过ABA和NO激活适应性反应 | [ |
Pseudonocardia sp. | 黄花蒿 Artemisia annua L. | 诱导次生代谢 | 诱导紫穗槐-4,11-二烯合酶(ADS)、细胞色素P450羟化酶(CYP71AV1)、细胞色素P450氧化还原酶(CPR)的调控基因,提高青蒿素的产量 | [ |
Clavicipitilean endophytes | 黑麦草 Lolium perenne | 诱导宿主的次生代谢 | 诱导具有抗氧化活性的绿原酸的合成 | [ |
Taxomyces andreanae | 短叶红豆杉 Taxus brevifolia | 与宿主共享代谢 | 持续产生紫杉醇 | [ |
Trichoderma | 喜树 Camptotheca acuminata | 与宿主共享代谢 | 持续产生喜树碱 | [ |
Diaporthe sp. | 山茶树 Oiltea camellia | 转化宿主代谢物 | C4 -黄烷选择性反应生成二氢黄烷衍生物 | [ |
B. subtilis Roh-1 | 大豆 Glycine max | 转化宿主代谢产物 | 将大豆苷元转化为正二羟基异黄酮和大豆黄素 | [ |
P. variabile | 柱冠粗榧 Cephalotaxus harringtonia | 转化宿主代谢产物 | 通过脱糖作用将糖基化黄酮类化合物转化为相应苷元 | [ |
[1] |
Faghani E, Gharechahi J, Komatsu S, et al. Comparative physiology and proteomic analysis of two wheat genotypes contrasting in drought tolerance[J]. J Proteomics, 2015,114:1-15.
URL pmid: 25449836 |
[2] |
Zandalinas SI, Sales C, et al. Activation of secondary metabolism in citrus plants is associated to sensitivity to combined drought and high temperatures[J]. Front Plant Sci, 2017,7:1954.
doi: 10.3389/fpls.2016.01954 URL pmid: 28119698 |
[3] | Strobel GA, Daisy B. Bioprospecting for microbial endophytes and their natural products[J]. Microbiol Mol Biol Rev, 2003,67:491-502. |
[4] | Ganley RJ, Steven JB, George N, et al. A community of unknown, endophytic fungi in western white pine[J]. PNAS, 2004,101(27):10107-10112. |
[5] | Etalo DW, Jeon JS, et al. Modulation of plant chemistry by beneficial root microbiota[J]. Nat Prod Rep, 2018,35(5):398-409. |
[6] |
Liu J, Liu G. Analysis of secondary metabolites from plant endophytic fungi[J]. Methods Mol Biol, 2018,1848:25-38.
URL pmid: 30182226 |
[7] | Gong B, Li X, et al. Overexpression of S-adenosyl-L-methionine synthetase increased tomato tolerance to alkali stress through polyamine metabolism[J]. Plant Biotechnol, 2014,12:694-708. |
[8] | Li Q, Yang A, Zhang WH. Efficient acquisition of iron confers greater tolerance to saline-alkaline stress in rice(Oryza sativa L.)[J]. Exp Bot, 2016,67:6431-6444. |
[9] | Zhou C, Guo JS, Zhu L, et al. Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms[J]. Plant Physiol Biochem, 2016,105:162-173. |
[10] | Zhang J, Yu H, et al. Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress[J]. Exp Bot, 2016,67:1339-1355. |
[11] | El-Esawi MA, Al-Ghamdi AA, et al. Azospirillum lipoferum FK1 confers improved salt tolerance in chickpea(Cicer arietinum L.)by modulating osmolytes, antioxidant machinery and stress-related genes expression[J]. Environ Exp Bot, 2019,159:55-65. |
[12] | Ahmad P, Ahanger MA, Egamberdieva D, et al. Modification of osmolytes and antioxidant enzymes by 24-Epibrassinolide in chickpea seedlings under mercury(Hg)toxicity[J]. J Plant Growth Regul, 2018,37:309-322. |
[13] | Yang L, Wen KS, et al. Response of plant secondary metabolites to environmental factors[J]. Molecules, 2018,23(4):762. |
[14] | Murali KP, Parinita A, Prashant M, et al. Chemical derivatization of metabolite mass profiling of the recretohalophyte aeluropus lagopoides revealing salt stress tolerance mechanism[J]. Mar Biotechnol, 2017,19:207-218. |
[15] | Sobhanian H, Motamed N, Jazii FR, et al. Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides(poaceae)a halophyte C4 plant[J]. Proteome Res, 2010,9:2882-2897. |
[16] | Slama I, Abdelly C, Bouchereau A, et al. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress[J]. Ann Bot, 2015,115:433-447. |
[17] | Rangani J, Panda A, Parida AK. Metabolomic study reveals key metabolic adjustments in the xerohalophyte Salvadora persica L. during adaptation to water deficit and subsequent recovery conditions[J]. Plant Physiol Biochem, 2020,150:180-195. |
[18] | Hildebrandt TM. Synjournal versus degradation:directions of amino acid metabolism during Arabidopsis abiotic stress response[J]. Plant Mol Biol, 2018,98(1-2):121-135. |
[19] | Mohammadkhani N, Heidari R. Drought-induced accumulation of soluble sugars and proline in two maize varieties[J]. World Appl Sci, 2008,6:448-453. |
[20] | Elkelish AA, Alnusaire TS, Soliman MH, et al. Calcium availability regulates antioxidant system, physio-biochemical activities and alleviates salinity stress mediated oxidative damage in soybean seedlings[J]. Appl Bot Food Qual, 2019,92:258-266. |
[21] | Gu H, Yang Y, Xing M, et al. Physiological and transcriptome analyses of Opisthopappus taihangensis in response to drought stress[J]. Cell Biosci, 2019,9:56. |
[22] | 黄文斌, 马瑞, 杨迪, 等. 土壤逆境下植物根系分泌的有机酸及其对植物生态适应性的影响[J]. 农业科学与技术, 2014,15(7):1167-1173. |
Huang WB, Ma R, Yang D, et al. Organic acids secreted from plant roots under soil stress and their effects on ecological adaptability of plants[J]. Agricultural Sci Technol, 2014,15(7):1167-1173. | |
[23] | Timpa JD, Burke JJ, Quisenberry JE, et al. Effects of water stress on the organic acid and carbohydrate compositions of cotton plants[J]. Plant Physiology, 1986,82(3):724-728. |
[24] | Guo LQ, Shi DC, Wang DL. The key physiological response to alkali stress by the alkali-resistant halophyte Puccinellia Tenuiflora is the accumulation of large quantities of organic acids and into the rhyzosphere[J]. Agron Crop Sci, 2010,196:123-135. |
[25] |
Klein T, Hoch G, Dan Y. Drought stress, growth and nonstructural carbohydrate dynamics of pine trees in semi-arid forest[J]. Tree Physiol, 2014,34(9):981-992.
URL pmid: 25187568 |
[26] | Subbarao GV, Chauhan YS, Johansen C. Patterns of osmotic adjustment in pigeonpea-its important as a mechainism of drought resistance[J]. Eur J Agron, 2000,12(34):239-249. |
[27] | Alhaithloul HA, Soliman MH, et al. Changes in ecophysiology, osmolytes, and secondary metabolites of the medicinal plants of Mentha piperita and Catharanthus roseus subjected to drought and heat stress[J]. Biomolecules, 2019,10(1):43. |
[28] |
Matos SD, Agnes DA, Marcel FP, et al. A novel patatin-like gene stimulated by drought stress encodes a galactolipid acyl hydrolase[J]. FEBS Lett, 2001,491(3):188-192.
URL pmid: 11240125 |
[29] |
Dreyfuss MM, Chapela IH. Potential of fungi in the discovery of novel, low-molecular weight pharmaceuticals[J]. Biotechnology, 1994,26:49-80.
doi: 10.1016/b978-0-7506-9003-4.50009-5 URL pmid: 7749314 |
[30] |
U’Ren JM, Lutzoni F, Miadlikowska J, et al. Host availability drives distributions of fungal endophytes in the imperilled boreal realm[J]. Nat Ecol Evol, 2019,3:1430-1437.
URL pmid: 31548643 |
[31] | Dudeja SS, Giri R, Saini R, et al. Inter action of endophytic microbes with legumes[J]. Basic Microbiol, 2012,2:248-260. |
[32] |
Pang Q, Zhang T, Wang Y, et al. Metabolomics of early stage plant cell-microbe interaction using stable isotope labeling[J]. Front Plant Sci, 2018,9:760.
URL pmid: 29922325 |
[33] |
Conn VM, Walker AR, Franco CM. Endophytic actinobacteria induces defense pathways in Arabidopsis thaliana[J]. Mol Plant Microbe Interact, 2008,21:208-218.
URL pmid: 18184065 |
[34] | Seo DJ, Nguyen DM, Song YS, Jung WJ. Induction of defense response against Rhizoctonia solani in cucumber plants by endophytic bacterium Bacillus thuringiensis GS1[J]. Microbiol Biotechnol, 2012,22:407-415. |
[35] | Park YS, Dutta S, et al. Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds[J]. Biochem Biophys Res Commun, 2015,461(2):361-365. |
[36] |
Wang YQ, Ohara Y, Nakayashiki H, et al. Microarray analysis of the gene expression profile induced by the endophytic plant growth promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis[J]. Molecular Plant-Microbe Interactions, 2005,18(5):385-396.
URL pmid: 15915637 |
[37] |
Mohammad RG, Mehdi G, Behnam K, et al. Metabolic and transcriptional response of central metabolism affected by root endophytic fungus Piriformospora indica under salinity in barley[J]. Plant Mol Biol, 2016,90:699-717.
doi: 10.1007/s11103-016-0461-z URL pmid: 26951140 |
[38] | Meena KK, Sorty AM, Bitla UM, et al. Abiotic stress responses and microbe-mediated mitigation in plants:the omics strategies[J]. Front Plant Sci, 2017,8(172):1-24. |
[39] | Yang C, Zhao W, Wang Y, et al. Metabolomics analysis reveals the alkali tolerance mechanism in Puccinellia tenuiflora plants inoculated with arbuscular mycorrhizal fungi[J]. Microorganisms, 2020,8(3):327. |
[40] |
Mastan A, Bharadwaj R, Kushwaha RK, et al. Functional fungal endophytes in Coleus forskohlii regulate Labdane Diterpene biosynjournal for elevated forskolin accumulation in roots[J]. Microb Ecol, 2019,78(4):914-926.
URL pmid: 31001657 |
[41] |
Zhao J, Davis LC, Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites[J]. Biotechnol Adv, 2005,23:283-333.
URL pmid: 15848039 |
[42] |
Ludwig-Müller J. Plants and endophytes:equal partners in secondary metabolite production?[J]. Biotechnol Lett, 2015,37(7):1325-1334.
doi: 10.1007/s10529-015-1814-4 URL pmid: 25792513 |
[43] | Qawasmeh A, Obied HK, et al. Influence of fungal endophyte infection on phenolic content and antioxidant activity in grasses:interaction between Lolium perenne and different strains of Neoty-phodium lolii[J]. Agric Food Chem, 2012,60:3381-3388. |
[44] |
Leveau JH, Lindow SE. Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290[J]. Appl Environ Microbiol, 2005,71:2365-2371.
URL pmid: 15870323 |
[45] |
Glick BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world[J]. Microbiol Res, 2014,169:30-39.
doi: 10.1016/j.micres.2013.09.009 URL pmid: 24095256 |
[46] | Marulanda A, Barea JM, Azcon R. Stimulation of plant growth and drought tolerance by native microorganisms(AM Fungi and Bacteria)from dry environments:mechanisms related to bacterial effectiveness[J]. J Plant Growth Regul, 2009,28:115-124. |
[47] | Glick BR, Todorovic B, et al. Promotion of plant growth by bacterial ACC deaminase[J]. Crit Rev Plant Sci, 2007,26:227-242. |
[48] |
Zhou C, Zhu L, Xie Y, et al. Bacillus licheniformis SA03 confers increased saline-alkaline tolerance in chrysanthemum plants by induction of abscisic acid accumulation[J]. Front Plant Sci, 2017,8:1143.
doi: 10.3389/fpls.2017.01143 URL pmid: 28706529 |
[49] | Li J, Zhao GZ, Varma A, et al. An endophytic Pseudonocardia species induces the production of artemisinin in Artemisia annua[J]. PLoS One, 2012,7(12):e51410. |
[50] |
Fukuda A, Nakamura A, Hara N, et al. Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes[J]. Planta, 2011,233:175-188.
doi: 10.1007/s00425-010-1289-4 URL pmid: 20963607 |
[51] |
Christian N, Sedio BE, et al. Host affinity of endophytic fungi and the potential for reciprocal interactions involving host secondary chemistry[J]. Am J Bot, 2020,107(2):219-228.
doi: 10.1002/ajb2.1436 URL pmid: 32072625 |
[52] |
Mastan A, Vivek Babu CS, Hiremath C, et al. Treatments with native Coleus forskohlii endophytes improve fitness and secondary metabolite production of some medicinal and aromatic plants[J]. Int Microbiol, 2020,23(2):345-354.
doi: 10.1007/s10123-019-00108-x URL pmid: 31823202 |
[53] | Strobel G, Stierle A, et al. Taxomyces andreanae, a proposed new taxon for a bulbilliferous hyphomycete associated with Pacific yew(Taxus brevifolia)[J]. Mycotaxon, 1993,47:71-80. |
[54] |
Trapp MA, Kai M, Mithöfer A, et al. Antibiotic oxylipins from Alternanthera brasiliana and its endophytic bacteria[J]. Phytochemistry, 2015,110:72-82.
doi: 10.1016/j.phytochem.2014.11.005 URL pmid: 25433629 |
[55] |
Qin D, Wang L, Han M, et al. Effects of an endophytic fungus Umbelopsis dimorpha on the secondary metabolites of host-plant Kadsura angustifolia[J]. Front Microbiol, 2018,9:2845.
URL pmid: 30524412 |
[56] | Kusari S, Zuhlke S, Spiteller M. An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues[J]. Nat Prod, 2009,72:2-7. |
[57] |
Pu X, Qu X, Chen F, et al. Camptothecin-producing endophytic fungus Trichoderma atroviride LY357:isolation, identification, and fermentation conditions optimization for camptothecin production[J]. Appl Microbiol Biotechnol, 2013,97(21):9365-9375.
doi: 10.1007/s00253-013-5163-8 URL pmid: 23949997 |
[58] | Borges KB, Borges WdS, Duran-Patron R, et al. Stereoselective biotransformations using fungi as biocatalysts[J]. Tetrahedron Asymmetry, 2009,20:385-397. |
[59] | Agusta A, Maehara S, Ohashi K, et al. Stereoselective oxidation at C-4 of flavans by the endophytic fungus Diaporthe sp. isolated from a tea plant[J]. Chem Pharm Bull, 2005,53:1565-1569. |
[60] | Shibuya H, Agusta A, Ohashi K, et al. Biooxidation of(+)- catechin and(-)- epicatechin into 3, 4-dihydroxyflavan derivatives by the endophytic fungus Diaporthe sp. isolated from a tea plant[J]. Chem Pharm Bull, 2005,53:866-867. |
[61] | Zhang J, Zhang L, et al. Microbial transformation of 10-deacetyl-7-epitaxol and 1b-hydroxybaccatin I by fungi from the inner bark of Taxus yunnanensis[J]. Nat Prod, 1998,61:497-500. |
[62] | Prado S, Buisson D, Ndoye I, et al. One-step enantioselective synjournal of(4S)-isosclerone through biotransformation of juglone by an endophytic fungus[J]. Tetrahedron Lett, 2013,54:1189-1191. |
[63] | Roh C. Microbial Transformation of bioactive compounds and production of ortho-dihydroxyisoflavones and glycitein from natural fermented soybean paste[J]. Biomol, 2014,4(4):1093-1101. |
[64] | 张琴, 李艳宾, 等. 产β-葡萄糖苷酶甘草内生菌的筛选及对甘草黄酮转化的研究[J]. 食品科学, 2013,34(1):194-198. |
Zhang Q, Li YB, Li H. Screening of β-glucosidase-producing endophytic bacteria in Glycyrrhiza and its transformation of glycyrrhiza flavonoids[J]. Food Sci, 2013,34(1):194-198. | |
[65] |
Tian Y, Amand S, et al. The fungal leaf endophyte Paraconiothyr-ium variabile specifically metabolizes the host plant metabolome for its own benefit[J]. Phytochemistry, 2014,108:95-101.
URL pmid: 25446235 |
[66] | Saunders M, Kohn LM. Host-synthesized secondary compounds influence the in vitro interactions between fungal endophytes of maize[J]. Appl Env Microbiol, 2008,74:136-142. |
[67] | 赵振杰, 张海龙, 王明晶, 等. 植物耐盐性相关细胞内pH和离子稳态的调控机制[J]. 植物生理学报, 2020,56(3):337-344. |
Zhao ZJ, Zhang HL, Wang J, et al. The regulatory mechanism of intracellular pH and ion homeostasis related to plant salt tolerance[J]. Acta Plant Physiology, 2020,56(3):337-344. | |
[68] |
Hardoim PR, van Overbeek LS, van Elsas JD. Properties of bacterial endophytes and their proposed role in plant growth[J]. Trends Microbiol, 2008,16(10):463-471.
doi: 10.1016/j.tim.2008.07.008 URL pmid: 18789693 |
[69] |
Turner TR, James EK, Poole PS. The plant microbiome[J]. Genome Biol, 2013,14(6):209.
doi: 10.1186/gb-2013-14-6-209 URL pmid: 23805896 |
[70] | Truyens S, Weyens N, Cuypers A, et al. Bacterial seed endophytes:genera, vertical transmission and interaction with plants[J]. Environ Microbiol Rep, 2015,7(1):40-50. |
[71] |
Ancheeva E, Daletos G, Proksch P. Bioactive secondary metabolites from endophytic fungi[J]. Curr Med Chem, 2020,27(11):1836-1854.
URL pmid: 31526342 |
[72] |
Hansson D, Wubshet S, Olson A, et al. Secondary metabolite comparison of the species within the Heterobasidion annosum s. l. complex[J]. Phytochemistry, 2014,108:243-251.
doi: 10.1016/j.phytochem.2014.08.028 URL pmid: 25260338 |
[73] |
Strobel GA, Hess WM. Glucosylation of the peptide leucinostatin A, produced by an endophytic fungus of European yew, may protect the host from leucinostatin toxicity[J]. Chem Biol, 1997,4:529-536.
doi: 10.1016/s1074-5521(97)90325-2 URL pmid: 9263641 |
[74] |
Soliman SS, Raizada MN. Interactions between Co-Habitating fungi elicit synjournal of taxol from an endophytic fungus in host taxus plants[J]. Front Microbiol, 2013,4:3.
doi: 10.3389/fmicb.2013.00003 URL pmid: 23346084 |
[75] |
Vikuk V, Young CA, Lee ST, et al. Infection rates and alkaloid patterns of different grass species with systemic Epichloë Endophytes[J]. Appl Environ Microbiol, 2019,85(17):e00465-19.
doi: 10.1128/AEM.00465-19 URL pmid: 31227553 |
[76] | Miller KE, Wright AJ, et al. Stereoselective synjournal of(+)-loline alkaloid skeleton[J]. Org Chem, 2015,80(3):1569-1576. |
[77] | Song QY, Li F, Nan ZB, et al. Do Epichloë Endophytes and their grass symbiosis only produce toxic alkaloids to insects and livestock?[J]. Agric Food Chem, 2020,68(5):1169-1185. |
[78] |
Bastias DA, Martínez-Ghersa MA, Ballaré CL, et al. Epichloë Fungal Endophytes and plant defenses:not just alkaloids[J]. Trends Plant Sci, 2017,22(11):939-948.
URL pmid: 28923242 |
[79] |
Aarthi V, Smita S. Endophytes as in vitro production platforms of high value plant secondary metabolites[J]. Biotechnology Advances, 2015,33:873-887.
doi: 10.1016/j.biotechadv.2015.07.004 URL pmid: 26225453 |
[80] |
Hardoim PR, van Overbeek LS, Berg G. et al. The hidden world within plants:ecological and evolutionary considerations for defining functioning of microbial endophytes[J]. Microbiol Mol Biol Rev, 2015,79:293-320.
URL pmid: 26136581 |
[81] |
Santoyo G, Moreno-Hagelsieb G, et al. Plant growth-promoting bacterial endophytes[J]. Microbiol Res, 2016,183:92-99.
doi: 10.1016/j.micres.2015.11.008 URL pmid: 26805622 |
[82] | Spaepen S, Vanderleyden J. Auxin and plant-microbe interactions. cold spring harb[J]. Perspect Biol, 2011,3:1-13. |
[1] | 成婷, 苑帅, 张晓元, 林良才, 李欣, 张翠英. 酿酒酵母异丁醇合成途径调控的研究进展[J]. 生物技术通报, 2023, 39(7): 80-90. |
[2] | 段玥彤, 王鹏年, 张春宝, 林春晶. 植物黄烷酮-3-羟化酶基因研究进展[J]. 生物技术通报, 2022, 38(6): 27-33. |
[3] | 李毅丹, 单晓辉. 赤霉素代谢调控与绿色革命[J]. 生物技术通报, 2022, 38(2): 195-204. |
[4] | 田清尹, 岳远征, 申慧敏, 潘多, 杨秀莲, 王良桂. 植物观赏器官中类胡萝卜素代谢调控的研究进展[J]. 生物技术通报, 2022, 38(12): 35-46. |
[5] | 袁恺, 何伟, 杨云丽, 朱威宇, 彭超, 安泰, 李丽, 周卫强. 灵芝酸生物合成及代谢调控研究进展[J]. 生物技术通报, 2021, 37(8): 46-54. |
[6] | 孟晓建, 于建东, 郑小梅, 郑平, 李志敏, 孙际宾, 叶勤. 小分子代谢物对黑曲霉己糖激酶和丙酮酸激酶的酶活调控[J]. 生物技术通报, 2021, 37(12): 180-190. |
[7] | 高越, 郭晓鹏, 杨阳, 张苗苗, 李文建, 陆栋. 生物丁醇发酵研究进展[J]. 生物技术通报, 2018, 34(8): 27-34. |
[8] | 徐岩, 韩玉乾, 于放, 刘志文, 王燕燕. 过表达长春花JAR1基因促进文朵灵和长春质碱的生物合成[J]. 生物技术通报, 2017, 33(6): 62-68. |
[9] | 郑晨华, 杜希萍, 李利君, 李天丽, 曹樱, 倪辉. 法夫酵母中产类胡萝卜素特性与其合成相关基因表达关系的研究[J]. 生物技术通报, 2016, 32(2): 123-130. |
[10] | 陈珂, 丁艳平, 王建林, 邵宝平. p53参与代谢调控的研究进展[J]. 生物技术通报, 2016, 32(11): 52-58. |
[11] | 杜秀秀, 房志家, 陈忠翔, 匡鑫, 黄志伟. 酵母中性脂快速检测及积累动态分析[J]. 生物技术通报, 2014, 0(8): 208-214. |
[12] | 李亚伟,赵林,郝永伟,唐秀丽,杨继坤,高玉振,刘新利. 诱导纤维堆囊菌高产埃博霉素的种间微生物筛选及鉴定[J]. 生物技术通报, 2013, 0(10): 137-141. |
[13] | 袁围;叶燕锐;林影;. MXR1基因对毕赤酵母工程菌代谢调控的影响[J]. , 2011, 0(08): 187-191. |
[14] | 生书晶;赵树进;. 芪合酶基因的分子生物学研究[J]. , 2009, 0(11): 24-29. |
[15] | 朱莉;宋福平;张杰;黄大昉;. 芽孢杆菌γ-氨基丁酸代谢旁路研究进展[J]. , 2007, 0(02): 72-75. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||