生物技术通报 ›› 2021, Vol. 37 ›› Issue (5): 174-181.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1079
赵鸿远1(), 王朝1, 成温玉1(), 马宁宁1, 李曼2, 魏小丽2
收稿日期:
2020-08-25
出版日期:
2021-05-26
发布日期:
2021-06-11
作者简介:
赵鸿远,男,博士,讲师,研究方向:动物分子病毒学与免疫;E-mail: 基金资助:
ZHAO Hong-yuan1(), WANG Zhao1, CHENG Wen-yu1(), MA Ning-ning1, LI Man2, WEI Xiao-li2
Received:
2020-08-25
Published:
2021-05-26
Online:
2021-06-11
摘要:
非洲猪瘟(African swine fever,ASF)作为我国当前最为严重的外来猪病,被列为一类动物传染病。2018年8月沈阳暴发ASF疫情以来,连续不断的感染疫情给我国养猪业造成重创,严重威胁生猪养殖的健康发展。目前针对ASF尚无商品化的疫苗和经济有效的抗病毒药物,猪群一旦感染只能依靠快速扑杀进行防控。从干扰素、抗生素、核苷类似物、植物天然产物及其他可能抗非洲猪瘟病毒制剂的研究现状进行详细概述,以期为抗非洲猪瘟药物的创制提供借鉴及参考。
赵鸿远, 王朝, 成温玉, 马宁宁, 李曼, 魏小丽. 抗非洲猪瘟病毒制剂的研究进展[J]. 生物技术通报, 2021, 37(5): 174-181.
ZHAO Hong-yuan, WANG Zhao, CHENG Wen-yu, MA Ning-ning, LI Man, WEI Xiao-li. Progress on Antiviral Agents Against African Swine Fever Virus[J]. Biotechnology Bulletin, 2021, 37(5): 174-181.
[1] | 张睿, 黄旖童, 鲍晨沂, 等. 非洲猪瘟流行病学及其在中国扩散的因素分析[J]. 病毒学报, 2019,35(3):512-522. |
Zhang R, Huang YT, Bao CY, et al. Epidemiology of African swine fever and analysis of risk factors of its spread in China:An overview[J]. Chinese J Virol, 2019,35(3):512-522. | |
[2] | 欧云文, 刘俐君, 代军飞, 等. 非洲猪瘟病毒结构蛋白在病毒感染过程中的作用[J]. 生物技术通报, 2019,35(6):156-163. |
Ou YW, Liu LJ, Dai JF, et al. Roles of African swine fever virus structural proteins in viral infection[J]. Biotech Bulletin, 2019,35(6):156-163. | |
[3] |
Hurtado C, Bustos MJ, Carrascosa AL. The use of COS-1 cells for studies of field and laboratory African swine fever virus samples[J]. J Virol Methods, 2010,164(1-2):131-134.
doi: 10.1016/j.jviromet.2009.11.030 URL |
[4] |
de León P, Bustos MJ, Carrascosa AL. Laboratory methods to study African swine fever virus[J]. Virus Res, 2013,173(1):168-179.
doi: 10.1016/j.virusres.2012.09.013 URL |
[5] |
Portugal R, Goatley LC, Husmann R, et al. A porcine macrophage cell line that supports high levels of replication of OURT88/3, an attenuated strain of African swine fever virus[J]. Emerg Microbes Infect, 2020,9(1):1245-1253.
doi: 10.1080/22221751.2020.1772675 URL |
[6] |
Gaudreault NN, Madden DW, Wilson WC, et al. African swine fever virus:an emerging DNA arbovirus[J]. Front Vet Sci, 2020,7:215.
doi: 10.3389/fvets.2020.00215 pmid: 32478103 |
[7] | Revilla Y, Pérez-Núñez D, Richt JA. African swine fever virus biology and vaccine approaches[J]. Adv Virus Res, 2018,100:41-74. |
[8] |
Lee AJ, Ashkar AA. The dual nature of type I and type II interferons[J]. Front Immunol, 2018,9:2061.
doi: 10.3389/fimmu.2018.02061 URL |
[9] |
Schoggins JW. Interferon-stimulated genes:what do they all do?[J] Annu Rev Virol, 2019,6(1):567-584.
doi: 10.1146/annurev-virology-092818-015756 pmid: 31283436 |
[10] |
Arabyan E, Kotsynyan A, Hakobyan A, et al. Antiviral agents against African swine fever virus[J]. Virus Res, 2019,270:197669.
doi: 10.1016/j.virusres.2019.197669 URL |
[11] |
Paez E, Garcia F, Gil Fernandez C. Interferon cures cells lytically and persistently infected with African swine fever virus in vitro[J]. Arch Virol, 1990,112(1-2):115-1127.
pmid: 1695091 |
[12] |
Fan W, Jiao P, Zhang H, et al. Inhibition of African swine fever virus replication by porcine type I and type II interferons[J]. Front Microbiol, 2020,11:1203.
doi: 10.3389/fmicb.2020.01203 URL |
[13] |
Netherton CL, Simpson J, Haller O, et al. Inhibition of a large double-stranded DNA virus by MxA protein[J]. J Virol, 2009,83(5):2310-2320.
doi: 10.1128/JVI.00781-08 URL |
[14] |
Muñoz-Moreno R, Cuesta-Geijo MÁ, Martínez-Romero C, et al. Antiviral role of IFITM proteins in African swine fever virus infection[J]. PLoS One, 2016,11(4):e0154366.
doi: 10.1371/journal.pone.0154366 URL |
[15] |
Galindo I, Cuesta-Geijo MÁ, Del Puerto A, et al. Lipid exchange factors at membrane contact sites in African swine fever virus infection[J]. Viruses, 2019,11(3):199.
doi: 10.3390/v11030199 URL |
[16] | 孙茂文, 王涛, 孙元, 等. 非洲猪瘟病毒的免疫逃逸策略[J]. 微生物学报, 2020. DOI: https://DOI.org/10.13343/j.cnki.wsxb.20200166. |
Sun MW, Wang T, Sun Y, et al. Immunoevasion strategies of African swine fever virus[J]. Acta Microbiologica Sinica, 2020. DOI: https://doi.org/10.13343/j.cnki.wsxb.20200166. | |
[17] |
Garriga D, Headey S, Accurso C, et al. Structural basis for the inhibition of poxvirus assembly by the antibiotic rifampicin[J]. Proc Natl Acad Sci U S A, 2018,115(33):8424-8429.
doi: 10.1073/pnas.1810398115 URL |
[18] |
Coelho J, Ferreira F, Martins C, et al. Functional characterization and inhibition of the type II DNA topoisomerase coded by African swine fever virus[J]. Virology, 2016,493:209-216.
doi: 10.1016/j.virol.2016.03.023 URL |
[19] | Coelho J, Leitão A. The African swine fever virus(ASFV)topoisomerase II as a target for viral prevention and control[J]. Vaccines(Basel), 2020,8(2):312. |
[20] |
Mottola C, Freitas FB, Simões M, et al. In vitro antiviral activity of fluoroquinolones against African swine fever virus[J]. Vet Microbiol, 2013,165(1-2):86-94.
doi: 10.1016/j.vetmic.2013.01.018 URL |
[21] |
de León P, Bustos MJ, Torres E, et al. Inhibition of porcine viruses by different cell-targeted antiviral drugs[J]. Front Microbiol, 2019,10:1853.
doi: 10.3389/fmicb.2019.01853 URL |
[22] |
Gil-Fernández C, Páez E, Vilas P, et al. Effect of disodium phosphonoacetate and iododeoxyuridine on the multiplication of African swine fever virus in vitro[J]. Chemotherapy, 1979,25(3):162-169.
doi: 10.1159/000237836 URL |
[23] |
Arzuza O, García-Villalón D, Tabarés E, et al. Inhibition of African swine fever virus DNA synjournal by(S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine[J]. Biochem Biophys Res Commun, 1988,154(1):27-32.
doi: 10.1016/0006-291X(88)90644-4 URL |
[24] |
Parrish S, Hurchalla M, Liu SW, et al. The African swine fever virus g5R protein possesses mRNA decapping activity[J]. Virology, 2009,393(1):177-182.
doi: 10.1016/j.virol.2009.07.026 URL |
[25] | Villalón MD, Gil-Fernández C, De Clercq E. Activity of several S-adenosylhomocysteine hydrolase inhibitors against African swine fever virus replication in Vero cells[J]. Antiviral Res, 1993,20(2):131-144. |
[26] |
St Vincent MR, Colpitts CC, Ustinov AV, et al. Rigid amphipathic fusion inhibitors, small molecule antiviral compounds against enveloped viruses[J]. Proc Natl Acad Sci U S A, 2010,107(40):17339-17344.
doi: 10.1073/pnas.1010026107 URL |
[27] |
Hakobyan A, Galindo I, Nañez A, et al. Rigid amphipathic fusion inhibitors demonstrate antiviral activity against African swine fever virus[J]. J Gen Virol, 2018,99(1):148-156.
doi: 10.1099/jgv.0.000991 URL |
[28] |
Hakobyan A, Arabyan E, Avetisyan A, et al. Apigenin inhibits African swine fever virus infection in vitro[J]. Arch Virol, 2016,161(12):3445-3453.
doi: 10.1007/s00705-016-3061-y URL |
[29] |
Hakobyan A, Arabyan E, Kotsinyan A, et al. Inhibition of African swine fever virus infection by genkwanin[J]. Antiviral Res, 2019,167:78-82.
doi: 10.1016/j.antiviral.2019.04.008 URL |
[30] |
Arabyan E, Hakobyan A, Kotsinyan A, et al. Genistein inhibits African swine fever virus replication in vitro by disrupting viral DNA synjournal[J]. Antiviral Res, 2018,156:128-137.
doi: 10.1016/j.antiviral.2018.06.014 URL |
[31] |
Jo S, Kim S, Shin DH, et al. Inhibition of African swine fever virus protease by myricetin and myricitrin[J]. J Enzyme Inhib Med Chem, 2020,35(1):1045-1049.
doi: 10.1080/14756366.2020.1754813 URL |
[32] |
Fasina FO, Olaokun OO, Oladipo OO, et al. Phytochemical analysis and in vitro anti-African swine fever virus activity of extracts and fractions of Ancistrocladus uncinatus, Hutch and Dalziel(Ancistrocladaceae)[J]. BMC Vet Res, 2013,9:120.
doi: 10.1186/1746-6148-9-120 URL |
[33] |
Galindo I, Hernáez B, Berná J, et al. Comparative inhibitory activity of the stilbenes resveratrol and oxyresveratrol on African swine fever virus replication[J]. Antiviral Res, 2011,91(1):57-63.
doi: 10.1016/j.antiviral.2011.04.013 URL |
[34] |
Fabregas J, García D, Fernandez-Alonso M, et al. In vitro inhibition of the replication of haemorrhagic septicaemia virus(VHSV)and African swine fever virus(ASFV)by extracts from marine microalgae[J]. Antiviral Res, 1999,44(1):67-73.
doi: 10.1016/S0166-3542(99)00049-2 URL |
[35] |
Madureira AM, Ascenso JR, Valdeira L, et al. Evaluation of the antiviral and antimicrobial activities of triterpenes isolated from Euphorbia segetalis[J]. Nat Prod Res, 2003,17(5):375-380.
pmid: 14526920 |
[36] |
Keita D, Heath L, Albina E. Control of African swine fever virus replication by small interfering RNA targeting the A151R and VP72 genes[J]. Antivir Ther, 2010,15(5):727-736.
doi: 10.3851/IMP1593 URL |
[37] | Frouco G, Freitas FB, Coelho J, et al. DNA-binding properties of African swine fever virus pA104R, a histone-like protein involved in viral replication and transcription[J]. J Virol, 2017,91(12):e02498-16. |
[38] |
Hübner A, Petersen B, Keil GM, et al. Efficient inhibition of African swine fever virus replication by CRISPR/Cas9 targeting of the viral p30 gene(CP204L)[J]. Sci Rep, 2018,8(1):1449.
doi: 10.1038/s41598-018-19626-1 URL |
[39] |
Frouco G, Freitas FB, Martins C, et al. Sodium phenylbutyrate abrogates African swine fever virus replication by disrupting the virus-induced hypoacetylation status of histone H3K9/K14[J]. Virus Res, 2017,242:24-29.
doi: 10.1016/j.virusres.2017.09.009 URL |
[40] | Ziem B, Rahn J, Donskyi I, et al. Polyvalent 2D entry inhibitors for pseudorabies and African swine fever virus[J]. Macromol Biosci, 2017. DOI: 10.1002/mabi.201600499. |
[41] | Niederwerder MC, Dee S, Diel DG, et al. Mitigating the risk of African swine fever virus in feed with anti-viral chemical additives[J]. Transbound Emerg Dis, 2020. DOI: 10.1111/tbed.13699. |
[42] | 王卓亚, 李阳阳, 徐锡明, 等. 以非洲猪瘟病毒DNA聚合酶X为靶点的海洋药物计算机虚拟筛选[J]. 中国海洋药物, 2018,37(6):1-7. |
Wang ZY, Li YY, Xu XM, et al. Virtual drug screening of marine natural products targeting African swine fever virus DNA polymerase X[J]. Chinese J Marine Drugs, 2018,37(6):1-7. | |
[43] |
Kinyanyi D, Amwayi P, Wamalwa M, et al. Comparative in silico study of congocidine congeners as potential inhibitors of African swine fever virus[J]. PLoS One, 2019,14(8):e0221175.
doi: 10.1371/journal.pone.0221175 URL |
[1] | 李丹, 杜梦潭, 修明霞, 刘兴健, 张志芳, 李轶女. 羊α干扰素在家蚕中的表达及抗小反刍兽疫病毒活性测定[J]. 生物技术通报, 2022, 38(1): 187-193. |
[2] | 杨威, 伍茜, 程建国, 罗燕, 王印, 杨泽晓, 姚学萍. 林麝干扰素α基因克隆、表达及转录调控分析[J]. 生物技术通报, 2022, 38(1): 194-204. |
[3] | 王彩霞, 杜方原, 林祥梅, GrzegorzWozniakowski, 王勤, 冯春燕, 吴绍强. 稳定表达非洲猪瘟病毒P54蛋白的Vero细胞系的建立[J]. 生物技术通报, 2020, 36(5): 139-144. |
[4] | 欧云文, 刘俐君, 代军飞, 马炳, 张永光, 张杰. 非洲猪瘟病毒结构蛋白在病毒感染过程中的作用[J]. 生物技术通报, 2019, 35(6): 156-163. |
[5] | 胡文, 冯珣, 张宝宝, 闫志伟, 徐玉生, 刘永生. I型干扰素在犬类疾病病原学及治疗方面的研究进展[J]. 生物技术通报, 2019, 35(11): 195-200. |
[6] | 卢晓颖, 黄宝松, 马骞, 陈刚, 王忠良, 黄建盛, ERICAMENYOGBE, 谢瑞涛, 邓文鑫. 杂交石斑鱼干扰素调节因子3(IRF3)基因的克隆及 表达分析[J]. 生物技术通报, 2019, 35(10): 144-151. |
[7] | 黄演婷, 卢雪梅, 杨小蓉, 金小宝, 朱家勇. 重组融合蛋白Trx-IFN-CSP复性工艺研究[J]. 生物技术通报, 2016, 32(6): 219-225. |
[8] | 孙赛红, 马普, 孙鹤, 孔德荣, 李慧, 仇雪梅, 姜志强, 刘海映, 刘洋, 刘圣聪, 孟雪松, 王秀利,. 红鳍东方鲀(Takifugu rubripes)干扰素调节因子2基因的克隆及原核表达[J]. 生物技术通报, 2016, 32(5): 107-113. |
[9] | 刘兴健, 李皓洋, 胡小元, 张志芳, 易咏竹, 李轶女. 猪γ干扰素在家蚕中的表达和抗病毒活性检测[J]. 生物技术通报, 2016, 32(1): 144-148. |
[10] | 李皓洋, 胡小元, 易咏竹, 杨鑫, 张志芳, 李轶女. 犬α干扰素在家蚕杆状病毒表达系统中的表达及其抗病毒活性的测定[J]. 生物技术通报, 2015, 31(6): 216-220. |
[11] | 马普,孙赛红,王玉芳,李慧,刘海映,姜志强,仇雪梅,刘洋,张涛,王秀利. 红鳍东方鲀干扰素γ基因的原核表达[J]. 生物技术通报, 2015, 31(12): 174-179. |
[12] | 姜正军, 刘树海, 王茂超, 程全明, 黄金. 毕赤酵母高密度培养表达鸡α-干扰素的工艺研究[J]. 生物技术通报, 2014, 0(6): 115-119. |
[13] | 孙亭亭, 冀斌, 马志亮, 胡文丽, 鲁琼芬, 张雄伟, 陈培富. 红色原鸡外周血单个核细胞IFN-γ的诱导表达及其荧光定量PCR检测[J]. 生物技术通报, 2014, 0(4): 102-108. |
[14] | 李田田, 杨灵, 易咏竹, 沈桂芳, 张志芳, 李轶女. 鸡α干扰素在家蚕中的表达及抗病毒活性测定[J]. 生物技术通报, 2014, 0(3): 171-176. |
[15] | 张明杰. 人LL-37与干扰素α2a密码子的优化及其在毕赤酵母中的融合表达[J]. 生物技术通报, 2014, 0(11): 206-213. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||