生物技术通报 ›› 2021, Vol. 37 ›› Issue (5): 165-173.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1275
收稿日期:
2020-10-19
出版日期:
2021-05-26
发布日期:
2021-06-11
作者简介:
李陆萍,女,硕士研究生,研究方向:作物遗传育种;E-mail: 基金资助:
LI Lu-ping(), LIANG Da-cheng()
Received:
2020-10-19
Published:
2021-05-26
Online:
2021-06-11
摘要:
在正常发育和应激条件下,活性氧(reactive oxygen species,ROS)均会在植物细胞的不同细胞器中产生,如线粒体呼吸作用和叶绿体光合作用都是ROS的重要来源。ROS虽然对细胞存在潜在的毒害,但是适量的ROS可以作为信号分子激活信号传导通路引起细胞器内多种生理反应,从而协调亚细胞器的代谢功能及相互作用。尽管这些过程已被广泛研究,但ROS在植物亚细胞器间的通讯过程所发挥的作用则相对零散。综述了ROS的种类及其产生途径,重点介绍了植物细胞如何感知并响应ROS以及细胞器间的ROS信号传递过程。这些结果将有助于理解ROS作为信号分子在线粒体、叶绿体和细胞核信号交流中的作用。
李陆萍, 梁大成. 活性氧诱发的植物亚细胞间通讯[J]. 生物技术通报, 2021, 37(5): 165-173.
LI Lu-ping, LIANG Da-cheng. The Subcellular Communication Driven by Reactive Oxygen Species in Plants[J]. Biotechnology Bulletin, 2021, 37(5): 165-173.
图2 H2O2介导的触发细胞内在信号通路的示意图 HHPCA1激酶活性通过未知的机制导致Ca2+内流进入细胞,通过与钙调蛋白(Calmodulin, CAM)和钙敏感受体(Calcium-sensing receptor, CAS)结合触发其他信号通路。Ca2+信号通过蛋白磷酸化激活钙依赖蛋白激酶(Calcium-dependent protein kinase, CDPK)并调节转录因子。Ca2+内流刺激呼吸爆发氧化酶(RBOH)产生活性氧。H2O2可通过水通道蛋白进入细胞
Fig. 2 A schematic representation of H2O2-mediated triggering intrinsic signaling pathways in cell HPCA1 kinase activity leads to Ca2+ influx into the cells through an unknown mechanism, triggering intrinsic and systemic signaling pathways by combining with calmodulin (CAM) and calcium-sensing receptor (CAS). Ca2+ signaling activates calcium-dependent protein kinase (CDPK) and regulates transcription factor activity through protein phosphorylation. Ca2+ influx also activates respiratory burst oxidase (RBOH) to produce reactive oxygen species. H2O2 can enter the cell via aquaporin
图3 ROS介导的细胞器信号转导 线粒体在呼吸代谢的电子传递链中产生ROS,AOX1在该反应中表达。苹果酸穿过叶绿体进入线粒体,刺激叶绿体中ROS的产生。PSI和PSⅡ中电子传递链的泄漏可导致叶绿体中ROS产生的改变,通过PAP逆行信号影响RCD1的稳定性和氧化还原状态,抑制其活性,进而影响核基因表达的调节。基质管(stromules)是叶绿体延伸的管状突起
Fig. 3 ROS-mediated in organelles signaling Mitochondria produce ROS in the electron transport chain of respiratory metabolism. Alternative oxidase 1 protein (AOX1) is expressed among this reaction. The ROS production signal in chloroplast is transmitted to mitochondria via malate shuttle. Leakage of electrons from the transport chain at PSI and PS Ⅱ system leads to ROS production and the change of redox state in chloroplast. PAP retrograde signaling might influence RCD1 stability and redox status in nucleus, thus regulating nuclear gene expression. Stromules are tubular extensions of chloroplasts
[1] |
Foyer CH, Noctor G. Redox signaling in plants[J]. Antioxid Redox Signal, 2013,18(16):2087-2090.
doi: 10.1089/ars.2013.5278 URL |
[2] |
Grene R. Oxidative stress and acclimation mechanisms in plants[J]. Arabidopsis Book, 2002,1:e0036.
doi: 10.1199/tab.0036.1 URL |
[3] | Hakeem K, Rehman R, Tahir I. Plant signaling:Understanding the molecular crosstalk[M]. India:Springer, 2014. |
[4] |
Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants[J]. Trends Plant Science, 2004,9(10):490-498.
doi: 10.1016/j.tplants.2004.08.009 URL |
[5] |
Roxas VP, Lodhi SA, Garrett DK, et al. Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione Peroxidase[J]. Plant Cell Physiology, 2000,41(11):1229-1234.
doi: 10.1093/pcp/pcd051 URL |
[6] |
Wood ZA, Poole LB, Karplus PA. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling[J]. Science, 2003,300(5619):650-653.
doi: 10.1126/science.1080405 URL |
[7] |
Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004,55(1):373-399.
doi: 10.1146/annurev.arplant.55.031903.141701 URL |
[8] | Rinalducci S, Pedersen JZ, Zolla L. Formation of radicals from singlet oxygen produced during photoinhibition of isolated light-harvesting proteins of photosystem II[J]. Biochimica et Biophysica Acta, 2004,1608(1):63-73. |
[9] | Krieger-Liszkay A, Fufezan C, Trebst A. Singlet oxygen production in photosystem II and related protection mechanism[J]. Photosynjournal Research, 2008,98(1-3):551-564. |
[10] | Wang LS, Kim CH, Xu X, et al. Singlet oxygen- and EXECUTER1-mediated signaling is initiated in grana margins and depends on the protease FtsH2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016,113(26):E3792-E3800. |
[11] |
Dogra V, Kim C. Singlet oxygen metabolism:from genesis to signaling[J]. Frontiers in Plant Science, 2020,10:1640.
doi: 10.3389/fpls.2019.01640 URL |
[12] |
Skovsen E, Snyder JW, Lambert JDC, et al. Lifetime and diffusion of singlet oxygen in a cell[J]. The Journal of Physical Chemistry B, 2005,109(18):8570-8573.
doi: 10.1021/jp051163i URL |
[13] | Tripathi DK, Singh S, Singh VP, et al. Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultivar and hybrid differing in arsenate tolerance[J]. Frontiers in Environmental Science, 2016,4:46. |
[14] | Niu LJ, Liao WB. Hydrogen peroxide signaling in plant development and abiotic responses:crosstalk with nitric oxide and calcium[J]. Frontiers in Plant Science, 2016,7:230. |
[15] |
Raggi S, Ferrarini A, Delledonne M, et al. The Arabidopsis Class III Peroxidase AtPRX71 negatively regulates growth under physiological conditions and in response to cell wall damage[J]. Plant Physiology, 2015,169(4):2513-2525.
doi: 10.1104/pp.15.01464 pmid: 26468518 |
[16] |
Kaya H, Nakajima R, Iwano M, et al. Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth[J]. Plant Cell, 2014,26(3):1069-1080.
doi: 10.1105/tpc.113.120642 URL |
[17] |
Tsukagoshi H, Busch W, Benfey PN. Transcriptional regulation of ros controls transition from proliferation to differentiation in the root[J]. Cell, 2010,143(4):606-616.
doi: 10.1016/j.cell.2010.10.020 pmid: 21074051 |
[18] |
Halliwell B, Gutteridge JMC. Free radicals in biology and medicine[J]. Journal of Free Radical in Biology and Medicine, 1999,1:331-334.
doi: 10.1016/0748-5514(85)90140-0 URL |
[19] |
Duan Q, Kita D, Johnson EA, et al. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabi-dopsis[J]. Nature Communications, 2014,5:3129.
doi: 10.1038/ncomms4129 URL |
[20] |
Smirnova AV, Matveyeva NP, Yermakov IP. Reactive oxygen species are involved in regulation of pollen wall cytomechanics[J]. Plant Biology, 2014,16(1):252-257.
doi: 10.1111/plb.12004 URL |
[21] |
Richards SL, Wilkins KA, Swarbreck SM, et al. The hydroxyl radical in plants:from seed to seed[J]. Journal of Experimental Botany, 2015,66(1):37-46.
doi: 10.1093/jxb/eru398 pmid: 25294918 |
[22] |
Whitaker C, Beckett R, Minibayeva FV, et al. Alleviation of dormancy by reactive oxygen species in Bidens pilosa L. seeds[J]. South African Journal of Botany, 2010,76(3):601-605.
doi: 10.1016/j.sajb.2010.04.014 URL |
[23] |
Bindschedler LV, Dewdney J, Blee KA, et al. Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance[J]. Plant Journal, 2006,47(6):851-863.
pmid: 16889645 |
[24] | Torres MA, Dangl JL, Jones JDG. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002,99(1):517-522. |
[25] |
Suzuki N, Miller G, Morales J, et al. Respiratory burst oxidases:the engines of ROS signaling[J]. Plant Biology, 2011,14(6):691-699.
doi: 10.1111/plb.2012.14.issue-5 URL |
[26] | Choi WG, Miller G, Wallace I, et al. Orchestrating rapid long-distance signaling in plants with Ca2+, ROS and electrical signals[J]. Plant Journal for Cell & Molecular Biology, 2017,90(4):698-707. |
[27] |
Marshall A, Aalen RB, Audenaert D, et al. Tackling drought stress:receptor-like kinases present new approaches[J]. Plant Cell, 2012,24(6):2262-2278
doi: 10.1105/tpc.112.096677 URL |
[28] |
Wu F, Chi Y, Jiang ZH, et al. Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis[J]. Nature, 2020,578(7796):577-581.
doi: 10.1038/s41586-020-2032-3 URL |
[29] |
Foyer CH, Noctor G. Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria[J]. Physiologia Plantarum, 2003,119(3):355-364.
doi: 10.1034/j.1399-3054.2003.00223.x URL |
[30] |
Jaspers P, Kangasjärvi J. Reactive oxygen species in abiotic stress signaling[J]. Physiologia Plantarum, 2010,138(4):405-413.
doi: 10.1111/ppl.2010.138.issue-4 URL |
[31] | Barajas-López JDD, Blanco NE, Strand A. Plastid-to-nucleus communication, signals controlling the running of the plant cell[J]. Biochimica et Biophysica Acta, 2013,1833(2):425-437. |
[32] |
Estavillo GM, Crisp PA, Pornsiriwong W, et al. Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis[J]. Plant Cell, 2011,23(11):3992-4012.
doi: 10.1105/tpc.111.091033 URL |
[33] |
Telfer A. Singlet oxygen production by PSII under light stress:mechanism, detection and the protective role of β-carotene[J]. Plant Cell Physiology, 2014,55(7):1216-1223.
doi: 10.1093/pcp/pcu040 URL |
[34] | Ramel F, Birtic S, Ginies C, et al. Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(14):5535-5540. |
[35] |
Avendano-Vazquez AO, Cordoba E, Llamas E, et al. An uncharacterized apocarotenoid-derived signal generated in zeta-carotene desaturase mutants regulates leaf development and the expression of chloroplast and nuclear genes in Arabidopsis[J]. Plant Cell, 2014,26(6):2524-2537.
doi: 10.1105/tpc.114.123349 URL |
[36] | Van Norman JM, Zhang J, Cazzonelli C I, et al. Periodic root branching in Arabidopsis requires synthesis of an uncharacterized carotenoid derivative[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(13):E1300-E1309. |
[37] |
Galvez-Valdivieso G, Mullineaux PM. The role of reactive oxygen species in signalling from chloroplasts to the nucleus[J]. Physiol Plantarum, 2010,138(4):430-439.
doi: 10.1111/ppl.2010.138.issue-4 URL |
[38] |
Farooq MA, Niazi AK, Akhtar A, et al. Acquiring control:The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses[J]. Plant Physiology and Biochemistry, 2019,141:353-369.
doi: 10.1016/j.plaphy.2019.04.039 URL |
[39] |
Koussevitzky S, Nott A, Mockler TC, et al. Multiple signals from damaged chloroplasts converge on a common pathway to regulate nuclear gene expression[J]. Science, 2007,316(5825):715-719.
doi: 10.1126/science. 1140516 URL |
[40] |
Hideg É, Kos PB, Vass I. Photosystem II damage induced by chemically generated singlet oxygen in tobacco leaves[J]. Physiologia Plantarum, 2007,131(1):33-40
doi: 10.1111/ppl.2007.131.issue-1 URL |
[41] |
Przybyla D, Göbel C, Imboden A, et al. Enzymatic, but not non-enzymatic, 1O2-mediated peroxidation of polyunsaturated fatty acids forms part of the EXECUTER1-dependent stress response program in the flu mutant of Arabidopsis thaliana[J]. The Plant Journal:for Cell and Molecular Biology, 2008,54(2):236-248.
doi: 10.1111/j.1365-313X.2008.03409.x URL |
[42] |
Wagne D, Przybyla D, Op den Camp R, et al. The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thali-ana[J]. Science, 2004,306(5699):1183-1185.
doi: 10.1126/science.1103178 URL |
[43] | Lee KP, Kim C, Landgraf F, et al. EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(24):10270-10275. |
[44] |
Kim C, Meskauskiene R, Zhang S, et al. Chloroplasts of Arabidopsis are the source and a primary target of a plant-specific programmed cell death signaling pathway[J]. Plant Cell, 2012,24(7):3026-3039.
doi: 10.1105/tpc.112.100479 URL |
[45] | Šimková K, Moreau F, Pawlak P, et al. Integration of stress-related and reactive oxygen species-mediated signals by Topoisomerase VI in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(40):16360-16365. |
[46] |
Mullineaux PM, Baker KNR. Spatial dependence for hydrogen peroxide-directed signaling in light-stressed plants[J]. Plant Physiology, 2006,141(2):346-350.
doi: 10.1104/pp.106.078162 URL |
[47] |
Kohler RH, Cao J, Zipfel WR, et al. Exchange of protein molecules through connections between higher plant plastids[J]. Science, 1997,276(5321):2039-2042.
doi: 10.1126/science.276.5321.2039 URL |
[48] |
Caplan JL, Kumar AS, Park E, et al. Chloroplast stromules function during innate immunity[J]. Development Cell, 2015,34(1):45-57.
doi: 10.1016/j.devcel.2015.05.011 URL |
[49] |
Brunkard JO, Runkel AM, Zambryski PC. Chloroplasts extend stromules independently and in response to internal redox signals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(32):10044-10049.
doi: 10.1073/pnas.1511570112 pmid: 26150490 |
[50] |
Ng S, Clercq ID, Aken OV, et al. Anterograde and retrograde regulation of nuclear genes encoding mitochondrial proteins during growth, development, and stress[J]. Molecular Plant, 2014,7(7):1075-1093.
doi: 10.1093/mp/ssu037 URL |
[51] |
Giraud E, Aken VO, Ho LHM, et al. The transcription factor ABI4 is a regulator of mitochondrial retrograde expression of Alternative Oxidase1a[J]. Plant Physiology, 2009,150(3):1286-1296.
doi: 10.1104/pp.109.139782 URL |
[52] |
Clercq ID, Vermeirssen V, Aken OV, et al. The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis[J]. Plant Cell, 2013,25(9):3472-3490.
doi: 10.1105/tpc.113.117168 URL |
[53] |
Ng S, Ivanova A, Duncan O, et al. A membrane-bound NAC transcription factor, ANAC017, mediates mitochondrial retrograde signaling in Arabidopsis[J]. Plant Cell, 2013,25(9):3450-3471.
doi: 10.1105/tpc.113.113985 URL |
[54] |
Shapiguzov A, Vainonen JP, Hunter K, et al. Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors[J]. eLife, 2019,8:e43284.
doi: 10.7554/eLife.43284 URL |
[55] | Carrie C, Whelan J. Widespread dual targeting of proteins in land plants:when, where, how and why[J]. Plant Signal & Behavior, 2013,8(8):e25034. |
[56] |
Wang Y, Lyu WH, Berkowitz O, et al. Inactivation of mitochondrial complex I induces the expression of a twin cysteine protein that targets and affects cytosolic, chloroplastidic and mitochondrial function[J]. Molecular Plant, 2016,9(5):696-710.
doi: 10.1016/j.molp.2016.01.009 URL |
[57] |
Strawn MA, Marr SK, Inoue K, et al. Arabidopsis isochorismate synthase functional in pathogen-induced salicylate biosynjournal exhibits properties consistent with a role in diverse stress responses[J]. The Journal Biological Chemistry, 2007,282(8):5919-5933.
doi: 10.1074/jbc.M605193200 URL |
[58] |
Rivas-San Vicente M, Plasencia J. Salicylic acid beyond defence:its role in plant growth and development[J]. The Journal Experiment Botany, 2011,62(10):3321-3338.
doi: 10.1093/jxb/err031 URL |
[59] |
Garcion C, Lohmann A, Lamodiere E, et al. Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of Arabidopsis[J]. Plant Physiology, 2008,147(3):1279-1287.
doi: 10.1104/pp.108.119420 URL |
[60] |
Nie SJ, Yue HY, Zhou J, et al. Mitochondrial-derived reactive oxygen species play a vital role in the salicylic acid signaling pathway in Arabidopsis thaliana[J]. PLoS One, 2015,10(3):e0119853.
doi: 10.1371/journal.pone.0119853 URL |
[61] |
Liu R, Cao PF, Ren A, et al. SA inhibits complex III activity to generate reactive oxygen species and thereby induces GA overproduction in Ganoderma lucidum[J]. Redox Biology, 2018,16:388-400.
doi: 10.1016/j.redox.2018.03.018 URL |
[62] |
Serrano M, Wang BJ, Aryal B, et al. Export of salicylic acid from the chloroplast requires the multidrug and toxin extrusion-like transporter EDS5[J]. Plant Physiology, 2013,162(4):1815-1821.
doi: 10.1104/pp.113.218156 pmid: 23757404 |
[63] |
Aken VO, Breusegem VF. Licensed to kill:mitochondria, chloroplasts, and cell death[J]. Trends in Plant science, 2015,20(11):754-766.
doi: 10.1016/j.tplants.2015.08.002 URL |
[64] |
Gorlach A, Bertram K, Hudecova S, et al. Calcium and ROS:A mutual interplay[J]. Redox Biology, 2015,6:260-271.
doi: 10.1016/j.redox.2015.08.010 URL |
[65] |
Wu J, Sun YF, Zhao YN, et al. Deficient plastidic fatty acid synjournal triggers cell death by modulating mitochondrial reactive oxygen species[J]. Cell Research, 2015,25(5):621-633.
doi: 10.1038/cr.2015.46 URL |
[66] |
Zhao YN, Luo LL, Xu JS, et al. Malate transported from chloroplast to mitochondrion triggers production of ROS and PCD in Arabidopsis thaliana[J]. Cell Research, 2018,28(4):448-461.
doi: 10.1038/s41422-018-0024-8 URL |
[67] |
Smirnoff N, Arnaud D. Hydrogen peroxide metabolism and functions in plants.[J]. The New Phytologist, 2019,221:1197-1214.
doi: 10.1111/nph.2019.221.issue-3 URL |
[68] |
Neuser J, Metzen CC, Dreyer BH, et al. HBI1 mediates the trade-off between growth and immunity through its impact on apoplastic ROS homeostasis.[J]. Cell Reports, 2019,28:1670-1678.
doi: S2211-1247(19)30926-X pmid: 31412238 |
[69] |
Radford JE, White RG. Effects of tissue-preparation-induced callose synjournal on est plasmodesma size exclusion limits[J]. Protoplasma, 2001,216(1-2):47-55.
pmid: 11732196 |
[70] |
Benitez-Alfonso Y, Cilia M, Roman AS, et al. Control of Arabidopsis meristem development by thioredoxin-dependent regulation of intercellular transport[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(9):3615-3620.
doi: 10.1073/pnas.0808717106 pmid: 19218459 |
[71] |
Stonebloom S, Burch-Smith T, Kim I, et al. Loss of the plant DEAD-box protein ISE1 leads to defective mitochondria and increased cell-to-cell transport via plasmodesmata[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(40):17229-17234.
doi: 10.1073/pnas.0909229106 pmid: 19805190 |
[72] |
Liang DC. A salutary role of reactive oxygen species in intercellular tunnel-mediated communication[J]. Frontiers in Cell and Developmental Biology, 2018,6:2.
doi: 10.3389/fcell.2018.00002 URL |
[73] |
Melnyk CW, Molnar A, Baulcombe DC. Intercellular and systemic movement of RNA silencing signals[J]. The EMBO Journal, 2011,30(17):3353-3363.
doi: 10.1038/emboj.2011.241 URL |
[74] | Liang DC, White RG, Waterhouse PM. Mobile gene silencing in Arabidopsis is regulated by hydrogen peroxide[J]. PerrJ, 2014,2:e701. |
[75] |
Mignolet-Spruyt L, Xu EJ, Idänheimo N, et al. Spreading the news:subcellular and organellar reactive oxygen species production and signaling[J]. Journal of Experimental Botany, 2016,67(13):3831-3844.
doi: 10.1093/jxb/erw080 pmid: 26976816 |
[76] |
Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signaling[J]. Journal of Experimental Botany, 2014,65(5):1229-1240.
doi: 10.1093/jxb/ert375 pmid: 24253197 |
[77] |
Dietz KJ. Thiol-based peroxidases and ascorbate peroxidases:Why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast?[J]. Molecules and Cells, 2016,39(1):20-25.
doi: 10.14348/molcells.2016.2324 URL |
[78] |
Sewelam N, Kazan K, Schenk PM. Global plant stress signaling:Reactive oxygen species at the Cross-Road[J]. Frontiers in Plant Science, 2016,7:187.
doi: 10.3389/fpls.2016.00187 pmid: 26941757 |
[1] | 马学虎, 马莉花, 苟妍, 马燕芬. 线粒体功能障碍引起的相关炎性疾病及靶向治疗[J]. 生物技术通报, 2023, 39(6): 119-125. |
[2] | 尹明华, 余锾媛, 肖心怡, 王玉婷. 江西铅山红芽芋叶绿体基因组特征及系统发育分析[J]. 生物技术通报, 2023, 39(6): 233-247. |
[3] | 撒世娟, 伍涵宇, 温媛, 陈雪娜, 郑蕊, 姚新灵. 叶绿体特异蛋白质表达谱对本氏烟不同气孔密度的响应[J]. 生物技术通报, 2023, 39(2): 193-202. |
[4] | 曲春娟, 朱悦, 江晨, 曲明静, 王向誉, 李晓. 铜绿丽金龟线粒体全基因组及其系统发育分析[J]. 生物技术通报, 2023, 39(2): 263-273. |
[5] | 周恒, 谢彦杰. 植物氧化胁迫信号应答的研究进展[J]. 生物技术通报, 2023, 39(11): 36-43. |
[6] | 赵佳, 赵飞燕, 沈馨, 高广琦, 孙志宏. 乳酸菌抗氧化活性及其应用研究进展[J]. 生物技术通报, 2023, 39(11): 182-190. |
[7] | 刘雄伟, 刘畅, 曾宪法, 杨小英, 俸婷婷, 赵杰宏, 周英. 朱砂根叶绿体全基因组解析及系统发育分析[J]. 生物技术通报, 2023, 39(1): 232-242. |
[8] | 徐红云, 张明意. GRAS转录因子AtSCL4负调控拟南芥应答渗透胁迫[J]. 生物技术通报, 2022, 38(6): 129-135. |
[9] | 钱方, 高作敏, 胡利娟, 王洪程. 海甘蓝(Crambe abyssinica)叶绿体基因组特征及其系统发育研究[J]. 生物技术通报, 2022, 38(6): 174-186. |
[10] | 张小妮, 翁伊纯, 范奕浩, 王晓娟, 赵佳宇, 张云龙. Mito-OS-Timer:一种靶向监测线粒体氧化应激的荧光秒表[J]. 生物技术通报, 2022, 38(10): 97-105. |
[11] | 薛清, 杜虹锐, 薛会英, 王译浩, 王暄, 李红梅. 苜蓿滑刃线虫线粒体基因组及其系统发育研究[J]. 生物技术通报, 2021, 37(7): 98-106. |
[12] | 朱斌, 甘晨晨, 王洪程. 球花石斛(Dendrobium thyrsiflorum)叶绿体基因组特征及亲缘关系解析[J]. 生物技术通报, 2021, 37(5): 38-47. |
[13] | 纪艺, 徐晓丽, 姜媛媛, 汪小福, 徐俊锋, 李玥莹, 陈笑芸. 基于数字PCR的不同品种鸭组织中线粒体与核DNA拷贝数差异研究[J]. 生物技术通报, 2020, 36(5): 86-91. |
[14] | 鲁琳, 杨尚谕, 刘维东, 鲁黎明. 基于转录组测序花烟草响应盐胁迫活性氧清除相关基因的挖掘[J]. 生物技术通报, 2020, 36(12): 42-53. |
[15] | 李裕华, 任永康, 赵兴华, 刘江, 韩斌, 王长彪, 唐朝晖. 禾本科主要农作物叶绿体基因组研究进展[J]. 生物技术通报, 2020, 36(11): 112-121. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||