生物技术通报 ›› 2021, Vol. 37 ›› Issue (5): 182-196.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1073
收稿日期:
2020-08-24
出版日期:
2021-05-26
发布日期:
2021-06-11
作者简介:
邹晨辰,女,硕士研究生,研究方向:对虾免疫;E-mail: 基金资助:
ZOU Chen-chen(), RUAN Ling-wei(), SHI Hong
Received:
2020-08-24
Published:
2021-05-26
Online:
2021-06-11
摘要:
Wnt作为一条保守的信号通路,其在不同生物过程中的作用已被广泛研究。相比脊椎动物,天然免疫在缺乏获得性免疫的无脊椎动物中显得尤为重要。近年来,由于Wnt信号通路在脊椎动物免疫中的功能被逐渐挖掘,其在无脊椎动物天然免疫中的作用引发越来越多的关注。对Wnt信号通路及其在无脊椎动物天然免疫中的重要作用进行了综述,旨为无脊椎动物的疾病防治提供新思路。
邹晨辰, 阮灵伟, 施泓. Wnt信号通路与无脊椎动物天然免疫[J]. 生物技术通报, 2021, 37(5): 182-196.
ZOU Chen-chen, RUAN Ling-wei, SHI Hong. Wnt Signaling Pathway and Innate Immunity of Invertebrate[J]. Biotechnology Bulletin, 2021, 37(5): 182-196.
[1] |
Naskar D, Maiti G, Chakraborty A, et al. Wnt5a-Rac1-NF-κB homeostatic circuitry sustains innate immune functions in macrophages[J]. J Immunol, 2014,192(9):4386-4397.
doi: 10.4049/jimmunol.1302817 URL |
[2] | Nusse R, Varmus HE. Wnt genes[J]. Cell, 1992,7:1073-1087. |
[3] | Zhang S, Li CZ, Yang QH, et al. Molecular cloning, characterization and expression analysis of Wnt4, Wnt5, Wnt6, Wnt7, Wnt10 and Wnt16 from Litopenaeus vannamei[J]. Fish & Shellfish Immunology, 2016,54:445-455. |
[4] |
Angelova M, Zwezdaryk K, Ferris M, et al. Human cytomegalovirus infection dysregulates the canonical Wnt/β-catenin signaling pathway[J]. PLoS Pathogens, 2012,8(10):e1002959.
doi: 10.1371/journal.ppat.1002959 URL |
[5] |
Aberle H, Bauer A, Stappert J, et al. β-catenin is a target for the ubiquitin-proteasome pathway[J]. The EMBO Journal, 1997,16(13):3797-3804.
doi: 10.1093/emboj/16.13.3797 URL |
[6] |
Cavallo RA, Cox RT, Moline MM, et al. Drosophila Tcf and Groucho interact to repress Wingless signalling activity[J]. Nature, 1998,395(6702):604-608.
pmid: 9783586 |
[7] |
Roose J, Molenaar M, Peterson J, et al. The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors[J]. Nature, 1998,395(6702):608-612.
pmid: 9783587 |
[8] | 苏尚, 吴畏. Wnt/β-catenin信号通路对靶基因转录的调控[J]. 中国科学:生命科学, 2014,44(10):1029-1042. |
Su S, Wu W. Regulation of target gene transcription by Wnt/b-catenin signaling[J]. Scientia Sinica Vitae, 2014,44(10):1029-1042.
doi: 10.1360/052014-138 URL |
|
[9] | 杨碧娟. 新型菲啶类Wnt信号通路激动剂的设计合成和构效关系研究[D]. 昆明:云南大学, 2018. |
Yang BJ. The design synthesis and SAR of phenanthridine Wnt signaling agonist[D]. Kunming:Yunnan University, 2018. | |
[10] | 吴影懿, 邢昌赢, 张波. Wnt信号通路在足细胞中的作用和调节机制[J]. 中华临床医师杂志, 2014,8(4):738-741. |
Wu YY, Xing CY, Zhang B. The role and regulation of Wnt signaling in podocytes[J]. Chinese Journal of Clinicians, 2014,8(4):738-741. | |
[11] |
Tamai K, Zeng X, Liu C, et al. A mechanism for Wnt coreceptor activation[J]. Molecular Cell, 2004,13(1):149-156.
doi: 10.1016/S1097-2765(03)00484-2 URL |
[12] |
He X, Saint-Jeannet JP, Wang Y, et al. A member of the Frizzled protein family mediating axis induction by Wnt-5A[J]. Science, 1997,275(5306):1652-1654.
doi: 10.1126/science.275.5306.1652 URL |
[13] |
He X, Semenov M, Tamai K, et al. LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling:arrows point the way[J]. Development, 2004,131(8):1663-1677.
doi: 10.1242/dev.01117 URL |
[14] | MacDonald BT, He X. Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling[J]. Cold Spring Harbor Perspectives in Biology, 2012,4(12):S107. |
[15] |
Julius MA, Schelbert B, Hsu W, et al. Domains of axin and disheveled required for interaction and function in wnt signaling[J]. Biochem Biophys Res Commun, 2000,276(3):1162-1169.
doi: 10.1006/bbrc.2000.3607 URL |
[16] |
Yanfeng WA, Berhane H, Mola M, et al. Functional dissection of phosphorylation of disheveled in Drosophila[J]. Developmental Biology, 2011,360(1):132-142.
doi: 10.1016/j.ydbio.2011.09.017 pmid: 21963539 |
[17] |
Krasnow RE, Wong LL, Adler PN. Dishevelled is a component of the frizzled signaling pathway in Drosophila[J]. Development, 1995,121(12):4095-4102.
pmid: 8575310 |
[18] | Yu J, Virshup DM. Updating the Wnt pathways[J]. Bioscience Reports, 2014,34(5):593-607. |
[19] | Tetsu O, McCormick F. β-catenin regulates expression of cyclin D1 in colon carcinoma cells[J]. Nat, 1999,6726:422-426. |
[20] |
He T, Sparks A, Rago C, et al. Identification of c-MYC as a target of the APC pathway(see comments)[J]. Science, 1998,281(5382):1509-1512.
doi: 10.1126/science.281.5382.1509 URL |
[21] |
Wu B, Crampton SP, Hughes CCW. Wnt signaling induces matrix metalloproteinase expression and regulates T cell transmigration[J]. Immunity, 2007,26(2):227-239.
doi: 10.1016/j.immuni.2006.12.007 URL |
[22] | Lybrand DB, Naiman M, Laumann JM, et al. Destruction complex dynamics:Wnt/β-catenin signaling alters Axin-GSK3β interactions in vivo[J]. Development, 2019, 146, 13:dev164145. |
[23] |
Li VS, Ng SS, Boersema PJ, et al. Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex[J]. Cell, 2012,149(6):1245-1256.
doi: 10.1016/j.cell.2012.05.002 URL |
[24] | Doumpas N, Lampart F, Robinson MD, et al. TCF/LEF dependent and independent transcriptional regulation of Wnt/β-catenin target genes[J]. The EMBO Journal, 2019,38(2):e98873. |
[25] |
Kelly KF, Ng DY, Jayakumaran G, et al. β-catenin enhances Oct-4 activity and reinforces pluripotency through a TCF-independent mechanism[J]. Cell Stem Cell, 2011,8(2):214-227.
doi: 10.1016/j.stem.2010.12.010 URL |
[26] | 尹定子, 宋海云. Wnt信号通路:调控机理和生物学意义[J]. 中国细胞生物学学报, 2011,33(2):103-111. |
Yin DZ, Song HY. Regulation of Wnt signaling:mechanisms and biological significance[J]. Chinese Journal of Cell Biology, 2011,33(2):103-111. | |
[27] | 韩姝, 师伟, 裴雪涛. Wnt基因对造血干细胞增殖、分化调控的研究进展[J]. 中华血液学杂志, 2005(6):379-381. |
Han S, Shi W, Pei XT. Research progress of Wnt gene regulation on proliferation and differentiation of hematopoietic stem cells[J]. Chinese Journal of Hematology, 2005(6):379-381. | |
[28] | Du J, Zhang X, Yuan J, et al. Wnt gene family members and their expression profiling in Litopenaeus vannamei[J]. Fish & Shellfish Immunology, 2018,77:233-243. |
[29] |
Willert K, Brown JD, Danenberg E, et al. Wnt proteins are lipid-modified and can act as stem cell growth factors[J]. Nature, 2003,423(6938):448-452.
pmid: 12717451 |
[30] |
Chae WJ, Bothwell ALM. Canonical and non-canonical Wnt signaling in immune cells[J]. Trends Immunol, 2018,39(10):830-847.
doi: 10.1016/j.it.2018.08.006 URL |
[31] |
Cha SW, Tadjuidje E, Tao Q, et al. Wnt5a and Wnt11 interact in a maternal Dkk1-regulated fashion to activate both canonical and non-canonical signaling in Xenopus axis formation[J]. Development, 2008,135(22):3719-3729.
doi: 10.1242/dev.029025 URL |
[32] |
Mccrea P, Turck C, Gumbiner B. A homolog of the armadillo protein in Drosophila(plakoglobin)associated with E-cadherin[J]. Science, 1991,254(5036):1359-1361.
doi: 10.1126/science.1962194 URL |
[33] |
Fagotto F. Looking beyond the Wnt pathway for the deep nature of β-catenin[J]. EMBO Reports, 2013,14(5):422-433.
doi: 10.1038/embor.2013.45 URL |
[34] |
Valenta T, Hausmann G, Basler K. The many faces and functions of β-catenin[J]. The EMBO Journal, 2012,31(12):2714-2736.
doi: 10.1038/emboj.2012.150 pmid: 22617422 |
[35] |
Gottardi CJ, Gumbiner BM. Distinct molecular forms of beta-catenin are targeted to adhesive or transcriptional complexes[J]. The Journal of Cell Biology, 2004,167(2):339-349.
doi: 10.1083/jcb.200402153 URL |
[36] |
Huber AH, Weis WI. The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin[J]. Cell, 2001,105(3):391-402.
pmid: 11348595 |
[37] | 刘娟, 王文亭, 李宁, 等. β-catenin空间结构研究进展[J]. 中国保健营养旬刊, 2014(5):3013. |
Liu J, Wang WT, Li N, et al. Progress in the study of β-catenin spatial structure[J]. China Health Care Nutrition, 2014(5):3013. | |
[38] | Yang P, An H, Liu X, et al. The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a beta-catenin-dependent pathway[J]. Nat Immunol, 2010,6:487-494. |
[39] |
Chen Y, Liang Z, Fei E, et al. Axin regulates dendritic spine morphogenesis through Cdc42-dependent signaling[J]. PLoS One, 2015,10(7):e0133115.
doi: 10.1371/journal.pone.0133115 URL |
[40] |
Song X, Cai W, Li L. Axin PPI networks:New interacting proteins and new targets?[J]. Current Topics in Medicinal Chemistry, 2016,16(30):3678-3690.
doi: 10.2174/1568026616666160622220245 URL |
[41] |
Tacchelly-Benites O, Wang Z, Yang E, et al. Axin phosphorylation in both Wnt-off and Wnt-on states requires the tumor suppressor APC[J]. PLoS Genetics, 2018,14(2):e1007178.
doi: 10.1371/journal.pgen.1007178 URL |
[42] |
Cong F, Varmus H. Nuclear-cytoplasmic shuttling of Axin regulates subcellular localization of β-catenin[J]. Proc Natl Acad Sci USA, 2004,101(9):2882-2887.
doi: 10.1073/pnas.0307344101 URL |
[43] | Niithke IS, McCartney BM. APC Proteins[M]. New York:Springer Science+Business Media, 2009. |
[44] | Polakis P. The adenomatous polyposis coli(APC)tumor suppressor[J]. Biochim Biophys Acta, 1997,1332(3):F127-147. |
[45] |
Xu RM, Carmel G, Sweet RM, et al. Crystal structure of casein kinase-1, a phosphate-directed protein kinase[J]. EMBO Journal, 1995,14(5):1015-1023.
pmid: 7889932 |
[46] |
Knippschild U, Wolff S, Giamas G, et al. The role of the casein kinase 1(CK1)family in different signaling pathways linked to cancer developmen[J]. Onkologie, 2005,28(10):508-514.
pmid: 16186692 |
[47] |
Knippschild U, Gocht A, Wolff S, et al. The casein kinase 1 family:participation in multiple cellular processes in eukaryotes[J]. Cell Signal, 2005,17(6):675-689.
pmid: 15722192 |
[48] |
Cheong JK, Virshup DM. Casein kinase 1:Complexity in the family[J]. Int J Biochem Cell Biol, 2011,43(4):465-469.
doi: 10.1016/j.biocel.2010.12.004 URL |
[49] | Rowe MK, Wiest C, Chuang DM. GSK-3 is a viable potential target for therapeutic intervention in bipolar disorder[J]. Neuroence & Biobehavioral Reviews, 2007,31(6):920-931. |
[50] | Kaidanovich BO, Woodgett JR. GSK-3:Functional insights from cell biology and animal models[J]. Frontiers in Molecular Neuroence, 2011,4:40. |
[51] | Doble BW, Woodgett JR. GSK-3:tricks of the trade for a multi-tasking kinase[J]. J Cell Ence, 2003,116(Pt 7):1175-1186. |
[52] | Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3(GSK3):regulation, actions, and diseases[J]. Pharmacology & Therapeutics, 2015,148:114-131. |
[53] |
Liu C, Li Y, Semenov M, et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism[J]. Cell, 2002,108(6):837-847.
doi: 10.1016/S0092-8674(02)00685-2 URL |
[54] |
Davidson G, Wei W, Shen J, et al. Casein kinase 1γ couples Wnt receptor activation to cytoplasmic signal transduction[J]. Nature, 2005,438(7069):867-872.
pmid: 16341016 |
[55] |
Zeng X, Tamai K, Doble B, et al. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation[J]. Nature, 2005,438(7069):873-877.
pmid: 16341017 |
[56] | Montcouquiol M, Crenshaw EB, Kelley MW. Noncanonical Wnt signaling and neural polarity[J]. Annual Review of Neuroence, 2006,29(1):363. |
[57] |
Clements WK, Kim AD, Ong KG, et al. A somitic Wnt16/Notch pathway specifies haematopoietic stem cells[J]. Nature, 2011,474(7350):220-224.
doi: 10.1038/nature10107 pmid: 21654806 |
[58] | Kim S, Nie H, Nesin V, et al. The polycystin complex mediates Wnt/Ca2+ signalling[J]. Nat Cell Biol, 2016,7:752-764. |
[59] |
Kühl M, Sheldahl LC, Malbon CC, et al. Ca2+/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus[J]. Journal of Biological Chemistry, 2000,275(17):12701-12711.
doi: 10.1074/jbc.275.17.12701 URL |
[60] |
Seifert JRK, Mlodzik M. Frizzled/PCP signalling:a conserved mechanism regulating cell polarity and directed motility[J]. Nature Reviews Genetics, 2007,8(2):126-138.
doi: 10.1038/nrg2042 URL |
[61] |
Boutros M, Paricio N, Strutt DI, et al. Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signaling[J]. Cell, 1998,94(1):109-118.
pmid: 9674432 |
[62] |
Habas R, Kato Y, He X. Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1[J]. Cell, 2001,107(7):843-854.
pmid: 11779461 |
[63] |
Lutze G, Haarmann A, Demanou Toukam JA, et al. Non-canonical WNT-signaling controls differentiation of lymphatics and extension lymphangiogenesis via RAC and JNK signaling[J]. Scientific Reports, 2019,9(1):4739.
doi: 10.1038/s41598-019-41299-7 pmid: 30894622 |
[64] | Katoh M. WNT/PCP signaling pathway and human cancer(review)[J]. Oncology Reports, 2005,14(6):1583-1588. |
[65] | Hou LB, Ma YB, Cao XH, et al. Transcriptome profiling of the Eriocheir sinensis thoracic ganglion under the Spiroplasma eriocheiris challenge[J]. Aquaculture, 2020 . DOI: 10.1016/j.aquaculture.2020.735257. |
[66] |
Miller JR, Hocking AM, Brown JD, et al. Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways[J]. Oncogene, 1999,18(55):7860-7872.
pmid: 10630639 |
[67] |
Kühl M, Sheldahl LC, Park M, et al. The Wnt/Ca2+ pathway:a new vertebrate Wnt signaling pathway takes shape[J]. Trends in Genetics, 2000,16(7):279-283.
pmid: 10858654 |
[68] |
Tada M, Smith JC. Xwnt11 is a target of Xenopus Brachyury:regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway[J]. Development, 2000,127(10):2227-2238.
pmid: 10769246 |
[69] | Zanoni I, Granucci F. Regulation and dysregulation of innate immunity by NFAT signaling downstream of pattern recognition receptors(PRRs)[J]. Eur J Immunol, 2012,8:1924-1931. |
[70] |
Tripathi P, Aggarwal A. NF-kB transcription factor:A key player in the generation of immune response[J]. Journal of Clinical Laboratory Analysis, 2006,7(3):164-167.
doi: 10.1002/(ISSN)1098-2825 URL |
[71] |
Wen AY, Sakamoto KM, Miller LS. The role of the transcription factor CREB in immune function[J]. Journal of Immunology, 2010,185(11):6413-6419.
doi: 10.4049/jimmunol.1001829 URL |
[72] |
De A. Wnt/Ca2+ signaling pathway:a brief overview[J]. Acta Biochimica et Biophysica Sinica, 2011,43(10):745.
doi: 10.1093/abbs/gmr079 URL |
[73] |
Bryja V, Andersson ER, Schambony A, et al. The extracellular domain of Lrp5/6 inhibits noncanonical Wnt signaling in vivo[J]. Molecular Biology of the Cell, 2009,20(3):924-936.
doi: 10.1091/mbc.e08-07-0711 URL |
[74] | Andersson ER, Bryjova L, Biris K, et al. Genetic interaction between Lrp6 and Wnt5a during mouse development[J]. Developmental Dynamics, 2009,239(1):237-245. |
[75] | Semenov MV, Habas R, et al. SnapShot:noncanonical Wnt signaling pathways[J]. Cell, 2007,131(7):1378. |
[76] |
Aoki T, Wang HC, Unajak S, et al. Microarray analyses of shrimp immune responses[J]. Mar Biotechnol, 2011,13(4):629-638.
doi: 10.1007/s10126-010-9291-1 URL |
[77] |
Jati S, Sarraf TR, Naskar D, et al. Wnt signaling:Pathogen incursion and immune defense[J]. Frontiers in Immunology, 2019,10:2551.
doi: 10.3389/fimmu.2019.02551 URL |
[78] | Wang K, Dai X, Zhang C, et al. Two Wnt genes regulate the expression levels of antimicrobial peptides during Vibrio infection in Macrobrachium nipponense[J]. Fish & Shellfish Immunology, 2020,101:225-233. |
[79] |
Weiser K, Barton M, Gershoony D, et al. HIV’s Nef interacts with β-catenin of the Wnt signaling pathway in HEK293 cells[J]. PLoS One, 2013,8(10):e77865.
doi: 10.1371/journal.pone.0077865 URL |
[80] |
Du X, He W, He H, et al. Beta-catenin inhibits bovine parainfluenza virus type 3 replication via innate immunity pathway[J]. BMC Veterinary Research, 2020,16(1):72.
doi: 10.1186/s12917-020-02291-w URL |
[81] | Xu J, Han F, Zhang X. Silencing shrimp white spot syndrome virus(WSSV)genes by siRNA[J]. Antiviral Res, 2007,2:126-131. |
[82] | Zhang S, Shi LL, Lü K, et al. Cloning, identification and functional analysis of a β-catenin homologue from Pacific white shrimp, Litopenaeus vannamei[J]. Fish & Shellfish Immunol, 2016,54:411-418. |
[83] |
Sun J, Ruan L, Zhou C, et al. Characterization and function of a β-catenin homolog from Litopenaeus vannamei in WSSV infection[J]. Dev Comp Immunol, 2017,76:412-419.
doi: 10.1016/j.dci.2017.07.003 URL |
[84] | Ruan L, Sun J, Zhou C, et al. Cloning, identification and function analysis of a Chibby homolog from Litopenaeus vannamei[J]. Fish & Shellfish Immunology, 2018,78:114-120. |
[85] | Ruan L, Liu H, Shi H. Characterization and function of GSK3β from Litopenaeus vannamei in WSSV infection[J]. Fish & Shellfish Immunology, 2018,82:220-228. |
[86] | Xie YK, Ding D, Wang HM. A homologue gene of β-catenin participates in the development of shrimps and immune response to bacteria and viruses[J]. Fish & Shellfish Immunology, 2015,47(1):147-156. |
[87] |
Du Z, Jin Y, Ren D. In-depth comparative transcriptome analysis of intestines of red swamp crayfish, Procambarus clarkii, infected with WSSV[J]. Scientific Reports, 2016,6(1):26780.
doi: 10.1038/srep26780 URL |
[88] | Du ZQ. Comparative transcriptome analysis reveals three potential antiviral signaling pathways in lymph organ tissue of the red swamp crayfish, Procambarus clarkii[J]. Genetics & Molecular Research, 2016,15(4):136-141. |
[89] | Yi S, Li Y, Shi L, et al. Novel insights into antiviral gene regulation of red swamp crayfish, Procambarus clarkii, infected with white spot syndrome virus[J]. Genes(Basel), 2017,11:341-348. |
[90] |
Tsuda M, Kamimura K, Nakato H, et al. The cell-surface proteoglycan Dally regulates Wingless signalling in Drosophila[J]. Nature, 1999,400(6741):276-280.
pmid: 10421371 |
[91] | Zhu F, Zhang X. The Wnt signaling pathway is involved in the regulation of phagocytosis of virus in Drosophila[J]. Entific Reports, 2013,3:2069. |
[92] |
Zhang S, Yin H, Shen M, et al. Analysis of lncRNA-mediated gene regulatory network of Bombyx mori in response to BmNPV infection[J]. J Invertebr Pathol, 2020,170:107323.
doi: 10.1016/j.jip.2020.107323 URL |
[93] | Wang C, Ruan L, Shi H, et al. Wnt5b regulates apoptosis in Litopenaeus vannamei against white spot syndrome virus[J]. Fish & Shellfish Immunology, 2018,74:318-324. |
[94] |
Choi SC, Han JK. Xenopus Cdc42 regulates convergent extension movements during gastrulation through Wnt/Ca2+ signaling pathway[J]. Developmental Biology, 2002,244(2):342-357.
doi: 10.1006/dbio.2002.0602 URL |
[95] | 徐计东. Rho GTP酶在日本囊对虾先天免疫中的功能研究及对虾抗病毒训练免疫的诱导及机理研究[D]. 济南:山东大学, 2018. |
Xu JD. Functions of Rho GTPases in innate immunity of kuruma shrimp and the the induction and mechanisms of trained innate immunity against virus in the shrimp[D]. Ji'nan: Shandong University, 2018. | |
[96] |
Rogan MR, Patterson LL, Wang JY, et al. Bacterial manipulation of Wnt signaling:A host-pathogen Tug-of-Wnt[J]. Frontiers in Immunology, 2019,10:2390.
doi: 10.3389/fimmu.2019.02390 URL |
[97] |
Rao R, Zhu YB, Alinejad T, et al. RNA-seq analysis of Macrobrachium rosenbergii hepatopancreas in response to Vibrio parahaemolyticus infection[J]. Gut Pathogens, 2015,7(1):6.
doi: 10.1186/s13099-015-0052-6 URL |
[98] | Dai ZM, Xiong Y, He W, et al. Wntless, a conserved Wnt-transport protein, is involved in the innate immune response of Macrobrachium rosenbergii[J]. Fish & Shellfish Immunology, 2018,80:437-442. |
[99] | Jin Q, Tian G, Wu J, et al. Identification and characterization of hemocyte microRNAs in mud crab Scylla paramamosain in response to Vibrio parahemolyticus infection[J]. Aquaculture, 2020. DOI: 10.1016/j.aquaculture.2020.735288. |
[100] | 王菲, 李亚明, 化晓婷, 等. 家蚕免疫稳态调控分子的鉴定和表达模式分析[J]. 昆虫学报, 2012,55(9):999-1007. |
Wang F, Li YM, Hua XT, et al. Identification and expression profiling of regulatory molecules involved in immune homeostasis in the silkworm[J]. Acta Entomologica Sinica, 2012,55(9):999-1007. | |
[101] |
Kim Y, Mylonakis E, Urban JFJI, et al. Caenorhabditis elegans immune conditioning with the probiotic bacterium Lactobacillus acidophilus strain NCFM enhances gram-positive immune responses[J]. Infect Immun, 2012,80(7):2500-2508.
doi: 10.1128/IAI.06350-11 URL |
[102] |
Arefin B, Kucerova L, Dobes P, et al. Genome-wide transcriptional analysis of Drosophila larvae infected by entomopathogenic nematodes shows involvement of complement, recognition and extracellular matrix proteins[J]. Journal of Innate Immunity, 2014,6(2):192-204.
doi: 10.1159/000353734 URL |
[103] |
Wang Y, et al. Integrated analysis of mRNA-seq in the haemocytes of Eriocheir sinensis in response to Spiroplasma eriocheiris infection[J]. Fish Shellfish Immunol, 2017,68:289-298.
doi: 10.1016/j.fsi.2017.07.036 URL |
[104] |
Tanji T, Hu X, Weber AN, et al. Toll and IMD pathways synergi-stically activate an innate immune response in Drosophila melan-ogaster[J]. Mol Cell Biol, 2007,27(12):4578-4588.
doi: 10.1128/MCB.01814-06 URL |
[105] |
Valanne S, Wang JH, Rämet M. The Drosophila Toll signaling pathway[J]. J Immunol, 2011,186(2):649-656.
doi: 10.4049/jimmunol.1002302 URL |
[106] |
Beutler B. Innate immunity:an overview[J]. Molecular Immunology, 2004,40(12):845-859.
doi: 10.1016/j.molimm.2003.10.005 URL |
[107] | Huang Y, Ren Q. Research progress in innate immunity of freshwater crustaceans[J]. Developmental & Comparative Immunology, 2020,104:103569. |
[108] | 姚玉淑, 秦志辉, 张锡林. 按蚊感染疟原虫免疫应答的信号通路及活化因子[J]. 国外医学(寄生虫病分册), 2005(3):110-114. |
Yao YS, Qin ZH, Zhang XL. Signaling pathways and activating factors of immune response to Plasmodium infection in Anopheles mosquitoes[J]. Foreign Medicine(Parasitic Diseases), 2005(3):110-114. | |
[109] |
Zambon RA, Nandakumar M, Vakharia VN, et al. The Toll pathway is important for an antiviral response in Drosophila[J]. Proc Natil Acad Sci USA, 2005,102(20):7257-7262.
doi: 10.1073/pnas.0409181102 URL |
[110] |
Quintin J, Asmar J, Matskevich AA, et al. The Drosophila Toll pathway controls but does not clear Candida glabrata infections[J]. J Immunol, 2013,190(6):2818-2827.
doi: 10.4049/jimmunol.1201861 URL |
[111] | Priyathilaka TT, Bathige S, Lee S, et al. Transcriptome-wide identification, functional characterization, and expression analysis of two novel invertebrate-type Toll-like receptors from disk abalone(Haliotis discus discus)[J]. Fish & Shellfish Immunology, 2019,84:802-815. |
[112] | Zhou SM, Yuan XM, Liu S, et al. Three novel Toll genes(PtToll1-3)identified from a marine crab, Portunus trituberculatus:different tissue expression and response to pathogens[J]. Fish & Shellfish Immunology, 2015,46(2):737-744. |
[113] | Xu K, Zhang Z, Xu Z, et al. A novel invertebrate toll-like receptor is involved in TLR mediated signal pathway of thick shell mussel Mytilus coruscus[J]. Developmental & Comparative Immunology, 2019,97:11-19. |
[114] |
Franzenburg S, Fraune S, Künzel S, et al. MyD88-deficient Hydra reveal an ancient function of TLR signaling in sensing bacterial colonizers[J]. Proc Natil Acad Sci USA, 2012,109(47):19374-19379.
doi: 10.1073/pnas.1213110109 URL |
[115] |
Wang C, Liu X, Liu Y, et al. Zinc finger protein 64 promotes Toll-like receptor-triggered proinflammatory and type I interferon production in macrophages by enhancing p65 subunit activation[J]. J Biol Chem, 2013,288(34):24600-24608.
doi: 10.1074/jbc.M113.473397 URL |
[116] |
Janot L, Secher T, Torres D, et al. CD14 works with toll-like receptor 2 to contribute to recognition and control of Listeria monocytogenes infection[J]. The Journal of Infectious Diseases, 2008,198(1):115-124.
doi: 10.1086/590925 URL |
[117] | Zhao W, Sun Z, et al. Wnt1 participates in inflammation induced by lipopolysaccharide through upregulating Scavenger Receptor A and NF-kB[J]. Inflammation, 2015,4:1700-1706. |
[118] |
Yu CH, Nguyen TTK, Irvine KM, et al. Recombinant Wnt3a and Wnt5a elicit macrophage cytokine production and tolerization to microbial stimulation via Toll-like receptor 4[J]. European Journal of Immunology, 2014,44(5):1480-1490.
doi: 10.1002/eji.201343959 URL |
[119] |
Gordon MD, Dionne MS, Schneider DS, et al. WntD is a feedback inhibitor of dorsal/NF-kappaB in Drosophila development and immunity[J]. Nature, 2005,437(7059):746-749.
doi: 10.1038/nature04073 URL |
[120] |
Yokoi K, Koyama H, Minakuchi C, et al. Antimicrobial peptide gene induction, involvement of Toll and IMD pathways and defense against bacteria in the red flour beetle, Tribolium castaneum[J]. Results in Immunology, 2012,2(2):72-82.
doi: 10.1016/j.rinim.2012.03.002 URL |
[121] | 姚志超. 橘小实蝇Duox-ROS系统和IMD信号通路功能研究[D]. 武汉:华中农业大学, 2017. |
Yao ZC. The functional study of Duox-ROS system and IMD pathway in Bactrocera dorsalis[D]. Wuhan:Huazhong Agricultural University, 2017. | |
[122] |
Lazarian G, Friedrich C, Quinquenel A, et al. Stabilization of β-catenin upon B-cell receptor signaling promotes NF-kB target genes transcription in mantle cell lymphoma[J]. Oncogene, 2020,39(14):2934-2947.
doi: 10.1038/s41388-020-1183-x pmid: 32034308 |
[123] |
Myant KB, Cammareri P, McGhee EJ, et al. ROS production and NF-κB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation[J]. Cell Stem Cell, 2013,12(6):761-773.
doi: 10.1016/j.stem.2013.04.006 URL |
[124] | Nishide Y, Kageyama D, Yokoi K, et al. Functional crosstalk across IMD and Toll pathways:insight into the evolution of incomplete immune cascades[J]. Proceedings of the Royal Society, 2019,286(1897):20182207. |
[125] | Wang F, Xia Q. Back to homeostasis:Negative regulation of NF-κB immune signaling in insects[J]. Developmental & Comparative Immunology, 2018,87:216-223. |
[126] | Yu M, Zheng L, Wang X, et al. Comparative transcriptomic analysis of surf clams(Paphia undulate)infected with two strains of Vibrio spp. reveals the identity of key immune genes involved in host defense[J]. BMC Genomics, 2019,1:988. |
[127] |
West C, Silverman N. p38b and JAK-STAT signaling protect against invertebrate iridescent virus 6 infection in Drosophila[J]. PLoS Pathogens, 2018,14(5):e1007020.
doi: 10.1371/journal.ppat.1007020 URL |
[128] | Yang H, Kronhamn J, Ekström JO, et al. JAK/STAT signaling in Drosophila muscles controls the cellular immune response against parasitoid infection[J]. EMBO Rep, 2015,12:1664-1672. |
[129] |
Lin J, Wang X, Dorsky RI. Progenitor expansion in apc mutants is mediated by Jak/Stat signaling[J]. BMC Developmental Biology, 2011,11:73.
doi: 10.1186/1471-213X-11-73 URL |
[130] |
Cantwell MT, Farrar JS, Lownik JC, et al. STAT3 suppresses Wnt/β-catenin signaling during the induction phase of primary Myf5+ brown adipogenesis[J]. Cytokine, 2018,111:434-444.
doi: S1043-4666(18)30222-9 pmid: 29934048 |
[131] |
Toh TB, Lim JJ, Hooi L, et al. Targeting Jak/Stat pathway as a therapeutic strategy against SP/CD44+ tumorigenic cells in Akt/β-catenin-driven hepatocellular carcinoma[J]. Journal of Hepatology, 2020,72(1):104-118.
doi: 10.1016/j.jhep.2019.08.035 URL |
[132] |
Shi L, Fei XF, Wang ZM, et al. PI3K inhibitor combined with miR-125b inhibitor sensitize TMZ-induced anti-glioma stem cancer effects through inactivation of Wnt/beta-catenin signaling pathway[J]. In Vitro Cellular & Developmental Biology Animal, 2015,51(10):1047-1055.
doi: 10.1007/s11626-015-9931-x URL |
[133] |
Ruse M, Knaus UG. New players in TLR-mediated innate immunity:PI3K and small Rho GTPases[J]. Immunologic Research, 2006,34(1):33-48.
doi: 10.1385/IR:34:1 URL |
[134] |
Liu A, Chen S, Cai S, et al. Wnt5a through noncanonical Wnt/JNK or Wnt/PKC signaling contributes to the differentiation of mesenchymal stem cells into type II alveolar epithelial cells in vitro[J]. PLoS One, 2014,9(3):e90229.
doi: 10.1371/journal.pone.0090229 URL |
[135] |
Heallen T, Zhang M, Wang J, et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size[J]. Science, 2011,332(6028):458-461.
doi: 10.1126/science.1199010 URL |
[136] |
Kim W, Khan SK, Gvozdenovic-Jeremic J, et al. Hippo signaling interactions with Wnt/β-catenin and Notch signaling repress liver tumorigenesis[J]. J Clin Investi, 2017,127(1):137-152.
doi: 10.1172/JCI88486 URL |
[1] | 成温玉, 白云, 贾怀杰, 强桃艳, 赵鸿远, 张博艺, 郭晓荟. 猪流行性腹泻病毒蛋白拮抗宿主天然免疫应答的研究进展[J]. 生物技术通报, 2020, 36(12): 229-238. |
[2] | 王凯, 李博, 于晓东, 刘睿哲, 蔺思函, 杜杰, 沈秀丽, 杜志强. 多巴脱羧酶参与调解无脊椎动物神经内分泌免疫系统的研究进展[J]. 生物技术通报, 2019, 35(4): 170-177. |
[3] | 郑伟刚, 靳明辉, SwapanChakrabarty, 肖彬, 萧玉涛, 袁海滨. 小地老虎不同组织表达差异揭示其翅发育机制[J]. 生物技术通报, 2019, 35(10): 102-110. |
[4] | 徐建波, 张丽莉, 王艺磊, 王国栋. 海洋无脊椎动物甲状腺激素信号通路的研究进展[J]. 生物技术通报, 2014, 0(10): 23-32. |
[5] | 和四梅, 张丽莉, 王艺磊, 王国栋. Caspase细胞凋亡通路及其在水生无脊椎动物的研究进展[J]. 生物技术通报, 2013, 0(9): 54-61. |
[6] | 谭树华;袁志栋;钟彩良;. 水生无脊椎动物金属硫蛋白研究进展[J]. , 2012, 0(04): 35-40. |
[7] | 谢三群;丛丽娜;张欢;王丹;. 太平洋牡蛎i型溶菌酶基因的克隆与重组高效表达[J]. , 2011, 0(04): 127-132. |
[8] | 宫晓静;吴燕燕;. 海洋无脊椎动物抗菌肽研究进展及其在食品保鲜中的应用[J]. , 2011, 0(03): 27-32. |
[9] | 韩萍萍;郑若男;. Wnt信号通路及其与疾病的关系[J]. , 2009, 0(11): 13-15. |
[10] | 蒋勤. Current Advances in Applied Microbiology & Biotechnology《应用微生物学和生物技术近期进展》[J]. , 1999, 0(05): 54-55. |
[11] | 王颖. 吃水银的野草[J]. , 1996, 0(05): 17-18. |
[12] | 李思经;. NPS和Pfizer公司继续药物开发工程[J]. , 1991, 0(08): 22-23. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||