生物技术通报 ›› 2021, Vol. 37 ›› Issue (9): 152-160.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1434
李文宗1(), 李春萍1, 梁鑫1, 王润豪1, 王磊2()
收稿日期:
2020-11-24
出版日期:
2021-09-26
发布日期:
2021-10-25
作者简介:
李文宗,男,博士研究生,研究方向:作物代谢调控与营养强化;E-mail: LI Wen-zong1(), LI Chun-ping1, LIANG Xin1, WANG Run-hao1, WANG Lei2()
Received:
2020-11-24
Published:
2021-09-26
Online:
2021-10-25
摘要:
采用二因素裂区设计,对3个小麦品种在4种不同铁、锌、硒浓度水平下进行无人机叶面喷施,探究其对籽粒中的铁、锌、硒以及其它矿物元素含量的影响,以寻求最佳叶面喷施浓度组合及小麦品种。结果表明,郑麦0943在中浓度(2.5% FeSO4·7H2O + 2.5% ZnSO4·7H2O + 0.1% Na2SeO3)处理下可显著提高其籽粒铁、锌、硒含量;百农AK58及郑育麦958籽粒锌含量在不同浓度(T1:0.5% FeSO4·7H2O + 0.5% ZnSO4·7H2O + 0.02% Na2SeO3、T2:2.5% FeSO4·7H2O + 2.5% ZnSO4·7H2O + 0.1% Na2SeO3、T3:5% FeSO4·7H2O + 5% ZnSO4·7H2O + 0.2% Na2SeO3)处理下均可显著提高,籽粒铁、硒含量在不同浓度处理下变化均不显著。品种、叶面肥浓度及其互作对籽粒铁、锌、硒含量的影响均存在显著差异,其中品种为主要影响因素,其次是叶面肥的浓度。无人机叶面喷施不同浓度的铁、锌、硒混合微肥对3个小麦品种籽粒P、Ca、Mg、Cu、Mn的含量整体影响不大。在本实验处理下可显著提高小麦籽粒铁、锌、硒含量,达到营养强化目的,富铁小麦强化可以种植百农AK58,富锌小麦强化可以种植百农AK58及郑麦0943,富硒小麦强化可以种植郑麦0943。
李文宗, 李春萍, 梁鑫, 王润豪, 王磊. 无人机叶面喷施梯度微肥对不同品种冬小麦籽粒矿质元素的影响[J]. 生物技术通报, 2021, 37(9): 152-160.
LI Wen-zong, LI Chun-ping, LIANG Xin, WANG Run-hao, WANG Lei. Effects of Foliar Gradient Micro-fertilizer Sprayed by UAV on the Grain Mineral Elements of Different Winter Wheat Varieties[J]. Biotechnology Bulletin, 2021, 37(9): 152-160.
图1 不同处理对不同小麦品种籽粒铁含量的影响 CK:叶面喷施清水;T1: 0.5% FeSO4·7H2O + 0.5% ZnSO4·7H2O + 0.02% Na2SeO3混合溶液;T2: 2.5% FeSO4·7H2O + 2.5% ZnSO4·7H2O + 0.1% Na2SeO3混合溶液;T3: 5% FeSO4·7H2O + 5% ZnSO4·7H2O + 0.2% Na2SeO3混合溶液,不同小写字母表示在5%水平下差异显著,下同
Fig. 1 Effects of different treatments on the grain iron content of different wheat varieties CK: Foliar spraying of water; T1: 0.5% FeSO4·7H2O + 0.5% ZnSO4·7H2O + 0.02% Na2SeO3 mixed solution; T2: 2.5% FeSO4·7H2O + 2.5% ZnSO4·7H2O + 0.1% Na2SeO3 mixed solution; T3: 5% FeSO4·7H2O + 5% ZnSO4·7H2O + 0.2% Na2SeO3 mixed solution. Different lowercase letters significant differences(P<0.05)among different treatments. The same below
变异来源Source of variation | 平方和SS | 自由度DF | 均方MS | F值F-value | P值P-value | 偏Eta2 Partial Eta2 |
---|---|---|---|---|---|---|
校正模型Calibration model | 616.355a | 11 | 56.032 | 7.459 | 0.000 | 0.774 |
截距Intercept | 46004.530 | 1 | 46004.530 | 6124.111 | 0.000 | 0.996 |
品种Variety | 447.700 | 2 | 223.850 | 29.799 | 0.000 | 0.713 |
处理浓度Concentration | 36.682 | 3 | 12.227 | 1.628 | 0.209 | 0.169 |
品种×处理浓度 Variety×Concentration | 131.973 | 6 | 21.996 | 2.928 | 0.027 | 0.423 |
误差Error | 180.289 | 24 | 7.512 | |||
总计Total | 46801.174 | 36 | ||||
校正的总计 Total calibration | 796.644 | 35 |
表1 各目标因素检验
Table 1 Tests of between-subjects effects
变异来源Source of variation | 平方和SS | 自由度DF | 均方MS | F值F-value | P值P-value | 偏Eta2 Partial Eta2 |
---|---|---|---|---|---|---|
校正模型Calibration model | 616.355a | 11 | 56.032 | 7.459 | 0.000 | 0.774 |
截距Intercept | 46004.530 | 1 | 46004.530 | 6124.111 | 0.000 | 0.996 |
品种Variety | 447.700 | 2 | 223.850 | 29.799 | 0.000 | 0.713 |
处理浓度Concentration | 36.682 | 3 | 12.227 | 1.628 | 0.209 | 0.169 |
品种×处理浓度 Variety×Concentration | 131.973 | 6 | 21.996 | 2.928 | 0.027 | 0.423 |
误差Error | 180.289 | 24 | 7.512 | |||
总计Total | 46801.174 | 36 | ||||
校正的总计 Total calibration | 796.644 | 35 |
变异来源Source of variation | 平方和SS | 自由度DF | 均方MS | F值F-value | P值P-value | 偏Eta2 Partial Eta2 |
---|---|---|---|---|---|---|
校正模型Calibration model | 1133.230a | 11 | 103.021 | 62.082 | 0.000 | 0.966 |
截距Intercept | 56969.734 | 1 | 56969.734 | 34330.606 | 0.000 | 0.999 |
品种Variety | 413.602 | 2 | 206.801 | 124.621 | 0.000 | 0.912 |
处理浓度Concentration | 528.310 | 3 | 176.103 | 106.122 | 0.000 | 0.930 |
品种×处理浓度 Variety×Concentration | 191.318 | 6 | 31.886 | 19.215 | 0.000 | 0.828 |
误差Error | 39.827 | 24 | 1.659 | |||
总计Total | 58142.790 | 36 | ||||
校正的总计 Total calibration | 1173.056 | 35 |
表2 各目标因素检验
Table 2 Tests of between-subjects effects
变异来源Source of variation | 平方和SS | 自由度DF | 均方MS | F值F-value | P值P-value | 偏Eta2 Partial Eta2 |
---|---|---|---|---|---|---|
校正模型Calibration model | 1133.230a | 11 | 103.021 | 62.082 | 0.000 | 0.966 |
截距Intercept | 56969.734 | 1 | 56969.734 | 34330.606 | 0.000 | 0.999 |
品种Variety | 413.602 | 2 | 206.801 | 124.621 | 0.000 | 0.912 |
处理浓度Concentration | 528.310 | 3 | 176.103 | 106.122 | 0.000 | 0.930 |
品种×处理浓度 Variety×Concentration | 191.318 | 6 | 31.886 | 19.215 | 0.000 | 0.828 |
误差Error | 39.827 | 24 | 1.659 | |||
总计Total | 58142.790 | 36 | ||||
校正的总计 Total calibration | 1173.056 | 35 |
变异来源Source of variation | 平方和SS | 自由度DF | 均方MS | F值F-value | P值P-value | 偏Eta2 Partial Eta2 |
---|---|---|---|---|---|---|
校正模型Calibration model | 0.010a | 11 | 0.001 | 18.839 | 0.000 | 0.896 |
截距Intercept | 0.112 | 1 | 0.112 | 2302.717 | 0.000 | 0.990 |
品种Variety | 0.005 | 2 | 0.003 | 54.170 | 0.000 | 0.819 |
处理浓度Concentration | 0.002 | 3 | 0.001 | 15.217 | 0.000 | 0.655 |
品种×处理浓度Variety×Concentration | 0.003 | 6 | 0.000 | 8.872 | 0.000 | 0.689 |
误差Error | 0.001 | 24 | 0.000 | |||
总计Total | 0.123 | 36 | ||||
校正的总计 Total calibration | 0.011 | 35 |
表3 各目标因素检验
Table 3 Tests of between-subjects effects
变异来源Source of variation | 平方和SS | 自由度DF | 均方MS | F值F-value | P值P-value | 偏Eta2 Partial Eta2 |
---|---|---|---|---|---|---|
校正模型Calibration model | 0.010a | 11 | 0.001 | 18.839 | 0.000 | 0.896 |
截距Intercept | 0.112 | 1 | 0.112 | 2302.717 | 0.000 | 0.990 |
品种Variety | 0.005 | 2 | 0.003 | 54.170 | 0.000 | 0.819 |
处理浓度Concentration | 0.002 | 3 | 0.001 | 15.217 | 0.000 | 0.655 |
品种×处理浓度Variety×Concentration | 0.003 | 6 | 0.000 | 8.872 | 0.000 | 0.689 |
误差Error | 0.001 | 24 | 0.000 | |||
总计Total | 0.123 | 36 | ||||
校正的总计 Total calibration | 0.011 | 35 |
[1] | 王磊, 张春义. 营养型农业的发展背景及进展[J]. 生物产业技术, 2019(6):59-63. |
Wang L, Zhang CY. Development background and progress of nutrition-orientated agriculture[J]. Biotechnology & Business, 2019(6):59-63. | |
[2] | 久牧. 均衡营养, 拒绝“隐性饥饿”[J]. 中国食品药品监管, 2015(12):67-72. |
Jiu M. Balanced nutrition and rejection of “hidden hunger”[J]. China Food Drug Administration, 2015(12):67-72. | |
[3] |
Nestel P, Bouis HE, et al. Biofortification of staple food crops[J]. The Journal of Nutrition, 2006, 136(4):1064-1067.
doi: 10.1093/jn/136.4.1064 URL |
[4] | 王磊, 张春义. 生物强化在中国[M]. 北京: 中国农业科学技术出版社, 2009: 103. |
Wang L, Zhang CY. Biofortification in China[M]. Beijing: China Agricultural Science and Technology Press, 2009: 103. | |
[5] | 孙长峰, 郭娜. 微量元素铁对人体健康的影响[J]. 微量元素与健康研究, 2011, 28(2):64-66. |
Sun CF, Guo N. Trace element iron effects on human health[J]. Studies of Trace Elements and Health, 2011, 28(2):64-66. | |
[6] | 王婕. 浅谈微量元素铁与人体健康[J]. 贵州教育学院学报:自然科学, 2005, 21(4):31-32, 39. |
Wang J. The relationship between microelement iron and human health[J]. Journal of Guizhou Educational College, 2005, 21(4):31-32, 39. | |
[7] |
Geissler C, Singh M. Iron, meat and health[J]. Nutrients, 2011, 3(3):283-316.
doi: 10.3390/nu3030283 URL |
[8] | Dahlerup J, Lindgren S, Moum B. Iron deficiency and iron deficiency Anemia are global health problems[J]. Lakartidningen, 2015, 112:DAAE. |
[9] | 张黎. 微量元素锌与人体健康探讨[J]. 人人健康:医学导刊, 2008(5):105-106. |
Zhang L. Trace element zinc and human body health discussion[J]. Health for Everybody:the Medicine Leads the Publication, 2008(5):105-106. | |
[10] |
Frossard E, Bucher M, Mächler F, et al. Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition[J]. Journal of the Science of Food and Agriculture, 2000, 80(7):861-879.
doi: 10.1002/(ISSN)1097-0010 URL |
[11] |
Stein AJ. Global impacts of human mineral malnutrition[J]. Plant and Soil, 2010, 335(1/2):133-154.
doi: 10.1007/s11104-009-0228-2 URL |
[12] | 董国力. 微量元素铁、锌、碘、硒、氟与人体健康的相关性探究[J]. 中国当代医药, 2013, 20(6):183-184. |
Dong GL. Correlation analysis of trace elements iron, zinc, iodine, selenium and fluoride and human health[J]. China Modern Medicine, 2013, 20(6):183-184. | |
[13] |
Gibson RS. Zinc:the missing link in combating micronutrient malnutrition in developing countries[J]. The Proceedings of the Nutrition Society, 2006, 65(1):51-60.
doi: 10.1079/PNS2005474 URL |
[14] | 李天真. 人体微量元素锌的营养研究[J]. 湖州职业技术学院学报, 2003, 1(2):72-76. |
Li TZ. Researching of Zn’s nutrition in the human body’s microelement[J]. Journal of Huzhou Vocational and Technological College, 2003, 1(2):72-76. | |
[15] | 马秀杰, 张跃安. 硒对人体健康影响研究进展[J]. 中国公共卫生, 2009, 25(8):1021-1023. |
Ma XJ, Zhang YA. Progress in studies on the effects of selenium on human health[J]. Chinese Journal of Public Health, 2009, 25(8):1021-1023. | |
[16] |
Yoshizawa K, Willett WC, Morris SJ, et al. Study of prediagnostic selenium level in toenails and the risk of advanced prostate cancer[J]. Journal of the National Cancer Institute, 1998, 90(16):1219-1224.
pmid: 9719083 |
[17] |
Ganther HE. Selenium metabolism, selenoproteins and mechanisms of cancer prevention:complexities with thioredoxin reductase[J]. Carcinogenesis, 1999, 20(9):1657-1666.
pmid: 10469608 |
[18] |
Kim JH, Yoon SY, Kim CN, et al. The Bmi-1 oncoprotein is overexpressed in human colorectal cancer and correlates with the reduced p16INK4a/p14ARF proteins[J]. Cancer Letters, 2004, 203(2):217-224.
doi: 10.1016/j.canlet.2003.07.009 URL |
[19] | 孙铁波. 无人机在精准农业中的关键技术及应用[J]. 湖北农机化, 2020(1):51-52. |
Sun TB. Key Technologies and applications of UAV in precision agriculture[J]. HuBei Agricultural Mechanization, 2020(1):51-52. | |
[20] | 敬树忠, 刘然金, 等. 无人机在农业生产中的应用现状与相关应用研究[J]. 四川农业科技, 2017(11):41-43. |
Jing SZ, Liu RJ, et al. Current situation and relevant application research of UAV in agricultural production[J]. Science and Technology of Sichuan Agriculture, 2017(11):41-43. | |
[21] | 孙成军. 多旋翼极飞无人机植保情况分析[J]. 农业工程技术, 2019, 39(36):85-88. |
Sun CJ. Analysis on plant protection of multi-rotor pole-flying UAV[J]. Applied Engineering Technology, 2019, 39(36):85-88. | |
[22] | 陈盛德, 兰玉彬, 李继宇, 等. 航空喷施与人工喷施方式对水稻施药效果比较[J]. 华南农业大学学报, 2017, 38(4):103-109. |
Chen SD, Lan YB, Li JY, et al. Comparison of the pesticide effects of aerial and artificial spray applications for rice[J]. Journal of South China Agricultural University, 2017, 38(4):103-109. | |
[23] | 李文宗, 李有芳, 等. 小麦叶面喷施微肥对籽粒中矿物元素的影响分析[J]. 生物技术通报, 2018, 34(6):90-95. |
Li WZ, Li YF, et al. Effects of leaf spraying fertilizer on mineral elements in wheat grain[J]. Biotechnology Bulletin, 2018, 34(6):90-95. | |
[24] | 王丽, 毛平平, 党建友, 等. 叶面喷施微肥对晋南小麦产量和微量元素含量的影响[J]. 中国土壤与肥料, 2016(5):85-89, 123. |
Wang L, Mao PP, Dang JY, et al. Effect of foliar fertilizer on wheat yield and content of trace elements[J]. Soil and Fertilizer Sciences in China, 2016(5):85-89, 123. | |
[25] | 张晓, 卜冬宁, 李瑞奇, 等. 叶面喷施微肥对冬小麦产量和品质的影响[J]. 麦类作物学报, 2012, 32(4):747-749. |
Zhang X, Bu DN, Li RQ, et al. Effects of foliar spraying microelement fertilizers on yield and quality of winter wheat[J]. Journal of Triticeae Crops, 2012, 32(4):747-749. | |
[26] | 马凤霞, 王沛, 张敏, 等. 叶面喷施硒肥对不同品种小麦产量及籽粒硒含量的影响[J]. 山东农业大学学报:自然科学版, 2020, 51(1):25-30. |
Ma FX, Wang P, Zhang M, et al. Effect of selenium fertilizer spraying on wheat yield of different varieties and grain selenium content[J]. Journal of Shandong Agricultural University:Natural Science Edition, 2020, 51(1):25-30. | |
[27] |
Reid RJ. Mechanisms of micronutrient uptake in plants[J]. Functional Plant Biology, 2001, 28(7):661.
doi: 10.1071/PP01037 URL |
[28] |
Grusak MA. Iron transport to developing ovules of Pisum sativum(I. seed import characteristics and phloem iron-loading capacity of source regions)[J]. Plant Physiology, 1994, 104(2):649-655.
pmid: 12232115 |
[29] |
Waters BM, Uauy C, Dubcovsky J, et al. Wheat(Triticum aestivum)NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain[J]. Journal of Experimental Botany, 2009, 60(15):4263-4274.
doi: 10.1093/jxb/erp257 pmid: 19858116 |
[30] |
Thomine S, Lelièvre F, Debarbieux E, et al. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency[J]. The Plant Journal, 2003, 34(5):685-695.
doi: 10.1046/j.1365-313X.2003.01760.x URL |
[31] |
Briat JF, Lobréaux S. Iron transport and storage in plants[J]. Trends in Plant Science, 1997, 2(5):187-193.
doi: 10.1016/S1360-1385(97)85225-9 URL |
[32] |
Duy D, Wanner G, Meda AR, et al. PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport[J]. The Plant Cell, 2007, 19(3):986-1006.
doi: 10.1105/tpc.106.047407 URL |
[33] |
Kim SA, Punshon T, Lanzirotti A, et al. Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1[J]. Science, 2006, 314(5803):1295-1298.
doi: 10.1126/science.1132563 URL |
[34] | 李丽媛. 植保无人机飞行参数对喷施效果的影响[D]. 太谷:山西农业大学, 2019. |
Li LY. Effect of flight parameters of plant protection UAV on spraying effect[D]. Taigu:Shanxi Agricultural University, 2019. | |
[35] |
Haslett BS, Reid RJ, Rengel Z. Zinc mobility in wheat:uptake and distribution of zinc applied to leaves or roots[J]. Annals of Botany, 2001, 87(3):379-386.
doi: 10.1006/anbo.2000.1349 URL |
[36] |
Erenoglu B, Nikolic M, et al. Uptake and transport of foliar applied zinc(^65Zn)in bread and durum wheat cultivars differing in zinc efficiency[J]. Plant and Soil, 2002, 241(2):251-257.
doi: 10.1023/A:1016148925918 URL |
[37] |
Ozturk L, Yazici MA, Yucel C, et al. Concentration and localization of zinc during seed development and germination in wheat[J]. Physiologia Plantarum, 2006, 128(1):144-152.
doi: 10.1111/ppl.2006.128.issue-1 URL |
[38] |
Zhang YQ, Shi RL, Rezaul KM, et al. Iron and zinc concentrations in grain and flour of winter wheat as affected by foliar application[J]. Journal of Agricultural and Food Chemistry, 2010, 58(23):12268-12274.
doi: 10.1021/jf103039k URL |
[39] | 张平平, 马鸿翔, 姚金保, 等. 叶面喷施硒肥对小麦籽粒及面粉硒含量的影响[J]. 核农学报, 2019, 33(11):2254-2260. |
Zhang PP, Ma HX, Yao JB, et al. Effects of selenium foliar spray on selenium distribution in milling fractions in common wheat[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(11):2254-2260. | |
[40] | 王安, 蒋莹, 等. 叶面喷施铁肥对芋头生长发育、产量及矿质元素的影响[J]. 江苏农业科学, 2019, 47(8):139-143. |
Wang A, Jiang Y, et al. Effects of Iron fertilization on taro growth and development, yield and mineral elements[J]. Jiangsu Agricultural Sciences, 2019, 47(8):139-143. | |
[41] | 孙发宇, 李长成, 王安, 等. 叶面喷施硒酸钠对不同小麦品种(系)籽粒硒及其他矿质元素含量的影响[J]. 麦类作物学报, 2017, 37(4):559-564. |
Sun FY, Li CC, Wang A, et al. Effect of sodium selenate application on concentrations of selenium and other minerals in grains of different wheat genotypes[J]. Journal of Triticeae Crops, 2017, 37(4):559-564. |
[1] | 温晓蕾, 李建嫄, 李娜, 张娜, 杨文香. 小麦叶锈菌与小麦互作的酵母双杂交cDNA文库构建与应用[J]. 生物技术通报, 2023, 39(9): 136-146. |
[2] | 韩志阳, 贾子苗, 梁秋菊, 王轲, 唐华丽, 叶兴国, 张双喜. 二套小麦-簇毛麦染色体附加系苗期耐盐性及籽粒硒和叶酸的含量[J]. 生物技术通报, 2023, 39(8): 185-193. |
[3] | 孔德真, 聂迎彬, 崔凤娟, 桑伟, 徐红军, 田笑明. 杂交小麦制种研究现状及展望[J]. 生物技术通报, 2023, 39(1): 95-103. |
[4] | 郭志浩, 金泽鑫, 刘琦, 高利. 小麦矮腥黑粉菌效应蛋白g11335的生物信息学分析、亚细胞定位及毒性验证[J]. 生物技术通报, 2022, 38(8): 110-117. |
[5] | 赵静雅, 彭梦雅, 张时雨, 单艺轩, 邢小萍, 施艳, 李海洋, 杨雪, 李洪连, 陈琳琳. C2H2锌指转录因子FpCzf7参与假禾谷镰孢的生长和致病性[J]. 生物技术通报, 2022, 38(8): 216-224. |
[6] | 陈佳敏, 刘永杰, 马锦绣, 李丹, 公杰, 赵昌平, 耿洪伟, 高世庆. 小麦组蛋白甲基化酶在杂交种中干旱胁迫表达模式分析[J]. 生物技术通报, 2022, 38(7): 51-61. |
[7] | 张昊鑫, 王中华, 牛兵, 郭慷, 刘璐, 姜瑛, 张仕祥. 产IAA兼具溶磷解钾高效促生菌的筛选、鉴定及其广谱性应用[J]. 生物技术通报, 2022, 38(5): 100-111. |
[8] | 孔德真, 聂迎彬, 徐红军, 崔凤娟, 穆培源, 田笑明. 三系杂交小麦混播制种对杂交种产量、纯度及F1产量优势的影响[J]. 生物技术通报, 2022, 38(10): 132-139. |
[9] | 孙淑芳, 骆永丽, 李春辉, 金敏, 胥倩. UPLC-MS/MS测定小麦茎秆木质素单体交联结构的方法[J]. 生物技术通报, 2022, 38(10): 66-72. |
[10] | 雒丽丽, 张昊, 杨美欣, 王云飞, 许景升, 徐进, 姚强, 冯洁. 黄淮与东北麦区小麦赤霉菌温度相关的致病力分化研究[J]. 生物技术通报, 2021, 37(4): 47-55. |
[11] | 魏畅, 戚秀秀, 吴越, 刘晓丹, 王祎, 姜瑛, 柳海涛. 砂质潮土高效溶磷菌的筛选鉴定、条件优化及应用[J]. 生物技术通报, 2021, 37(4): 85-95. |
[12] | 代文双, 刘会云, 杜庆国, 邹枨, 王轲. 组蛋白去乙酰化酶抑制剂(HDACi)对小麦基因编辑效率的影响及转录组学分析[J]. 生物技术通报, 2021, 37(1): 2-14. |
[13] | 牛欢, 冯静云, 黄建国, 张超群, 张露露, 刘晓颖, 王振英. 小麦病程相关基因TaSec14的克隆及功能研究[J]. 生物技术通报, 2020, 36(6): 54-62. |
[14] | 王竹承, 刘辉, 李荣华. 外源硫对镉胁迫下马齿苋光合性状和矿质元素吸收的影响[J]. 生物技术通报, 2020, 36(3): 133-140. |
[15] | 郭彩娟, 公杰, 刘永杰, 赵昌平, 高世庆, 吴华伟. 全基因组小麦PPR基因家族鉴定及表达分析[J]. 生物技术通报, 2019, 35(8): 1-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||