生物技术通报 ›› 2021, Vol. 37 ›› Issue (9): 171-179.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0033
收稿日期:
2021-01-08
出版日期:
2021-09-26
发布日期:
2021-10-25
作者简介:
刘雪丹,女,硕士研究生,研究方向:微生物生物合成,E-mail: 基金资助:
LIU Xue-dan1(), YANG Meng2, ZHANG Jing1(), ZHAO Dong-xu2()
Received:
2021-01-08
Published:
2021-09-26
Online:
2021-10-25
摘要:
研究共利用葡萄糖、木糖对重组大肠杆菌合成 D-1,2,4-丁三醇(BT)的影响,并优化混合底物时重组菌株合成丁三醇的培养条件。通过敲除影响磷酸转移酶系统(PTS)运行的基因,构建共利用葡萄糖-木糖的合成 BT 重组菌株,考察了 mtfA 敲除及 mlc 过表达菌株 MJ133k-ΔmtfA-PTMXM 的摇瓶培养条件。结果显示:分别敲除基因 ptsG、mtfA 和 pgi,可使菌株能同时利用木糖及葡萄糖并促进 BT 合成。菌株 MJ133k-ΔmtfA-PTMXM 合成 BT 的培养基及培养条件为:采用 1.5×LB 培养基,加入 10 g/L CaCO3 以控制 pH,发酵温度 33℃,装液量为 60 mL/250 mL;6 h 时分别加入葡萄糖 5 g/L及木糖 20 g/L,24 h 再次加入 5 g/L 葡萄糖,BT 合成量达 3.36 g/L,是未修饰菌株培养条件优化前BT 合成量的 4.15 倍。表明葡萄糖、木糖共利用有效促进了重组大肠杆菌合成 BT。
刘雪丹, 杨萌, 张静, 赵东旭. 葡萄糖-木糖共利用对重组大肠杆菌合成D-1,2,4-丁三醇的影响[J]. 生物技术通报, 2021, 37(9): 171-179.
LIU Xue-dan, YANG Meng, ZHANG Jing, ZHAO Dong-xu. Effects of Glucose-xylose Co-utilization on the Synthesis of D-1,2,4-Butanetriol by Recombinant Escherichia coli[J]. Biotechnology Bulletin, 2021, 37(9): 171-179.
图1 D-木糖合成D-1,2,4-丁三醇的主要代谢途径 xdh:编码木糖脱氢酶;xylD:编码木糖酸脱水酶;mdlc:编码2-酮酸脱羧酶;yqhD:编码醇脱氢酶
Fig. 1 Main metabolic pathways of D-xylose to synthesize D-1,2,4-butanetriol xdh:Encoding xylose dehydrogenase;xylD:encoding xylonic acid dehydratase;mdlc:encoding 2-ketoacid decarboxylase;yqhD:encoding alcohol dehydrogenase
菌株及质粒Strains and plasmids | 相关特性Related characteristics | 来源Source |
---|---|---|
MG1655 | wild type | Lab stock |
MJ133k | MG1655△yjhH△yagE△xylA∷Kanr | [ |
MJ133k-Δmlc | MJ133k△mlc∷Kanr | This work |
MJ133k-Δpgi | MJ133k△pgi∷Kanr | This work |
MJ134k | MJ133k△ptsG∷Kanr | This work |
MJ133k-ΔmtfA | MJ133k△mtfA∷Kanr | This work |
MJ133k-1 | MJ133k carrying pTMX | [ |
MJ134k-1 | MJ133k△ptsG∷Kanr/ pTMX | This work |
MJ133k-Δpgi-1 | MJ133k△pgi∷Kanr/pTMX | This work |
MJ133k-Δmlc-1 | MJ133k△mlc∷Kanr/pTMX | This work |
MJ133k-ΔmtfA-1 | MJ133k△mtfA∷Kanr/pTMX | This work |
MJ133k-G-1 | MJ133k carrying PTMXG | This work |
MJ133k-P-1 | MJ133k carrying PTMXP | This work |
MJ133k-A-1 | MJ133k carrying PTMXA | This work |
MJ133k-ΔmtfA-PTMXM | MJ133k△mtfA∷Kanr/PTMXM | This work |
pTMX | pTrc99a∷mdlC-xdh,Apr | [ |
pTMXG | pTrc99a∷mdlC-xdh-ptsG Apr | This work |
PTMXP | pTrc99a∷mdlC-xdh-pgi Apr | This work |
PTMXM | pTrc99a∷mdlC-xdh-mlc Apr | This work |
PTMXA | pTrc99a∷mdlC-xdh-mtfA Apr | This work |
表1 本研究所用的菌株及质粒
Table 1 Strains and plasmids in this study
菌株及质粒Strains and plasmids | 相关特性Related characteristics | 来源Source |
---|---|---|
MG1655 | wild type | Lab stock |
MJ133k | MG1655△yjhH△yagE△xylA∷Kanr | [ |
MJ133k-Δmlc | MJ133k△mlc∷Kanr | This work |
MJ133k-Δpgi | MJ133k△pgi∷Kanr | This work |
MJ134k | MJ133k△ptsG∷Kanr | This work |
MJ133k-ΔmtfA | MJ133k△mtfA∷Kanr | This work |
MJ133k-1 | MJ133k carrying pTMX | [ |
MJ134k-1 | MJ133k△ptsG∷Kanr/ pTMX | This work |
MJ133k-Δpgi-1 | MJ133k△pgi∷Kanr/pTMX | This work |
MJ133k-Δmlc-1 | MJ133k△mlc∷Kanr/pTMX | This work |
MJ133k-ΔmtfA-1 | MJ133k△mtfA∷Kanr/pTMX | This work |
MJ133k-G-1 | MJ133k carrying PTMXG | This work |
MJ133k-P-1 | MJ133k carrying PTMXP | This work |
MJ133k-A-1 | MJ133k carrying PTMXA | This work |
MJ133k-ΔmtfA-PTMXM | MJ133k△mtfA∷Kanr/PTMXM | This work |
pTMX | pTrc99a∷mdlC-xdh,Apr | [ |
pTMXG | pTrc99a∷mdlC-xdh-ptsG Apr | This work |
PTMXP | pTrc99a∷mdlC-xdh-pgi Apr | This work |
PTMXM | pTrc99a∷mdlC-xdh-mlc Apr | This work |
PTMXA | pTrc99a∷mdlC-xdh-mtfA Apr | This work |
名称Name | 引物序列Primer sequence(5'-3') | 用途Usage |
---|---|---|
ptsG-knock-s | gcgtgagaacgtaaaaaaagcacccatactcaggagcactctcaattgtgtaggctggagctgcttc | Forward primer for ptsG deletion |
ptsG-knock-an | aaaaggcagccatctggctgccttagtctccccaacgtcttacggattaatgggaattagccatggtcc | Reverse primer for ptsG deletion |
pgi-knock-s | atgaaaaacatcaatccaacgcagaccgctgcctggcaggcactacagaaacacttcgatg | Forward primer for pgi deletion |
pgi-knock-an | cgtcggtgctatcgagctggttaccagactaattggcgatatttcgcaccgcgccaatt | Reverse primer for pgi deletion |
mlc-knock-s | gtggttgctgaaaaccagcctgggcacattgatcaaataaagcagaccaacgcgggcgcg | Forward primer for mlc deletion |
mlc-knock-an | gaccattttctgcgctacatattgccaagaaacaactaagcagacaacgtcccaatt | Reverse primer for mlc deletion |
mtfA-knock-s | atgattaagtggccctggaaagtacaagaatcagcacatcaaactgcccttccctggca | Forward primer for mtfA deletion |
mtfA-knock-an | cgtctctgacgtagtgcgattactatgtctgagcaaaagccgctgcttacaagtaatt | Reverse primer for mtfA deletion |
ptsG-F | cgcttcccgccttcaatcc | Verification primer for ptsG deletion |
ptsG-R | gacgccgtatggcaccttccg | Verification primer for ptsG deletion |
pgi-F | accgccaaatttggagacaacaatttcaga | Verification primer for pgi deletion |
pgi-R | aggtgcagcccacgcagaagtcgccgcaag | Verification primer for pgi deletion |
mlc-F | ttatggcgatgatcccgcacgatcat | Verification primer for mlc deletion |
mlc-R | gcagttgttcctgcactacccattcagaga | Verification primer for mlc deletion |
mtfA-F | ggctttaatctgacggccgcgttccttttt | Verification primer for mtfA deletion |
mtfA-R | ttcgtagccatgcttaccttccctgaacga | Verification primer for mtfA deletion |
p-ptsG-F | acacaggaaacagaccatggtcatgtacaccgttggtgactacctg | Amplification of the ptsG gene |
p-ptsG-R | ttaaacaaaattattaagatttgttctgttcagcga | Amplification of the ptsG gene |
p-pgi-F | ctttaagtaaggaggatatattatgtcctcagccatctatccc | Amplification of the pgi gene |
p-pgi-R | atccgaaagaggagaaatatgaacaactttaatctgcacacc | Amplification of the pgi gene |
p-mlc-F | atatacgaagccgcccgctaatcacacaggaaagatgtctaaccgcacgccc | Amplification of the mlc gene |
p-mlc-R | tcatccgccaaaacagccaagcttttcgcatcagtggttgtgg | Amplification of the mlc gene |
p-mtfA-F | cctcgaggtcgacggtatcgataagcttgatgtctaaccgcacgcccc | Amplification of the mtfA gene |
p-mtfA-R | ggcggccgctctagaactagtggatcc tcagtggttgtggcgggg | Amplification of the mtfA gene |
pkd13-k1-s | aggctattcggctatgactg | Verification primer for gene deletion |
pkd13-k1-an | ttgtcaagaccgacctgtcc | Verification primer for gene deletion |
表2 本研究所用的引物
Table 2 Primers in this study
名称Name | 引物序列Primer sequence(5'-3') | 用途Usage |
---|---|---|
ptsG-knock-s | gcgtgagaacgtaaaaaaagcacccatactcaggagcactctcaattgtgtaggctggagctgcttc | Forward primer for ptsG deletion |
ptsG-knock-an | aaaaggcagccatctggctgccttagtctccccaacgtcttacggattaatgggaattagccatggtcc | Reverse primer for ptsG deletion |
pgi-knock-s | atgaaaaacatcaatccaacgcagaccgctgcctggcaggcactacagaaacacttcgatg | Forward primer for pgi deletion |
pgi-knock-an | cgtcggtgctatcgagctggttaccagactaattggcgatatttcgcaccgcgccaatt | Reverse primer for pgi deletion |
mlc-knock-s | gtggttgctgaaaaccagcctgggcacattgatcaaataaagcagaccaacgcgggcgcg | Forward primer for mlc deletion |
mlc-knock-an | gaccattttctgcgctacatattgccaagaaacaactaagcagacaacgtcccaatt | Reverse primer for mlc deletion |
mtfA-knock-s | atgattaagtggccctggaaagtacaagaatcagcacatcaaactgcccttccctggca | Forward primer for mtfA deletion |
mtfA-knock-an | cgtctctgacgtagtgcgattactatgtctgagcaaaagccgctgcttacaagtaatt | Reverse primer for mtfA deletion |
ptsG-F | cgcttcccgccttcaatcc | Verification primer for ptsG deletion |
ptsG-R | gacgccgtatggcaccttccg | Verification primer for ptsG deletion |
pgi-F | accgccaaatttggagacaacaatttcaga | Verification primer for pgi deletion |
pgi-R | aggtgcagcccacgcagaagtcgccgcaag | Verification primer for pgi deletion |
mlc-F | ttatggcgatgatcccgcacgatcat | Verification primer for mlc deletion |
mlc-R | gcagttgttcctgcactacccattcagaga | Verification primer for mlc deletion |
mtfA-F | ggctttaatctgacggccgcgttccttttt | Verification primer for mtfA deletion |
mtfA-R | ttcgtagccatgcttaccttccctgaacga | Verification primer for mtfA deletion |
p-ptsG-F | acacaggaaacagaccatggtcatgtacaccgttggtgactacctg | Amplification of the ptsG gene |
p-ptsG-R | ttaaacaaaattattaagatttgttctgttcagcga | Amplification of the ptsG gene |
p-pgi-F | ctttaagtaaggaggatatattatgtcctcagccatctatccc | Amplification of the pgi gene |
p-pgi-R | atccgaaagaggagaaatatgaacaactttaatctgcacacc | Amplification of the pgi gene |
p-mlc-F | atatacgaagccgcccgctaatcacacaggaaagatgtctaaccgcacgccc | Amplification of the mlc gene |
p-mlc-R | tcatccgccaaaacagccaagcttttcgcatcagtggttgtgg | Amplification of the mlc gene |
p-mtfA-F | cctcgaggtcgacggtatcgataagcttgatgtctaaccgcacgcccc | Amplification of the mtfA gene |
p-mtfA-R | ggcggccgctctagaactagtggatcc tcagtggttgtggcgggg | Amplification of the mtfA gene |
pkd13-k1-s | aggctattcggctatgactg | Verification primer for gene deletion |
pkd13-k1-an | ttgtcaagaccgacctgtcc | Verification primer for gene deletion |
[1] |
Wang X, Xu NN, Hu SW, et al. D-1, 2, 4-Butanetriol production from renewable biomass with optimization of synthetic pathway in engineered Escherichia coli[J]. Bioresour Technol, 2018, 250:406-412.
doi: 10.1016/j.biortech.2017.11.062 URL |
[2] |
Valdehuesa KNG, Liu HW, Ramos KRM, et al. Direct bioconversion of d-xylose to 1, 2, 4-butanetriol in an engineered Escherichia coli[J]. Process Biochem, 2014, 49(1):25-32.
doi: 10.1016/j.procbio.2013.10.002 URL |
[3] | 刘夺, 杜瑾, 赵广荣, 等. 合成生物学在医药及能源领域的应用[J]. 化工学报, 2011, 62(9):2391-2397. |
Liu D, Du J, Zhao GR, et al. Applications of synthetic biology in medicine and energy[J]. CIESC J, 2011, 62(9):2391-2397. | |
[4] |
Hu SW, Gao Q, Wang X, et al. Efficient production of d-1, 2, 4-butanetriol from d-xylose by engineered Escherichia coli whole-cell biocatalysts[J]. Front Chem Sci Eng, 2018, 12(4):772-779.
doi: 10.1007/s11705-018-1731-x URL |
[5] | Zhu WH, Yan QL, Pang AM, et al. A DFT study of the unimolecular decomposition of 1, 2, 4-butanetriol trinitrate[J]. J Mol Model, 2014, 20(2):1-6. |
[6] |
Cao Y, Niu W, Guo J, et al. Biotechnological production of 1, 2, 4-butanetriol:an efficient process to synthesize energetic material precursor from renewable biomass[J]. Sci Rep, 2015, 5:18149.
doi: 10.1038/srep18149 URL |
[7] |
Yamada-Onodera K, Norimoto A, Kawada N, et al. Production of optically active 1, 2, 4-butanetriol from corresponding racemate by microbial stereoinversion[J]. J Biosci Bioeng, 2007, 103(5):494-496.
pmid: 17609168 |
[8] | 马鹏飞, 蒙坚, 周静, 等. 重组大肠杆菌利用D-木糖合成D-1, 2, 4-丁三醇[J]. 化工学报, 2015, 66(7):2620-2627. |
Ma PF, Meng J, Zhou J, et al. Biosynjournal of D-1, 2, 4-butanetriol from D-xylose by recombinant Escherichia coli[J]. CIESC J, 2015, 66(7):2620-2627. | |
[9] |
Zhang NN, Wang JB, Zhang Y, et al. Metabolic pathway optimization for biosynjournal of 1, 2, 4-butanetriol from xylose by engineered Escherichia coli[J]. Enzym Microb Technol, 2016, 93/94:51-58.
doi: 10.1016/j.enzmictec.2016.07.007 URL |
[10] |
Park J, Rodríguez-Moyá M, Li M, et al. Synjournal of methyl ketones by metabolically engineered Escherichia coli[J]. J Ind Microbiol Biotechnol, 2012, 39(11):1703-1712.
doi: 10.1007/s10295-012-1178-x URL |
[11] |
Wang X, Goh EB, Beller HR. Engineering E. coli for simultaneous glucose——xylose utilization during methyl ketone production[J]. Microb Cell Factories, 2018, 17(1):12.
doi: 10.1186/s12934-018-0862-6 URL |
[12] |
Niu W, Molefe MN, Frost JW. Microbial synjournal of the energetic material precursor 1, 2, 4-butanetriol[J]. J Am Chem Soc, 2003, 125(43):12998-12999.
doi: 10.1021/ja036391+ URL |
[13] |
Sun L, Yang F, Sun H, et al. Synthetic pathway optimization for improved 1, 2, 4-butanetriol production[J]. J Ind Microbiol Biotechnol, 2016, 43(1):67-78.
doi: 10.1007/s10295-015-1693-7 URL |
[14] |
Kremling A, Geiselmann J, Ropers D, et al. Understanding carbon catabolite repression in Escherichia coli using quantitative models[J]. Trends Microbiol, 2015, 23(2):99-109.
doi: 10.1016/j.tim.2014.11.002 pmid: 25475882 |
[15] |
Kim JH, Block DE, Mills DA. Simultaneous consumption of pentose and hexose sugars:an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass[J]. Appl Microbiol Biotechnol, 2010, 88(5):1077-1085.
doi: 10.1007/s00253-010-2839-1 URL |
[16] |
Charusanti P, Conrad TM, Knight EM, et al. Genetic basis of growth adaptation of Escherichia coli after deletion of pgi, a major metabolic gene[J]. PLoS Genet, 2010, 6(11):e1001186.
doi: 10.1371/journal.pgen.1001186 URL |
[17] |
Göhler AK, Staab A, Gabor E, et al. Characterization of MtfA, a novel regulatory output signal protein of the glucose-phosphotransferase system in Escherichia coli K-12[J]. J Bacteriol, 2012, 194(5):1024-1035.
doi: 10.1128/JB.06387-11 URL |
[18] |
Nakashima N, Tamura T. A new carbon catabolite repression mutation of Escherichia coli, mlc, and its use for producing isobutanol[J]. J Biosci Bioeng, 2012, 114(1):38-44.
doi: 10.1016/j.jbiosc.2012.02.029 pmid: 22561880 |
[19] |
Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products[J]. PNAS, 2000, 97(12):6640-6645.
pmid: 10829079 |
[20] |
Li Z, Gu Z, Wang M, et al. Delayed supplementation of Glycine enhances extracellular secretion of the recombinant alpha-cyclodextrin glycosyltransferase in Escherichia coli[J]. Appl Microbiol Biotechnol, 2010, 85(3):553-561.
doi: 10.1007/s00253-009-2157-7 URL |
[21] |
Luo Y, Zhang T, Fan D, et al. Enhancing human-like collagen accumulation by deleting the major glucose transporter ptsG in recombinant Escherichia coli BL21[J]. Biotechnol Appl Biochem, 2014, 61(2):237-247.
doi: 10.1002/bab.2014.61.issue-2 URL |
[22] |
Becker AK, Zeppenfeld T, Staab A, et al. YeeI, a novel protein involved in modulation of the activity of the glucose-phosphotransferase system in Escherichia coli K-12[J]. J Bacteriol, 2006, 188(15):5439-5449.
doi: 10.1128/JB.00219-06 URL |
[23] |
Morita T, El-Kazzaz W, Tanaka Y, et al. Accumulation of glucose 6-phosphate or fructose 6-phosphate is responsible for destabilization of glucose transporter mRNA in Escherichia coli[J]. J Biol Chem, 2003, 278(18):15608-15614.
doi: 10.1074/jbc.M300177200 URL |
[24] |
Xu Q, Göhler AK, Kosfeld A, et al. The structure of Mlc titration factor A(MtfA/YeeI)reveals a prototypical zinc metallopeptidase related to Anthrax lethal factor[J]. J Bacteriol, 2012, 194(11):2987-2999.
doi: 10.1128/JB.00038-12 URL |
[25] |
Kimata K, Tanaka Y, Inada T, et al. Expression of the glucose transporter gene, ptsG, is regulated at the mRNA degradation step in response to glycolytic flux in Escherichia coli[J]. EMBO J, 2001, 20(13):3587-3595.
pmid: 11432845 |
[26] |
Plumbridge J. Regulation of gene expression in the PTS in Escherichia coli:the role and interactions of Mlc[J]. Curr Opin Microbiol, 2002, 5(2):187-193.
doi: 10.1016/S1369-5274(02)00296-5 URL |
[27] |
Kimata K, Inada T, Tagami H, et al. A global repressor(Mlc)is involved in glucose induction of the ptsG gene encoding major glucose transporter in Escherichia coli[J]. Mol Microbiol, 1998, 29(6):1509-1519.
pmid: 9781886 |
[28] |
Hosono K, Kakuda H, Ichihara S. Decreasing accumulation of acetate in a rich medium by Escherichia coli on introduction of genes on a multicopy plasmid[J]. Biosci Biotechnol Biochem, 1995, 59(2):256-261.
doi: 10.1271/bbb.59.256 URL |
[29] |
Cherrington CA, Hinton M, Chopra I. Effect of short-chain organic acids on macromolecular synjournal in Escherichia coli[J]. J Appl Bacteriol, 1990, 68(1):69-74.
doi: 10.1111/jam.1990.68.issue-1 URL |
[30] |
Cho S, Shin D, Ji GE, et al. High-level recombinant protein production by overexpression of Mlc in Escherichia coli[J]. J Biotechnol, 2005, 119(2):197-203.
doi: 10.1016/j.jbiotec.2005.03.008 URL |
[31] | Frost JW, Niu W. Microbial synpatent of d-1, 2, 4-butanetriol:US20110076730[P]. 2011-03-31. |
[32] | 苗春雨. 溶氧对赖氨酸发酵工艺的影响及控制措施[J]. 中国科技纵横, 2012(17):87-88. |
Miao CY. The influence of dissolved oxygen on lysine fermentation process and control measures[J]. China Sci Technol Panor Mag, 2012(17):87-88. | |
[33] |
Rodriguez GM, Atsumi S. Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity[J]. Microb Cell Fact, 2012, 11:90.
doi: 10.1186/1475-2859-11-90 pmid: 22731523 |
[34] |
Schaepe S, Kuprijanov A, Simutis R, et al. Avoiding overfeeding in high cell density fed-batch cultures of E. coli during the production of heterologous proteins[J]. J Biotechnol, 2014, 192:146-153.
doi: 10.1016/j.jbiotec.2014.09.002 URL |
[35] | Clark D. The fermentation pathways of Escherichia coli[J]. FEMS Microbiol Rev, 1989, 63(3):223-234. |
[36] |
Zhao CG, Cheng LK, Xu QY, et al. Improvement of the production of L-tryptophan in Escherichia coli by application of a dissolved oxygen stage control strategy[J]. Ann Microbiol, 2016, 66(2):843-854.
doi: 10.1007/s13213-015-1172-4 URL |
[37] | 何姝颖, 诸葛斌, 陆信曜, 等. 副产物途径的缺失对大肠杆菌合成D-1, 2, 4-丁三醇的影响[J]. 微生物学通报, 2017, 44(1):30-37. |
He SY, Zhuge B, Lu XY, et al. Influence of the deficiency of by-product pathways on biosynjournal of D-1, 2, 4-butanetriol in Escherichia coli[J]. Microbiol China, 2017, 44(1):30-37. |
[1] | 叶云芳, 田清尹, 施婷婷, 王亮, 岳远征, 杨秀莲, 王良桂. 植物中β-紫罗兰酮生物合成及调控研究进展[J]. 生物技术通报, 2023, 39(8): 91-105. |
[2] | 王玲, 卓燊, 付学森, 刘紫璇, 刘笑蓉, 王志辉, 周日宝, 刘湘丹. 莲生物碱生物合成途径及相关基因研究进展[J]. 生物技术通报, 2023, 39(7): 56-66. |
[3] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[4] | 周定定, 李辉虎, 汤兴涌, 余发新, 孔丹宇, 刘毅. 甘草酸和甘草苷生物合成与调控的研究进展[J]. 生物技术通报, 2023, 39(5): 44-53. |
[5] | 郁慧丽, 李爱涛. 细胞色素P450酶在香精香料绿色生物合成中的应用[J]. 生物技术通报, 2023, 39(4): 24-37. |
[6] | 王新光, 田磊, 王恩泽, 钟成, 田春杰. 玉米秸秆高效降解微生物复合菌系的构建及降解效果评价[J]. 生物技术通报, 2022, 38(4): 217-229. |
[7] | 李毅丹, 单晓辉. 赤霉素代谢调控与绿色革命[J]. 生物技术通报, 2022, 38(2): 195-204. |
[8] | 姚宇, 顾佳珺, 孙超, 申国安, 郭宝林. 植物类黄酮UDP-糖基转移酶研究进展[J]. 生物技术通报, 2022, 38(12): 47-57. |
[9] | 赵玉雪, 王芸, 余璐瑶, 刘京晶, 斯金平, 张新凤, 张磊. 植物中C-糖基转移酶的结构与应用[J]. 生物技术通报, 2022, 38(10): 18-28. |
[10] | 徐圆圆, 赵国春, 郝颖颖, 翁学煌, 陈仲, 贾黎明. 无患子RT-qPCR内参基因的筛选与验证[J]. 生物技术通报, 2022, 38(10): 80-89. |
[11] | 周正, 李卿, 陈万生, 张磊. 药用植物天然产物生物合成途径及关键催化酶的研究策略[J]. 生物技术通报, 2021, 37(8): 25-34. |
[12] | 梁振霆, 唐婷. 内生菌对植物次生代谢产物的生物合成影响和抗逆功能研究[J]. 生物技术通报, 2021, 37(8): 35-45. |
[13] | 陈倩, 张露源, 陈伯昌, 吴海燕. 大豆孢囊线虫生防菌株Myrothecium verrucaria ZW-2发酵条件优化及活性物质分析[J]. 生物技术通报, 2021, 37(7): 127-136. |
[14] | 周静, 黄文茂, 秦利军, 韩丽珍. 四株PGPR菌株混菌发酵体系的构建及促生效应评价[J]. 生物技术通报, 2021, 37(4): 116-126. |
[15] | 陶宇丞, 吕旭冰, 程圣杰, 王彦雯, 王文峰, 焦朕, 王鹏超. 大肠杆菌高效合成L-苯甘氨酸的研究进展[J]. 生物技术通报, 2021, 37(3): 175-184. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 307
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 385
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||