[1] |
Jiang Y, Shang Y, Yang K, et al. Phenol degradation by halophilic fungal isolate JS4 and evaluation of its tolerance of heavy metals[J]. Appl MicrobiolBiot, 2016, 100(4):1883-1890.
|
[2] |
苏琼, 江子骏. 高效苯酚降解菌的筛选及其降解特性分析[J]. 湖北大学学报:自然科学版, 2019, 41(6):567-571.
|
|
Su Q, Jiang ZJ. Screening and degrading property of highly effective phenol degrading bacterium strain[J]. J Hubei Univ:Nat Sci, 2019, 41(6):567-571.
|
[3] |
贺强礼, 刘文斌, 杨海君, 等. 一株苯酚降解菌的筛选鉴定及响应面法优化其降解[J]. 环境科学学报, 2016, 36(1):112-123.
|
|
He QL, Liu WB, Yang HJ, et al. Isolation, identification of a phenol-degradaing strain and optimization for phenol degradation using response surface methodology[J]. J Environ Sci-China, 2016, 36(1):112-123.
doi: 10.1016/j.jes.2015.03.032
URL
|
[4] |
陈焕, 方雅瑜, 尹晓辉, 等. 苯酚降解菌的研究进展[J]. 安徽农业科学, 2015, 43(5):201-205.
|
|
Chen H, Fang YY, Yin XH, et al. Research progress of phenol degradation bacteria[J]. J Anhui Agricul Sci, 2015, 43(5):201-205.
|
[5] |
Mohanty SS, Jena HM. Biodegradation of phenol by free and immobilized cells of a novel Pseudomonas sp NBM11[J]. Braz JChem Eng, 2017, 34(1):75-84.
|
[6] |
Singh U, Arora NK, Sachan P. Simultaneous biodegradation of phenol and cyanide present in coke-oven effluent using immobilized Pseudomonas putida and Pseudomonas stutzeri[J]. Braz JMicrobiol, 2018, 49(1):38-44.
|
[7] |
Hamdi H, Hellal A. Optimization of phenol biodegradation by immobilized Bacillus subtilis isolated from hydrocarbons-contaminated water using the factorial design methodology[J]. JSerb Chem Soc, 2019, 84(7):679-688.
|
[8] |
Ke Q, Zhang YG, Wu XL, et al. Sustainable biodegradation of phenol by immobilized Bacillus sp SAS19 with porous carbonaceous gels as carriers[J]. J Environ Manage, 2018, 222:185-189.
doi: 10.1016/j.jenvman.2018.05.061
URL
|
[9] |
Van Dexter S, Boopathy R. Biodegradation of phenol by Acinetobacter tandoii isolated from the gut of the termite[J]. EnvironSci Pollut R, 2018, 26(33):34067-34072.
|
[10] |
张海涛, 刘文斌, 杨海君, 等. 一株耐盐高效苯酚降解菌的筛选、鉴定、响应面法优化与降酚动力学研究[J]. 环境科学学报, 2016, 36(9):3200-3207.
|
|
Zhang HT, Liu WB, Yang HJ, et al. Isolation, identification, optimization via response surface methodology of a highly-efficient phenol-degrading salt-tolerant strain and its degradation kinetics[J]. J Environ Sci-China, 2016, 36(9):3200-3207.
|
[11] |
Zhao TT, Gao YH, Yu TT, et al. Biodegradation of phenol by a highly tolerant strain Rhodococcus ruber C1:biochemical characterization and comparative genome analysis[J]. Ecotox Environ Safe, 2021, 208:111709.
doi: 10.1016/j.ecoenv.2020.111709
URL
|
[12] |
马馨月, 魏思洁, 柯檀, 等. 红球菌PB-1对高浓度苯酚及苯系物的降解研究[J]. 安全与环境工程, 2020, 27(2):85-91.
|
|
Ma XY, Wei SJ, Ke T, et al. Degradation of high concentration phenol and benzenes by Rhodococcus sp. PB-1[J]. Safe Environ Eng, 2020, 27(2):85-91.
|
[13] |
Azadi D, Shojaei H. Biodegradation of polycyclic aromatic hydrocarbons, phenol and sodium sulfate by Nocardia species isolated and characterized from Iranian ecosystems[J]. Sci Rep, 2020, 10:21860.
doi: 10.1038/s41598-020-78821-1
URL
|
[14] |
Silva NCGE, de Macedon AC, Pinheiro ADT, et al. Phenol biodegradation by Candida tropicalis ATCC 750 immobilized on cashew apple bagasse[J]. J Environ Chem Eng, 2019, 7(3):103076.
doi: 10.1016/j.jece.2019.103076
URL
|
[15] |
Patel A, Sartaj K, Arora N, et al. Biodegradation of phenol via meta cleavage pathway triggers de novo TAG biosynjournal pathway in oleaginous yeast[J]. J Hazard Mater, 2017, 340:47-56.
doi: S0304-3894(17)30512-5
pmid: 28711832
|
[16] |
Gerginova M, Manasiev J, Yemendzhiev H, et al. Biodegradation of phenol by antarctic strains of Aspergillus fumigatus[J]. Z Naturforsch C, 2013, 68(9-10):384-393.
pmid: 24459772
|
[17] |
Filipowicz N, Momotko M, Boczkaj G, et al. Determination of phenol biodegradation pathways in three psychrotolerant yeasts, Candida subhashii A01(1), Candida oregonensis B02(1)and Schizoblastosporion starkeyi-henricii L01(2), isolated from Rucianka peatland[J]. Enzyme Microb Tech, 2020, 141:109663.
doi: 10.1016/j.enzmictec.2020.109663
pmid: 33051016
|
[18] |
东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001:370-385.
|
|
Dong XZ, Cai MY. Identification methods of common bacteria[M]. Beijing: Science Press, 2001:370-385.
|
[19] |
国家环保局. 水质挥发酚的测定4-氨基安替比林分光光度法(HJ 503-2009)[S]. 北京: 中国环境科学出版社, 2009:5-7.
|
|
National Environmental Protection Agency, Water quality-Determination of volatile phenol 4-aminoantipyrine spectrophotometric method(HJ 503-2009)[S], Beijing: China Environmental Science Press, 2009:5-7.
|
[20] |
Setlhare B, Kumar A, Mokoena MP, et al. Phenol hydroxylase from Pseudomonas sp. KZNSA:Purification, characterization and prediction of three-dimensional structure[J]. Int J Biol Macromol, 2020, 146:1000-1008.
doi: 10.1016/j.ijbiomac.2019.09.224
URL
|
[21] |
Wu LY, Ali DC, Liu P, et al. Degradation of phenol via ortho-pathway by Kocuria sp. strain TIBETAN4 isolated from the soils around Qinghai Lake in China[J]. PLoS One, 2018, 13(6):e0199572.
doi: 10.1371/journal.pone.0199572
URL
|
[22] |
Kotresha D, Vidyasagar GM. Chromosomally encoded phenol hydroxylase gene for degradation of phenol by Pseudomonas aeruginosa MTCC 4996[J]. Int J Micro Res Tech, 2014, 2(2):1-7.
|
[23] |
赵化冰, 覃琨, 谭之磊, 等. 邻苯二酚1, 2-双加氧酶的结构、功能及同工酶现象研究进展[J]. 微生物学通报, 2019, 46(9):2419-2425.
|
|
Zhao HB, Qin K, Tan ZL, et al. Advances in study on structure, enzymatic property and isoenzymes of catechol 1, 2-dioxygenases[J]. Microbiol China, 2019, 46(9):2419-2425.
|