生物技术通报 ›› 2021, Vol. 37 ›› Issue (10): 81-90.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0194
杨宗政1,2,3(), 赵晓宇2, 刘丹2, 许文帅2, 吴志国1,2,3()
收稿日期:
2021-02-18
出版日期:
2021-10-26
发布日期:
2021-11-12
作者简介:
杨宗政,男,博士,教授,研究方向:土壤污染治理;E-mail: 基金资助:
YANG Zong-zheng1,2,3(), ZHAO Xiao-yu2, LIU Dan2, XU Wen-shuai2, WU Zhi-guo1,2,3()
Received:
2021-02-18
Published:
2021-10-26
Online:
2021-11-12
摘要:
旨在探究Cr(VI)还原菌在Cr(VI)污染土壤中的修复条件及效果,为实际Cr(VI)污染农田土壤的修复提供借鉴。采用单因素实验、盆栽实验、高通量测序及qPCR等方法研究了菌株Microbacterium sp. BD6修复Cr(VI)污染土壤的最佳条件、修复前后对于植物的毒性以及对土壤中微生物群落的影响。实验表明菌株BD6在土壤含水率为30%及以上,温度为25-40℃的条件下,96 h对土壤中100 mg Cr(VI)/kg土壤的Cr(VI)还原率可达90%以上。菌株BD6在其它重金属离子存在的条件下仍然可以对Cr(VI)进行还原,但还原效果会受到影响。Cr(VI)会对黄豆植株高度、发芽率等指标产生负面作用;经菌株BD6修复后的土壤,降低了Cr(VI)的毒性,明显改善植株的生长状况,且植株体内铬含量显著降低。Cr(VI)污染土壤中微生物丰度和多样性 明显低于未污染的土壤;经菌株BD6修复后的Cr(VI)污染土壤,微生物多样性随着修复时间的增长呈恢复趋势。因此,菌株BD6可作为修复Cr(VI)污染土壤潜在候选菌株,在今后的实际污染土壤修复中具有一定的应用价值。
杨宗政, 赵晓宇, 刘丹, 许文帅, 吴志国. Microbacterium sp. BD6在Cr(VI)污染农田土壤修复中的应用研究[J]. 生物技术通报, 2021, 37(10): 81-90.
YANG Zong-zheng, ZHAO Xiao-yu, LIU Dan, XU Wen-shuai, WU Zhi-guo. Bioremediation of Cr(VI)-contaminated Farmland Soil by Microbacterium sp. BD6[J]. Biotechnology Bulletin, 2021, 37(10): 81-90.
图1 不同条件对菌株BD6还原Cr(VI)的影响 A:含水率;B:温度;C:老化时间;D:金属离子;E:接种量;F:Cr(VI)初始浓度
Fig.1 Effects of factors on the Cr(VI)reduction by strain BD6 A:Moisture content. B:Temperature. C:Aging time. D:Metal ions. E:Inoculation. F:Initial concentration of Cr(VI)
图3 大豆盆栽实验 0-100标识为盆栽土壤Cr(VI)浓度,单位为mg Cr(VI)/ kg 土壤;100+BD6:菌株BD6修复含Cr(VI)100 mg/kg土壤组
Fig.3 Soybean pot experiments 0-100 are the concentrations of Cr(VI)in potted soil,and the unit is mg Cr(VI)/ kg soil. 100 + BD6 is the remediated sample containing 100 mg Cr(VI)/ kg soil by strain BD6
土壤修复情况 Soil remediation | 土壤Cr(VI)含量Cr(VI) content in soil/(mg·kg-1) | 发芽率 Germination rate/% | 植株高度 Hight of plants/mm | 植株鲜重 Fresh weight of plants(g/plant) | 植株铬含量Chromium content in plants/(mg·kg-1) |
---|---|---|---|---|---|
未修复 Non-remediated | 0 | 100.0 a | 104±2.1 a | 0.64±0.04 a | 未检出 g |
5 | 100.0 a | 89±0.42 b | 0.51±0.02 c | 0.8±0.1 f | |
10 | 100.0 a | 55±1.6 c | 0.49±0.02 c | 1.1±0.3 f | |
20 | 100.0 a | 30±0.9 d | 0.37±0.02 d | 1.6±0.1 e | |
30 | 100.0 a | 29±0.8 d | 0.36±0.01 de | 2.1±0.1 d | |
50 | 100.0 a | 25±1.2 e | 0.33±0.02 ef | 2.6±0.3 c | |
80 | 100.0 a | 15±0.3 f | 0.30±0.01 f | 3.8±0.1 b | |
100 | 88.9±4.84 b | 12±0.1 g | 0.26±0.01g | 5.0±0.4 a | |
已修复Remediated | 100 | 100.0 a | 87±0.9 b | 0.56±0.03 b | 未检出 Unolected |
表1 植株各项生长指标
Table 1 Growth indicators of plants
土壤修复情况 Soil remediation | 土壤Cr(VI)含量Cr(VI) content in soil/(mg·kg-1) | 发芽率 Germination rate/% | 植株高度 Hight of plants/mm | 植株鲜重 Fresh weight of plants(g/plant) | 植株铬含量Chromium content in plants/(mg·kg-1) |
---|---|---|---|---|---|
未修复 Non-remediated | 0 | 100.0 a | 104±2.1 a | 0.64±0.04 a | 未检出 g |
5 | 100.0 a | 89±0.42 b | 0.51±0.02 c | 0.8±0.1 f | |
10 | 100.0 a | 55±1.6 c | 0.49±0.02 c | 1.1±0.3 f | |
20 | 100.0 a | 30±0.9 d | 0.37±0.02 d | 1.6±0.1 e | |
30 | 100.0 a | 29±0.8 d | 0.36±0.01 de | 2.1±0.1 d | |
50 | 100.0 a | 25±1.2 e | 0.33±0.02 ef | 2.6±0.3 c | |
80 | 100.0 a | 15±0.3 f | 0.30±0.01 f | 3.8±0.1 b | |
100 | 88.9±4.84 b | 12±0.1 g | 0.26±0.01g | 5.0±0.4 a | |
已修复Remediated | 100 | 100.0 a | 87±0.9 b | 0.56±0.03 b | 未检出 Unolected |
Sample ID | Ace | Chao1 | Shannon | Simpson | Coverage |
---|---|---|---|---|---|
Y | 2527.894±43.237 a | 2500±70.335 a | 9.284±0.035 a | 0.991±0.001 a | 0.987±0.002 |
Cr | 1785.987±91.525 e | 1811.426±77.381 de | 8.336±0.368 b | 0.972±0.004 ab | 0.994±0.006 |
A-96h | 1974.381±83.318 cd | 1887.949±47.887 cd | 5.209±0.837 e | 0.796±0.071 d | 0.982±0.001 |
G-96h | 2317.543±142.074 b | 2262.373±90.249 b | 6.911±0.386 cd | 0.921±0.009 c | 0.982±0.001 |
A-10d | 1850.619±60.012 de | 1691.645±54.171 e | 6.071±0.265 de | 0.936±0.011 bc | 0.983±0.001 |
G-10d | 2001.833±81.225 cd | 1878.924±93.194 cd | 6.791±0.078 cd | 0.971±0.005 ab | 0.983±0.000 |
A-15d | 2079.836±96.326 c | 1963.311±68.010 c | 7.228±0.368 c | 0.977±0.002 ab | 0.981±0.003 |
G-15d | 1548.096±74.238 f | 1482.651±72.5451 f | 6.522±1.014 cd | 0.965±0.003 abc | 0.986±0.002 |
表2 α多样性指数
Table 2 α diversity index
Sample ID | Ace | Chao1 | Shannon | Simpson | Coverage |
---|---|---|---|---|---|
Y | 2527.894±43.237 a | 2500±70.335 a | 9.284±0.035 a | 0.991±0.001 a | 0.987±0.002 |
Cr | 1785.987±91.525 e | 1811.426±77.381 de | 8.336±0.368 b | 0.972±0.004 ab | 0.994±0.006 |
A-96h | 1974.381±83.318 cd | 1887.949±47.887 cd | 5.209±0.837 e | 0.796±0.071 d | 0.982±0.001 |
G-96h | 2317.543±142.074 b | 2262.373±90.249 b | 6.911±0.386 cd | 0.921±0.009 c | 0.982±0.001 |
A-10d | 1850.619±60.012 de | 1691.645±54.171 e | 6.071±0.265 de | 0.936±0.011 bc | 0.983±0.001 |
G-10d | 2001.833±81.225 cd | 1878.924±93.194 cd | 6.791±0.078 cd | 0.971±0.005 ab | 0.983±0.000 |
A-15d | 2079.836±96.326 c | 1963.311±68.010 c | 7.228±0.368 c | 0.977±0.002 ab | 0.981±0.003 |
G-15d | 1548.096±74.238 f | 1482.651±72.5451 f | 6.522±1.014 cd | 0.965±0.003 abc | 0.986±0.002 |
图4 土壤微生物群落结构组成 A:门水平微生物群落结构;B:属水平微生物群落结构
Fig.4 Structure composition of soil microbial community A: Microbial community structure at phylum level. B: Microbial community structure at genus level
[1] |
Jobby R, Jha P, Yadav A, et al. Biosorption and biotransformation of hexavalent chromium[Cr(VI)]:A comprehensive review[J]. Chemosphere, 2018, 207:255-266.
doi: 10.1016/j.chemosphere.2018.05.050 URL |
[2] | Pradhan D, Sukla L, Sawyer M, et al. Recent bioreduction of hexavalent chromium in wastewater treatment:A review[J]. Journal of Industrial & Engineering Chemistry, 2017, 55:1-20. |
[3] |
Shanker A, Cervantes C, Loza T, et al. Chromium toxicity in plants[J]. Environment International, 2005, 31(5):739-753.
doi: 10.1016/j.envint.2005.02.003 URL |
[4] | 张宇虹. 重金属铬对植物生长影响的研究进展[J]. 科技风, 2016, 2016(7):195. |
Zhang YH. Research progress on the effect of chromium on plant growth[J]. Technology Wind, 2016, 2016(7):195. | |
[5] | 胡双庆, 沈根祥, 顾海蓉, 等. 菲和铬(VI)单一及复合暴露对土壤微生物多样性的影响[J]. 生态毒理学报, 2017, 12(3):535-543. |
Hu SQ, Shen GX, Gu HR, et al. Effects of single and combined exposure of phenanthrene and chromium(VI)on soil microbial diversity[J]. Asian Journal of Ecotoxicology, 2017, 12(3):535-543. | |
[6] |
Srivastava S, Thakur I, Shekhar. Evaluation of bioremediation and detoxification potentiality of Aspergillus niger for removal of hexavalent chromium in soil microcosm[J]. Soil Biology and Biochemistry, 2006, 38(7):1904-1911.
doi: 10.1016/j.soilbio.2005.12.016 URL |
[7] | 陈土凤, 谢光炎, 许燕滨, 陈鹏程. 一株Cr(VI)还原菌对Cr(VI)胁迫下小白菜幼苗植物毒性及植物有效性的缓解效应[J]. 广东农业科学, 2020, 47(1):77-86. |
Chen TF, Xie GY, Xu YB, et al. Mitigative effects of a Cr(VI)reducing bacterium on plant phytotoxicity and phytoavailability of Pakchoi seedlings under Cr(VI)stress[J]. Guangdong Agricultural Sciences, 2020, 47(1):77-86. | |
[8] |
An FQ, Li HH, Diao Z, et al. The soil bacterial community in cropland is vulnerable to Cd contamination in winter rather than in summer[J]. Environ Sci Pollut Res Int, 2018, 26:114-125.
doi: 10.1007/s11356-018-3531-8 URL |
[9] |
Yu ZS, He ZL, Tao XY, et al. The shifts of sediment microbial community phylogenetic and functional structures during chromium(VI)reduction[J]. Ecotoxicology, 2016, 25(10):1759-1770.
doi: 10.1007/s10646-016-1719-6 URL |
[10] | 张雪晴, 张琴, 程园园, 等. 铜矿重金属污染对土壤微生物群落多样性和酶活力的影响[J]. 生态环境学报, 2016, 25(3):517-522. |
Zhang XQ, Zhang Q, Cheng YY, et al. Effects of heavy metal pollution in copper mine on soil microbial community diversity and enzyme activity[J]. Ecology and Environmental Sciences, 2016, 25(3):517-522. | |
[11] | 刘爱霖, 吴志国, 江鑫, 等. Cr(VI)还原菌Microbacterium sp. BD6的分离鉴定及还原特性[J]. 微生物学报, 2020, 60(1):95-105. |
Liu AL, Wu ZG, Jiang X, et al. Isolation, identification and reduction characteristics of Cr(VI)reducing bacteria Microbacterium sp. BD6[J]. Acta Microbiologica Sinica, 2020, 60(1):95-105. | |
[12] | 陈育翔. 二苯碳酰二肼分光光度法测定电镀废水中六价铬的改进研究[J]. 化学工程与装备, 2008(6):121-123. |
Chen YX. Improvement of determination of hexavalent chromium in electroplating wastewater by diphenylcarbazide spectrophotometry[J]. Chemical Engineering & Equipment, 2008(6):121-123. | |
[13] | 杨文玲, 岳丹丹, 李冠杰, 等. 铅铬胁迫对小麦种子萌发及幼苗脯氨酸含量的影响[J]. 生物技术通报, 2015, 31(12):110-114. |
Yang WL, Yue DD, Li GJ, et al. Effects of lead and chromium stress on seed germination and proline content of wheat seedlings[J]. Biotechnology Bulletin, 2015, 31(12):110-114. | |
[14] | 王碧霞, 肖娟, 冯旭, 等. 铬胁迫对葎草雌雄植株光合生理特性的不同影响[J]. 草业学报, 2016, 25(7):131-139. |
Wang BX, Xiao J, Feng X, et al. Different effects of chromium stress on photosynthetic physiological characteristics of male and female humulus scandens plants[J]. Acta Prataculturae Sinica, 2016, 25(7):131-139. | |
[15] | 赵鲁, 李旭军, 穆真, 等. Cr(III)胁迫对大豆, 小麦生长及铬吸收和转运的影响[J]. 中国土壤与肥料, 2015(1):63-67. |
Zhao L, Li XJ, Mu Z, et al. Effects of Cr(III)stress on growth, Cr uptake and transport of soybean and wheat[J]. Soils and Fertilizers Sciences in China, 2015(1):63-67. | |
[16] | 韩建均, 柴陆军, 张娟, 等. 硫酸盐还原菌原位修复六价铬污染土壤[J]. 化工环保, 2020, 40(6):613-618. |
Han JJ, Chai LJ, Zhang J, et al. In situ remediation of hexavalent chromium contaminated soil by sulfate reducing bacteria[J]. Environmental Protection of Chemical Industry, 2020, 40(6):613-618. | |
[17] | 邓红艳, 陈刚才, 叶姜瑜. 一株抗铬细菌的分离鉴定及其还原特性研究[J]. 安全与环境学报, 2015, 15(3):234-237. |
Deng HY, Chen GC, Ye JY. Isolation, identification and its reduction characteristics research of a chromium resistant bacterium[J]. Journal of Safety and Environment, 2015, 15(3):234-237. | |
[18] |
Ma ZM, Zhu WJ, Long HZ, et al. Chromate reduction by resting cells of Achromobacter sp. Ch-1 under aerobic conditions[J]. Process Biochemistry, 2007, 42(6):1028-1032.
doi: 10.1016/j.procbio.2007.03.007 URL |
[19] |
Philip L, Iyengar L, Venkobachar C. Cr(VI)reduction by Bacillus coagulans isolated from contaminated soils[J]. Journal of Environmental Engineering, 1998, 124(12):1165-1170.
doi: 10.1061/(ASCE)0733-9372(1998)124:12(1165) URL |
[20] | 陈冉. 粉粘土中Cr(VI)的吸附特性及水溶性有机质对铬吸附和形态的影响[D]. 上海:华东师范大学, 2016. |
Chen R. Adsorption characteristics of the Cr(VI)and the effect of dissolved organic matter on chromium adsorption and form in silty clay[D]. Shanghai:East China Normal University, 2016. | |
[21] | 黄顺红. 土著微生物对土壤不同形态Cr(VI)修复效果研究[J]. 矿产与地质, 2013, (S1):75-77. |
Huang SH. Remediation effect of different forms of Cr(VI)in soil by indigenous microorganisms[J]. Mineral Resources and Geology, 2013, (S1):75-77. | |
[22] | 常文越, 陈晓东, 王磊. 土著微生物修复铬(VI)污染土壤的条件实验研究[J]. 环境保护科学, 2007(1):42-44. |
Chang WY, Chen XD, Wang L. Experimental study on conditions of chromium(VI)- contaminated soil remediation by abor iginal microbe[J]. Environmental Protection Science, 2007(1):42-44. | |
[23] | 邓红艳. 某工厂厂区土壤铬污染及其微生物修复研究[D]. 重庆:重庆大学, 2016. |
Deng HY. Chromium pollution and research on bioremediation of chromium contaminated soil in a plant[D]. Chongqing:Chongqing University, 2016 | |
[24] | Shi Y, Chai LY, Yang ZH, et al. Identification and hexavalent chromium reduction characteristics of Pannonibacter phragmitetus[J]. Bioprocess Biosyst Eng, 2012, 5:843-850. |
[25] | 杨宇, 高宇, 程潜, 等. 一株铬还原菌的分离鉴定及铬还原特性研究[J]. 生态环境学报, 2018, 27(2):322-329. |
Yang Y, Gao Y, Cheng Q, et al. Isolation, identification and Cr(VI)reducing characteristics of a chromium-reducing bacteria[J]. Ecology and Environmental Sciences, 2018, 27(2):322-329. | |
[26] |
Xu L, Luo MF, Li WL, et al. Reduction of hexavalent chromium by Pannonibacter phragmitetus LSSE-09 stimulated with external electron donors under alkaline conditions[J]. Journal of Hazardous Materials, 2011, 185(2-3):1169-1176.
doi: 10.1016/j.jhazmat.2010.10.028 URL |
[1] | 赵志祥, 王殿东, 周亚林, 王培, 严婉荣, 严蓓, 罗路云, 张卓. 枯草芽孢杆菌Ya-1对辣椒枯萎病的防治及其对根际真菌群落的影响[J]. 生物技术通报, 2023, 39(9): 213-224. |
[2] | 徐汝悦, 王子霄, 沈禄, 吴蓉蓉, 姚芳婷, 谭中原, 刘恒蔚, 张文超. Cr(VI)的生物修复技术研究进展[J]. 生物技术通报, 2023, 39(6): 49-60. |
[3] | 张华香, 徐晓婷, 郑云婷, 肖春桥. 溶磷微生物在钝化和植物修复重金属污染土壤中的作用[J]. 生物技术通报, 2023, 39(3): 52-58. |
[4] | 赵林艳, 官会林, 王克书, 卢燕磊, 向萍, 魏富刚, 杨绍周, 徐武美. 土壤含水量对三七连作土壤微生物群落的影响[J]. 生物技术通报, 2022, 38(7): 215-223. |
[5] | 赵林艳, 官会林, 向萍, 李泽诚, 柏雨龙, 宋洪川, 孙世中, 徐武美. 白及根腐病植株根际土壤微生物群落组成特征分析[J]. 生物技术通报, 2022, 38(2): 67-74. |
[6] | 高惠惠, 贾晨波, 韩琴, 苏建宇, 徐春燕. 宁杞7号枸杞根腐病发生的微生物学机制[J]. 生物技术通报, 2022, 38(12): 244-251. |
[7] | 严聪文, 苏代发, 代庆忠, 张振荣, 田云霞, 董琼娥, 周文星, 陈杉艳, 童江云, 崔晓龙. 草莓病害的生物防治研究进展[J]. 生物技术通报, 2022, 38(12): 73-87. |
[8] | 颜珲璘, 芦光新, 邓晔, 顾松松, 颜程良, 马坤, 赵阳安, 张海娟, 王英成, 周学丽, 窦声云. 高寒地区根瘤菌拌种对禾/豆混播土壤微生物群落的影响[J]. 生物技术通报, 2022, 38(10): 204-215. |
[9] | 陈梦言, 白洁, 柯文灿, 许冬梅, 艾琳, 郭旭生. 青贮饲料微生物群落组成与功能研究进展[J]. 生物技术通报, 2021, 37(9): 11-23. |
[10] | 毛婷, 牛永艳, 郑群, 杨涛, 穆永松, 祝英, 季彬, 王治业. 菌剂对苜蓿青贮发酵品质及微生物群落的影响[J]. 生物技术通报, 2021, 37(9): 86-94. |
[11] | 袁源, 黄海辰, 李琳, 刘国辉, 傅俊生, 吴小平. 石灰对灵芝覆土连作障碍的防控作用及其微生物群落分析[J]. 生物技术通报, 2021, 37(4): 70-84. |
[12] | 赵旭, 王文丽, 李娟. 腐殖酸煤对牛粪好氧堆肥臭气释放量及微生物群落多样性的影响[J]. 生物技术通报, 2021, 37(12): 104-112. |
[13] | 谭昊, 刘天海, 闫世杰, 余洋, 姜邻, 彭卫红. 羊肚菌栽培对沙漠砂基质中微生物群落及基质理化性质的影响[J]. 生物技术通报, 2021, 37(11): 166-177. |
[14] | 郭伟, 薛帅, 张哲超, 刁风伟, 胡杰, 张敏, 刘美淳, 丁胜利, 贾冰冰, 史中奇. 生物技术修复盐碱化草地研究进展[J]. 生物技术通报, 2020, 36(7): 200-208. |
[15] | 岳丽晓, 李登云, 张晶晶, 仝雷. 一株敌草隆降解菌的分离及其应用潜能探索[J]. 生物技术通报, 2020, 36(6): 110-119. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||