生物技术通报 ›› 2021, Vol. 37 ›› Issue (10): 63-71.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0136
黄玉喜(), 程顺利, 赫玲玲, 肖进彬, 任秋鹤, 彭子涵, 周振, 方玉美()
收稿日期:
2021-02-02
出版日期:
2021-10-26
发布日期:
2021-11-12
作者简介:
黄玉喜,男,硕士,研究实习员,研究方向:环境微生物学;E-mail: 基金资助:
HUANG Yu-xi(), CHENG Shun-li, HE Ling-ling, XIAO Jin-bin, REN Qiu-he, PENG Zi-han, ZHOU Zhen, FANG Yu-mei()
Received:
2021-02-02
Published:
2021-10-26
Online:
2021-11-12
摘要:
旨为研究2株微生物对Cr(VI)的还原能力及特性。在实验室条件下,通过连续培养,探究2株微生物的还原特性及pH、电子供体对其还原Cr(VI)影响,并结合表征手段研究寡养单胞菌对Cr(VI)的解毒机理。结果显示,寡养单胞菌和胶冻样芽孢杆菌对Cr(VI)的耐受性达400和200 mg/L,中性条件下,72 h内对45.5和18.5 mg/L的Cr(VI)去除率为100%;2株微生物在弱碱性条件下活性较强,在pH=8时,寡养单胞菌和胶冻样芽孢杆菌72 h内对50 mg/L的Cr(VI)去除率达98.1%和49.2%;寡养单胞菌在乙酸钠和乳酸钠的作用下,对50 mg/L的Cr(VI)的去除率可在60 h内达到100%,乳酸钠和葡萄糖可使胶冻样芽孢杆菌72 h内对50 mg/L的Cr(VI)去除率从49.2%提升至61.9%和73.2%;还原产物表征分析表明,寡养单胞菌表面在还原Cr(VI)的过程中吸附Cr(VI)于机体表面,并将Cr(VI)高效还原为Cr(III)。寡养单胞菌和胶冻样芽孢杆菌可作为修复重金属Cr(VI)污染的优质菌种。
黄玉喜, 程顺利, 赫玲玲, 肖进彬, 任秋鹤, 彭子涵, 周振, 方玉美. 两株微生物的Cr(VI)还原特性研究[J]. 生物技术通报, 2021, 37(10): 63-71.
HUANG Yu-xi, CHENG Shun-li, HE Ling-ling, XIAO Jin-bin, REN Qiu-he, PENG Zi-han, ZHOU Zhen, FANG Yu-mei. Study on the Reduction Characteristics of Cr(VI)by Two Species of Microorganisms[J]. Biotechnology Bulletin, 2021, 37(10): 63-71.
图1 不同Cr(VI)浓度对微生物生长的影响 A:寡养单胞菌;B:胶冻样芽孢杆菌
Fig.1 Effect of different Cr(VI)concentration on the growth of microorganisms A:Stenotrophomonas sp.;B:Bacillus mucilaginosus
图2 两株微生物对Cr(VI)的最大还原量 A:寡养单胞菌;B:胶冻样芽孢杆菌
Fig.2 Maximum reduction of Cr(VI)by two species of microorganisms A:Stenotrophomonas sp.;B:Bacillus mucilaginosus
图5 初始pH对微生物还原Cr(VI)的影响 A:寡养单胞菌;B:胶冻样芽孢杆菌
Fig.5 Effect of initial pH on the reduction of Cr(VI)by microorganisms A:Stenotrophomonas sp.;B:Bacillus mucilaginosus
图6 不同电子供体对微生物还原Cr(VI)的影响 A:寡养单胞菌;B:胶冻样芽孢杆菌
Fig.6 Effect of different electron donors on the reduction of Cr(VI)by microorganisms A:Stenotrophomonas sp.;B:Bacillus mucilaginosus
图7 寡养单胞菌还原Cr(VI)前、后形貌扫描电镜图 A:还原反应前;B:还原反应后
Fig.7 Scanning electron microscopy before and after reduction of Cr(VI)by Stenotrophomonas sp. A:Before reduction. B:After reduction
图8 寡养单胞菌还原产物的XPS全谱图和Cr2p轨道峰 A:XPS全谱图;B:Cr2p轨道峰
Fig.8 Full range XPS spectra and spectra of Cr2p for the reduction products of Stenotrophomonas sp. A:Full range XPS spectra. B:Spectra of Cr2p
[1] |
Lyu H, Zhao H, Tang J, et al. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite[J]. Chemosphere, 2018, 194:360-369.
doi: 10.1016/j.chemosphere.2017.11.182 URL |
[2] | 何力为, 李彬, 宁平, 等. 利用一氧化碳工业废气解毒铬渣的方法及条件优化[J]. 环境工程学报, 2018, 12(9):2617-2626. |
He LW, Li B, Ning P, et al. Method and process optimization of applying CO waste gas to detoxify chromite ore processing residue[J]. Chin J Environ Eng, 2018, 12(9):2617-2626. | |
[3] | 崔永高. 铬污染土壤和地下水的修复技术研究进展[J]. 工程地质学报, 2017, 25(4):1001-1009. |
Cui YG. Research progress on remediation technology of chromium contaminated soils and groundwater in Shanghai[J]. J Eng Geol, 2017, 25(4):1001-1009. | |
[4] | 张宏陶. 生活饮用水标准;检验法方法注解[M]. 重庆: 重庆大学出版社, 1993. |
Zhang HT. Notes to the Drinking Water Standard TestMethods[M]. Chongqing: Chongqing University Press, 1995. | |
[5] | 张双庆. 铬价态分析方法的研究进展[J]. 卫生研究, 2019, 48(6):1037-1040. |
Zhang SQ. Research progress of chromium valence analysis methods[J]. J Hyg Res, 2019, 48(6):1037-1040. | |
[6] |
Rai D, Sass BM, Moore DA. Chromium(III)hydrolysis constants and solubility of chromium(III)hydroxide[J]. Inorg Chem, 1987, 26(3):345-349.
doi: 10.1021/ic00250a002 URL |
[7] |
Selvi K. Removal of Cr(VI)from aqueous solution by adsorption onto activated carbon[J]. Bioresour Technol, 2001, 80(1):87-89.
doi: 10.1016/S0960-8524(01)00068-2 URL |
[8] |
Cavaco SA, Fernandes S, Quina MM, et al. Removal of chromium from electroplating industry effluents by ion exchange resins[J]. J Hazard Mater, 2007, 144(3):634-638.
pmid: 17336455 |
[9] | 刘芳. 还原沉淀法对含铬重金属废水的处理研究[J]. 环境污染与防治, 2014, 36(4):54-59. |
Liu F. Treatment of chromium containing heavy metal wastewater by reduction and sedimentation process[J]. Environ Pollut Control, 2014, 36(4):54-59. | |
[10] |
Frenzel I, Holdik H, Barmashenko V, et al. Electrochemical reduction of dilute chromate solutions on carbon felt electrodes[J]. J Appl Electrochem, 2006, 36(3):323-332.
doi: 10.1007/s10800-005-9074-y URL |
[11] | 虞少嵚, 熊道文, 陈湘斌, 等. 周期换向电絮凝法用于处理含铬废水研究[J]. 中国环境科学, 2014, 34(1):118-122. |
Yu SQ, Xiong DW, Chen XB, et al. Treatment of wastewater containing chromium with periodic reversal electrocoagulation[J]. China Environ Sci, 2014, 34(1):118-122. | |
[12] | 肖文丹, 叶雪珠, 孙彩霞, 等. 铬耐性菌对土壤中六价铬的还原作用[J]. 中国环境科学, 2017, 37(3):1120-1129. |
Xiao WD, Ye XZ, Sun CX, et al. The effect of chromium-resistant bacteria on reduction of hexavalent chromium in soils[J]. China Environ Sci, 2017, 37(3):1120-1129. | |
[13] |
Romanenko VI, Koren’kov VN. Pure culture of bacteria using chromates and bichromates as hydrogen acceptors during development under anaerobic conditions[J]. Mikrobiologiia, 1977, 46(3):414-417.
pmid: 895551 |
[14] |
肖伟, 王磊, 李倬锴, 等. 六价铬还原细菌Bacillus cereus S5. 4还原机理及酶学性质研究[J]. 环境科学, 2008, 29(3):751-755.
pmid: 18649539 |
Xiao W, Wang L, Li ZK, et al. Mechanisms and enzymatic characters of hexavalent chromium reduction by Bacillus cereus S5. 4[J]. Environ Sci, 2008, 29(3):751-755.
pmid: 18649539 |
|
[15] | Zaman Tanu F. Bacterial tolerance and reduction of chromium(VI)by Bacillus cereus isolate PGBw4[J]. Am J Environ Prot, 2016, 5(2):35. |
[16] |
Liu H, Guo L, Liao S, et al. Reutilization of immobilized fungus Rhizopus sp. LG04 to reduce toxic chromate[J]. J Appl Microbiol, 2012, 112(4):651-659.
doi: 10.1111/j.1365-2672.2012.05257.x pmid: 22332919 |
[17] | Sivakumar D. Biosorption of hexavalent chromium in a tannery industry wastewater using fungi species[J]. Global Journal of Environmental Science and Management, 2016, 2(2):105-124. |
[18] | 杨重, 徐天怡, 刘奕含, 等. 耐盐菌Staphylococcus sp. YZ-1和Bacillus cereus CC-1的Cr(Ⅵ)脱毒特性与机理[J]. 微生物学通报, 2020, 47(1):66-75. |
Yang Z, Xu T Y, Liu Y H, et al. Cr(VI)detoxification characteristics of salt-tolerant Staphylococcus sp. YZ-1 and Bacillus cereus CC-1[J]. Microbiol China, 2020, 47(1):66-75. | |
[19] | 朱文杰. Leucobacter sp. CRB1菌还原铬(VI)的机理及其在铬渣解毒中的应用[D]. 长沙:中南大学, 2008. |
Zhu WJ. Mechanism of Cr(VI)reduction with Leucobacter sp. CRB1 and its application in detoxification of chromite ore processing residue[D]. Changsha:Central South University, 2008. | |
[20] | 陈国才, 梁好, 刘传胜, 等. 不同电子供体和受体对零价铁与微生物协同还原六价铬的影响[J]. 环境工程学报, 2017, 11(6):3487-3492. |
Chen GC, Liang H, Liu CS, et al. Effect of electron donors and acceptors on Cr(Ⅵ)reduction by combination of zero valent iron and microorganisms[J]. Chin J Environ Eng, 2017, 11(6):3487-3492. | |
[21] | 崔跃琳, 施春红, 张宝刚, 等. 微生物还原钒、铬过程的电子供体研究进展[J]. 环境科技, 2019, 32(3):73-78. |
Cui YL, Shi CH, Zhang BG, et al. Research progress in electron donors for microbial reduction of vanadium and chromium[J]. Environ Sci Technol, 2019, 32(3):73-78. | |
[22] | 杜艳影, 刘小红, 李劲, 等. Shewanella oneidensis MR-1对Cr(Ⅵ)的还原及其影响因素[J]. 中国环境科学, 2018, 38(7):2740-2745. |
Du YY, Liu XH, Li J, et al. Reduction of Cr(Ⅵ)by Shewanella oneidensis MR-1 and its influencing factors[J]. China Environ Sci, 2018, 38(7):2740-2745. | |
[23] |
Yu ZH, Zhang XD, Huang YM. Magnetic chitosan-iron(III)hydrogel as a fast and reusable adsorbent for chromium(VI)removal[J]. Ind Eng Chem Res, 2013, 52(34):11956-11966.
doi: 10.1021/ie400781n URL |
[24] |
汤洁, 王卓行, 徐新华. 铁屑-微生物协同还原去除水体中Cr(Ⅵ)研究[J]. 环境科学, 2013, 34(7):2650-2657.
pmid: 24027995 |
Tang J, Wang ZX, Xu XH. Removal of Cr(Ⅵ)by iron filings with microorganisms to recover iron reactivity[J]. Environ Sci, 2013, 34(7):2650-2657.
pmid: 24027995 |
|
[25] |
Pal A, Paul AK. Aerobic chromate reduction by chromium-resistant bacteria isolated from serpentine soil[J]. Microbiol Res, 2004, 159(4):347-354.
doi: 10.1016/j.micres.2004.08.001 URL |
[26] | 刘奎艳, 祝天宇, 范鑫, 等. 一株耐Cr(Ⅵ)木霉的筛选鉴定及其Cr(Ⅵ)还原特性[J]. 黑龙江大学自然科学学报, 2018, 35(3):324-333. |
Liu KY, Zhu TY, Fan X, et al. Study on the characteristics of Cr(VI)removal by Cr(VI)-resistant fungi[J]. J Nat Sci Heilongjiang Univ, 2018, 35(3):324-333. | |
[27] | 徐天生, 欧杰, 马晨晨. 微生物还原Cr(Ⅵ)的机理研究进展[J]. 环境工程, 2015, 33(1):32-36. |
Xu TS, Ou J, Ma CC. Advances in mechanism about microbial reduction of Cr(ⅵ)[J]. Environ Eng, 2015, 33(1):32-36. | |
[28] | 郝孔利, 张子辉, 王珊珊, 等. 季也蒙毕赤酵母菌还原Cr(Ⅵ)的特性研究[J]. 华中农业大学学报, 2020, 39(2):63-70. |
Hao KL, Zhang ZH, Wang SS, et al. Reduction characteristics of Cr(Ⅵ)by Pichia guilliermondii[J]. J Huazhong Agric Univ, 2020, 39(2):63-70. | |
[29] | 朱文杰, 龙怀中, 杨志辉, 等. Leucobacter对Cr(Ⅵ)的还原及其还原产物的成分分析[J]. 中南大学学报:自然科学版, 2008, 39(3):443-447. |
Zhu WJ, Long HZ, Yang ZH, et al. Bio-reduction of Cr(Ⅵ)by Leucobacter and element analysis of reduction products[J]. J Central South Univ:Sci Technol, 2008, 39(3):443-447. | |
[30] |
Aravindhan R, Fathima A, Selvamurugan M, et al. Adsorption, desorption, and kinetic study on Cr(III)removal from aqueous solution using Bacillus subtilis biomass[J]. Clean Technol Environ Policy, 2012, 14(4):727-735.
doi: 10.1007/s10098-011-0440-7 URL |
[31] | 刘鹏宇, 王晓琴, 常青, 等. 铝炭微电解去除废水中六价铬的可行性研究[J]. 中国环境科学, 2019, 39(10):4164-4172. |
Liu PY, Wang XQ, Chang Q, et al. Feasibility study on the removal of chromium(Ⅵ)containing from heavy metal wastewater by aluminum-carbon micro electrolysis[J]. China Environ Sci, 2019, 39(10):4164-4172. |
[1] | 张坤, 闫畅, 田新朋. 微生物单细胞分离方法研究进展[J]. 生物技术通报, 2023, 39(9): 1-11. |
[2] | 赵志祥, 王殿东, 周亚林, 王培, 严婉荣, 严蓓, 罗路云, 张卓. 枯草芽孢杆菌Ya-1对辣椒枯萎病的防治及其对根际真菌群落的影响[J]. 生物技术通报, 2023, 39(9): 213-224. |
[3] | 程亚楠, 张文聪, 周圆, 孙雪, 李玉, 李庆刚. 乳酸乳球菌生产2'-岩藻糖基乳糖的途径构建及发酵培养基优化[J]. 生物技术通报, 2023, 39(9): 84-96. |
[4] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[5] | 李焕敏, 高峰涛, 李伟忠, 王金庆, 封佳丽. 天然生物质材料作为固定化载体的研究应用进展[J]. 生物技术通报, 2023, 39(7): 105-112. |
[6] | 赵林艳, 徐武美, 王豪吉, 王昆艳, 魏富刚, 杨绍周, 官会林. 施用生物炭对连作三七根际真菌群落与存活率的影响[J]. 生物技术通报, 2023, 39(7): 219-227. |
[7] | 徐汝悦, 王子霄, 沈禄, 吴蓉蓉, 姚芳婷, 谭中原, 刘恒蔚, 张文超. Cr(VI)的生物修复技术研究进展[J]. 生物技术通报, 2023, 39(6): 49-60. |
[8] | 张晶, 张浩睿, 曹云, 黄红英, 曲萍, 张志萍. 嗜热纤维素降解菌研究进展[J]. 生物技术通报, 2023, 39(6): 73-87. |
[9] | 刘辉, 卢扬, 叶夕苗, 周帅, 李俊, 唐健波, 陈恩发. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析[J]. 生物技术通报, 2023, 39(5): 177-191. |
[10] | 余洋, 刘天海, 刘理旭, 唐杰, 彭卫红, 陈阳, 谭昊. 羊肚菌菌种生产车间气溶胶微生物群落研究[J]. 生物技术通报, 2023, 39(5): 267-275. |
[11] | 雷彩荣, 郭晓鹏, 柴冉, 张苗苗, 任军乐, 陆栋. 组学技术在重离子辐射微生物诱变育种中的应用[J]. 生物技术通报, 2023, 39(5): 54-62. |
[12] | 张岩峰, 叶丽丹, 于洪巍. 氧化还原伴侣工程:P450低效问题的解决方案之一[J]. 生物技术通报, 2023, 39(4): 10-23. |
[13] | 赵赛赛, 张小丹, 贾晓妍, 陶大炜, 刘可玉, 宁喜斌. 高产硝酸盐还原酶Staphylococcus simulans ZSJ6的复合诱变选育及其酶学性质研究[J]. 生物技术通报, 2023, 39(4): 103-113. |
[14] | 张华香, 徐晓婷, 郑云婷, 肖春桥. 溶磷微生物在钝化和植物修复重金属污染土壤中的作用[J]. 生物技术通报, 2023, 39(3): 52-58. |
[15] | 李凯航, 王浩臣, 程可心, 杨艳, 金一, 何晓青. 全基因组关联分析研究植物与微生物组的互作遗传机制[J]. 生物技术通报, 2023, 39(2): 24-34. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||