生物技术通报 ›› 2022, Vol. 38 ›› Issue (2): 227-236.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0470
收稿日期:
2021-04-11
出版日期:
2022-02-26
发布日期:
2022-03-09
作者简介:
张漫漫,女,硕士研究生,研究方向:环境微生物;E-mail: 基金资助:
ZHANG Man-man(), HE Teng-xia(), DING Chen-yu, CHEN Meng-ping, WU Qi-feng
Received:
2021-04-11
Published:
2022-02-26
Online:
2022-03-09
摘要:
氮化合物在生命代谢过程中扮演着重要的角色,但过多的无机氮会导致水体恶化进而影响人类健康,生物脱氮技术可高效去除环境中的无机氮且不引起二次污染。随着工程纳米颗粒在生活中的广泛应用,导致其大量释放到土壤及水体中,极大地阻碍了废水处理中的生物脱氮过程,因此,微生物脱氮过程中工程纳米颗粒的毒害作用及减毒措施成了近年来的研究热点。阐述了工程纳米颗粒进入水环境的方式,系统分析了工程纳米颗粒对废水处理系统和生物脱氮过程的影响,详细说明了工程纳米颗粒对脱氮微生物的毒害作用、脱氮微生物的抵御机制及减毒措施,并对未来的研究趋势进行了展望。旨为提高工程纳米颗粒存在条件下的脱氮效率具有重要的理论指导意义,同时,可促进工程纳米颗粒对耐冷异养硝化和好氧反硝化菌的毒害及应激机制研究。
张漫漫, 何腾霞, 丁晨雨, 陈梦苹, 吴启凤. 生物脱氮中工程纳米颗粒的毒害作用及减毒措施的研究进展[J]. 生物技术通报, 2022, 38(2): 227-236.
ZHANG Man-man, HE Teng-xia, DING Chen-yu, CHEN Meng-ping, WU Qi-feng. Research Progress of the Toxic Effects and Detoxification Measures of Engineered Nanoparticles in Biological Nitrogen-removing Process[J]. Biotechnology Bulletin, 2022, 38(2): 227-236.
脱氮阶段 Nitrogen-removing stage | 工程纳米颗粒 Engineered nanoparticles | 毒害作用 Toxic effect | 参考文献 Reference |
---|---|---|---|
硝化过程 Nitrification process | Mn2O3NPs | 低溶解氧条件下AmoA基因表达、转录水平严重下降;高溶解氧时Hao、NirK和AmoA基因表达下降 | [ |
AgNPs | 引起转录后膜结合硝化酶功能的中断,使硝化作用降低10%或更多;导致重金属胁迫反应,并最终引起膜破裂 | [ | |
AgNPs | 对氨氧化的尺寸和涂层依赖性抑制,抑制生物合成、基因表达、能量产生 | [ | |
AgNPs | 影响氨氮加氧酶的活性 | [ | |
ZnONPs | 由于有毒锌离子在厌氧氨氧化生物量中的积累,使90%的脱氮能力丧失 | [ | |
反硝化过程 Denitrification process | ZnONPs | 使硝酸盐还原酶和亚硝酸盐还原酶的基因表达和催化活性受到显著抑制, | [ |
AgNPs | 导致脂质过氧化;使细胞产生活性氧,破坏膜蛋白并进一步阻碍电子传递呼吸链;抑制了基因NapA、NirS、CnorB、NosZ的表达 | [ | |
CuONPs | 影响参与氮代谢、电子转移和物质转运等的蛋白质调节 | [ | |
Tio2NPs | 影响氨氮加氧酶的活性 | [ | |
AgNPs | 由于有毒锌离子在厌氧氨氧化生物量中的积累,使90%的脱氮能力丧失 | [ |
表1 工程纳米颗粒对脱氮过程的毒害作用
Table 1 Toxic effects of engineered nanoparticles on the nitrogen-removing process
脱氮阶段 Nitrogen-removing stage | 工程纳米颗粒 Engineered nanoparticles | 毒害作用 Toxic effect | 参考文献 Reference |
---|---|---|---|
硝化过程 Nitrification process | Mn2O3NPs | 低溶解氧条件下AmoA基因表达、转录水平严重下降;高溶解氧时Hao、NirK和AmoA基因表达下降 | [ |
AgNPs | 引起转录后膜结合硝化酶功能的中断,使硝化作用降低10%或更多;导致重金属胁迫反应,并最终引起膜破裂 | [ | |
AgNPs | 对氨氧化的尺寸和涂层依赖性抑制,抑制生物合成、基因表达、能量产生 | [ | |
AgNPs | 影响氨氮加氧酶的活性 | [ | |
ZnONPs | 由于有毒锌离子在厌氧氨氧化生物量中的积累,使90%的脱氮能力丧失 | [ | |
反硝化过程 Denitrification process | ZnONPs | 使硝酸盐还原酶和亚硝酸盐还原酶的基因表达和催化活性受到显著抑制, | [ |
AgNPs | 导致脂质过氧化;使细胞产生活性氧,破坏膜蛋白并进一步阻碍电子传递呼吸链;抑制了基因NapA、NirS、CnorB、NosZ的表达 | [ | |
CuONPs | 影响参与氮代谢、电子转移和物质转运等的蛋白质调节 | [ | |
Tio2NPs | 影响氨氮加氧酶的活性 | [ | |
AgNPs | 由于有毒锌离子在厌氧氨氧化生物量中的积累,使90%的脱氮能力丧失 | [ |
菌株 Strain | 工程纳米颗粒 Engineered nanoparticle | 影响 Influences | 参考文献 Reference |
---|---|---|---|
Nitrifying bacteria | TiO2NPs | 长期暴露后,会降低氨氧化细菌的丰度,细菌数量减少 | [ |
Escherichia coli | ZnONPs | 破坏一些基团或蛋白进而影响膜的完整性 | [ |
Nitrosomonas europaea | ZnONPs | 破坏细菌细胞膜 | [ |
Nitrosomonas europaea | ZnONPs | 50 mg/L的ZnONPs显著降低细胞密度,破坏膜完整性 | [ |
Nitrosomonas europaea | AgNPs | 细胞外膜活性降低 | [ |
Nitrifying bacteria | AgNPs | 细胞壁破坏,核仁解体,进而导致细胞膜收缩 | [ |
Nitrosomonas europaea | TiO2NPs、ZnONPs、CeO2NPs | 对细胞造成压力,引起形态学损伤 | [ |
Diaphorobacter | ZnONPs、AgNPs | 降低细菌活性 | [ |
表2 工程纳米颗粒对脱氮菌的影响
Table 2 Influence of engineered nanoparticles on denitrification bacteria
菌株 Strain | 工程纳米颗粒 Engineered nanoparticle | 影响 Influences | 参考文献 Reference |
---|---|---|---|
Nitrifying bacteria | TiO2NPs | 长期暴露后,会降低氨氧化细菌的丰度,细菌数量减少 | [ |
Escherichia coli | ZnONPs | 破坏一些基团或蛋白进而影响膜的完整性 | [ |
Nitrosomonas europaea | ZnONPs | 破坏细菌细胞膜 | [ |
Nitrosomonas europaea | ZnONPs | 50 mg/L的ZnONPs显著降低细胞密度,破坏膜完整性 | [ |
Nitrosomonas europaea | AgNPs | 细胞外膜活性降低 | [ |
Nitrifying bacteria | AgNPs | 细胞壁破坏,核仁解体,进而导致细胞膜收缩 | [ |
Nitrosomonas europaea | TiO2NPs、ZnONPs、CeO2NPs | 对细胞造成压力,引起形态学损伤 | [ |
Diaphorobacter | ZnONPs、AgNPs | 降低细菌活性 | [ |
[1] | 文秋红, 李丹凤, 田望舒, 等. 地表水的氮磷污染及其检测方法研究[J]. 绿色科技, 2015(6):255-257. |
Wen QH, Li DF, Tian WS, et al. Investigation on nitrogen and phosphorus pollution of surface water and its detection methods[J]. J Green Sci Technol, 2015(6):255-257. | |
[2] |
Zheng Z, Li W, Zhang D, et al. Effect of iron and manganese on ammonium removal from micro-polluted source water by immobilized HITLi7T at 2 ℃[J]. Bioresour Technol, 2019, 285:121367.
doi: 10.1016/j.biortech.2019.121367 URL |
[3] |
Lewis WM Jr, Morris DP. Toxicity of nitrite to fish:a review[J]. Trans Am Fish Soc, 1986, 115(2):183-195.
doi: 10.1577/1548-8659(1986)115<183:TONTF>2.0.CO;2 URL |
[4] |
Jia W, Wang Q, Zhang J, et al. Nutrients removal and nitrous oxide emission during simultaneous nitrification, denitrification, and phosphorus removal process:effect of iron[J]. Environ Sci Pollut Res Int, 2016, 23(15):15657-15664.
doi: 10.1007/s11356-016-6758-2 URL |
[5] |
Feng S, Xie SG, Zhang XJ, et al. Ammonium removal pathways and microbial community in GAC-sand dual media filter in drinking water treatment[J]. J Environ Sci, 2012, 24(9):1587-1593.
doi: 10.1016/S1001-0742(11)60965-0 URL |
[6] | 赵翠娟, 宋文军, 朱高雄, 等. 除氨氮菌在污水处理中的研究进展[J]. 生物技术通报, 2013(2):31-34. |
Zhao CJ, Song WJ, Zhu GX, et al. Development of wastewater treatment using ammoniadegrading bacteria[J]. Biotechnol Bull, 2013(2):31-34. | |
[7] |
Gao LB, Ren WC, Liu BL, et al. Crystallographic tailoring of graphene by nonmetal SiO(x)nanoparticles[J]. J Am Chem Soc, 2009, 131(39):13934-13936.
doi: 10.1021/ja906610e URL |
[8] |
Sengul AB, Asmatulu E. Toxicity of metal and metal oxide nanoparticles:a review[J]. Environ Chem Lett, 2020, 18(5):1659-1683.
doi: 10.1007/s10311-020-01033-6 URL |
[9] | Keller AA, McFerran S, Lazareva A, et al. Global life cycle releases of engineered nanomaterials[J]. J Nanoparticle Res, 2013, 15(6):1-17. |
[10] |
Zhang ZZ, Xu JJ, Shi ZJ, et al. Short-term impacts of Cu, CuO, ZnO and Ag nanoparticles(NPs)on anammox sludge:CuNPs make a difference[J]. Bioresour Technol, 2017, 235:281-291.
doi: 10.1016/j.biortech.2017.03.135 URL |
[11] |
Simonin M, Cantarel AAM, Crouzet A, et al. Negative effects of copper oxide nanoparticles on carbon and nitrogen cycle microbial activities in contrasting agricultural soils and in presence of plants[J]. Front Microbiol, 2018, 9:3102.
doi: 10.3389/fmicb.2018.03102 pmid: 30619181 |
[12] |
Wu Q, Huang K, Sun H, et al. Comparison of the impacts of zinc ions and zinc nanoparticles on nitrifying microbial community[J]. J Hazard Mater, 2018, 343:166-175.
doi: 10.1016/j.jhazmat.2017.09.022 URL |
[13] |
Brar SK, Verma M, Tyagi RD, et al. Engineered nanoparticles in wastewater and wastewater sludge——evidence and impacts[J]. Waste Manag, 2010, 30(3):504-520.
doi: 10.1016/j.wasman.2009.10.012 URL |
[14] |
Ostermeyer AK, Kostigen Mumuper C, Semprini L, et al. Influence of bovine serum albumin and alginate on silver nanoparticle dissolution and toxicity to Nitrosomonas europaea[J]. Environ Sci Technol, 2013, 47(24):14403-14410.
doi: 10.1021/es4033106 URL |
[15] |
Guo Z, Chen GQ, Zeng GM, et al. Determination of inequable fate and toxicity of Ag nanoparticles in a Phanerochaete chrysosporium biofilm system through different sulfide sources[J]. Environ Sci:Nano, 2016, 3(5):1027-1035.
doi: 10.1039/C6EN00156D URL |
[16] |
Choi O, Clevenger TE, Deng B, et al. Role of sulfide and ligand strength in controlling nanosilver toxicity[J]. Water Res, 2009, 43(7):1879-1886.
doi: 10.1016/j.watres.2009.01.029 URL |
[17] |
Ma TF, Chen YP, Fang F, et al. Effects of ZnO nanoparticles on aerobic denitrifying bacteria Enterobacter cloacae strain HNR[J]. Sci Total Environ, 2020, 725:138284.
doi: 10.1016/j.scitotenv.2020.138284 URL |
[18] |
Nowack B. The behavior and effects of nanoparticles in the environment[J]. Environ Pollut, 2009, 157(4):1063-1064.
doi: 10.1016/j.envpol.2008.12.019 pmid: 19157660 |
[19] | 李维. 纳米银和二氧化铈对MBBR脱氮性能及微生物群落的影响研究[D]. 合肥:安徽大学, 2017. |
Li W. Impacts of Ag and CeO2 nanoparticles on nitrogen removal performance and microbial community of MBBR[D]. Hefei:Anhui University, 2017. | |
[20] |
Gu L, Li Q, Quan X, et al. Comparison of nanosilver removal by flocculent and granular sludge and short- and long-term inhibition impacts[J]. Water Res, 2014, 58:62-70.
doi: 10.1016/j.watres.2014.03.028 URL |
[21] |
Yuan ZH, Yang XY, Hu AY, et al. Long-term impacts of silver nanoparticles in an anaerobic-anoxic-oxic membrane bioreactor system[J]. Chem Eng J, 2015, 276:83-90.
doi: 10.1016/j.cej.2015.04.059 URL |
[22] |
Zhang C, Liang Z, Hu Z. Bacterial response to a continuous long-term exposure of silver nanoparticles at sub-ppm silver concentrations in a membrane bioreactor activated sludge system[J]. Water Res, 2014, 50:350-358.
doi: 10.1016/j.watres.2013.10.047 URL |
[23] |
Zheng X, Su YL, Chen YG. Acute and chronic responses of activated sludge viability and performance to silica nanoparticles[J]. Environ Sci Technol, 2012, 46(13):7182-7188.
doi: 10.1021/es300777b URL |
[24] |
Zheng X, Wu R, Chen Y. Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal[J]. Environ Sci Technol, 2011, 45(7):2826-2832.
doi: 10.1021/es2000744 URL |
[25] |
Puay NQ, Qiu GL, Ting YP. Effect of Zinc oxide nanoparticles on biological wastewater treatment in a sequencing batch reactor[J]. J Clean Prod, 2015, 88:139-145.
doi: 10.1016/j.jclepro.2014.03.081 URL |
[26] |
Tan M, Qiu G, Ting YP. Effects of ZnO nanoparticles on wastewater treatment and their removal behavior in a membrane bioreactor[J]. Bioresour Technol, 2015, 185:125-133.
doi: 10.1016/j.biortech.2015.02.094 URL |
[27] |
Daims H, Lebedeva EV, Pjevac P, et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7583):504-509.
doi: 10.1038/nature16461 URL |
[28] | 刘志培, 刘双江. 硝化作用微生物的分子生物学研究进展[J]. 应用与环境生物学报, 2004, 10(4):521-525. |
Liu ZP, Liu SJ. Advances in the molecular biology of nitrifying microorganisms[J]. Chin J Appl Environ Biol, 2004, 10(4):521-525. | |
[29] | 陈秋霜, 俞如旺. 漫谈硝化作用[J]. 生物学教学, 2019, 44(2):77-79. |
Chen QS, Yu RW. On nitrification[J]. Biol Teach, 2019, 44(2):77-79. | |
[30] |
Könneke M, Bernhard AE, de la Torre JR, et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon[J]. Nature, 2005, 437(7058):543-546.
doi: 10.1038/nature03911 URL |
[31] |
Phan DC, Vazquez-Munoz R, Matta A, et al. Short-term effects of Mn2O3 nanoparticles on physiological activities and gene expression of nitrifying bacteria under low and high dissolved oxygen conditions[J]. Chemosphere, 2020, 261:127775.
doi: S0045-6535(20)31970-6 pmid: 32738717 |
[32] |
Arnaout CL, Gunsch CK. Impacts of silver nanoparticle coating on the nitrification potential of Nitrosomonas europaea[J]. Environ Sci Technol, 2012, 46(10):5387-5395.
doi: 10.1021/es204540z URL |
[33] |
Yuan ZH, Li JW, Cui L, et al. Interaction of silver nanoparticles with pure nitrifying bacteria[J]. Chemosphere, 2013, 90(4):1404-1411.
doi: 10.1016/j.chemosphere.2012.08.032 URL |
[34] |
Zhang ZZ, Cheng YF, Xu LZ, et al. Transient disturbance of engineered ZnO nanoparticles enhances the resistance and resilience of anammox process in wastewater treatment[J]. Sci Total Environ, 2018, 622/623:402-409.
doi: 10.1016/j.scitotenv.2017.12.016 URL |
[35] |
Chèneby D, Hallet S, Mondon M, et al. Genetic characterization of the nitrate reducing community based on narG nucleotide sequence analysis[J]. Microb Ecol, 2003, 46(1):113-121.
pmid: 12739081 |
[36] |
Wu L, Zhu G, Zhang X, et al. Silver nanoparticles inhibit denitrification by altering the viability and metabolic activity of Pseudomonas stutzeri[J]. Sci Total Environ, 2020, 706:135711.
doi: 10.1016/j.scitotenv.2019.135711 URL |
[37] |
Chen Q, Li T, Gui M, et al. Effects of ZnO nanoparticles on aerobic denitrification by strain Pseudomonas stutzeri PCN-1[J]. Bioresour Technol, 2017, 239:21-27.
doi: 10.1016/j.biortech.2017.04.123 URL |
[38] |
Li DP, Li B, Wang QR, et al. Toxicity of TiO2 nanoparticle to denitrifying strain CFY1 and the impact on microbial community structures in activated sludge[J]. Chemosphere, 2016, 144:1334-1341.
doi: 10.1016/j.chemosphere.2015.10.002 URL |
[39] |
Su Y, Zheng X, Chen Y, et al. Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles[J]. Sci Rep, 2015, 5:15824.
doi: 10.1038/srep15824 URL |
[40] |
Zheng X, Wang J, Chen Y, et al. Comprehensive analysis of transcriptional and proteomic profiling reveals silver nanoparticles-induced toxicity to bacterial denitrification[J]. J Hazard Mater, 2018, 344:291-298.
doi: 10.1016/j.jhazmat.2017.10.028 URL |
[41] |
Limbach LK, Wick P, Manser P, et al. Exposure of engineered nanoparticles to human lung epithelial cells:influence of chemical composition and catalytic activity on oxidative stress[J]. Environ Sci Technol, 2007, 41(11):4158-4163.
pmid: 17612205 |
[42] |
Nel A, Xia T, Mädler L, et al. Toxic potential of materials at the nanolevel[J]. Science, 2006, 311(5761):622-627.
doi: 10.1126/science.1114397 URL |
[43] | 王大力, 郁建桥, 高雅, 等. 金属和氧化物纳米颗粒对细菌毒性的研究进展[J]. 安全与环境学报, 2012, 12(1):5-10. |
Wang DL, Yu JQ, Gao Y, et al. Research advance review on the toxicity of nanoparticles to bacteria[J]. J Saf Environ, 2012, 12(1):5-10. | |
[44] |
Yang Y, Zhu H, Colvin VL, et al. Cellular and transcriptional response of Pseudomonas stutzeri to quantum dots under aerobic and denitrifying conditions[J]. Environ Sci Technol, 2011, 45(11):4988-4994.
doi: 10.1021/es1042673 pmid: 21526814 |
[45] |
Zheng X, Chen YG, Wu R. Long-term effects of titanium dioxide nanoparticles on nitrogen and phosphorus removal from wastewater and bacterial community shift in activated sludge[J]. Environ Sci Technol, 2011, 45(17):7284-7290.
doi: 10.1021/es2008598 URL |
[46] |
Beddow J, Stolpe B, Cole P, et al. Effects of engineered silver nanoparticles on the growth and activity of ecologically important microbes[J]. Environ Microbiol Rep, 2014, 6(5):448-458.
doi: 10.1111/emi4.2014.6.issue-5 URL |
[47] | Jing W. Bacterial toxicity of oxide nanoparticles and their effects on bacterial surface biomolecules[J]. University of Massachusetts, 2011, 72(10):134. |
[48] |
Matsumura Y, Yoshikata K, Kunisaki S, et al. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate[J]. Appl Environ Microbiol, 2003, 69(7):4278-4281.
doi: 10.1128/AEM.69.7.4278-4281.2003 URL |
[49] |
Holt KB, Bard AJ. Interaction of silver(I)ions with the respiratory chain of Escherichia coli:an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+[J]. Biochemistry, 2005, 44(39):13214-13223.
doi: 10.1021/bi0508542 URL |
[50] |
Yang Y, Wang J, Xiu ZM, et al. Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria[J]. Environ Toxicol Chem, 2013, 32(7):1488-1494.
doi: 10.1002/etc.2230 pmid: 23554086 |
[51] |
Kim JS, et al. Antimicrobial effects of silver nanoparticles[J]. Nanomed:Nanotechnol Biol Med, 2007, 3(1):95-101.
doi: 10.1016/j.nano.2006.12.001 URL |
[52] |
Ji G, Silver S. Bacterial resistance mechanisms for heavy metals of environmental concern[J]. J Ind Microbiol, 1995, 14(2):61-75.
pmid: 7766212 |
[53] | Adam N, Schmitt C, Galceran J, et al. The chronic toxicity of ZnO nanoparticles and ZnCl2 to Daphnia magna and the use of different methods to assess nanoparticle aggregation and dissolution[J]. Nanotoxicology, 2014, 8(7):709-717. |
[54] | 李素萍. 纳米ZnO对SBR系统活性污泥活性及硝化作用的影响[D]. 哈尔滨:哈尔滨工业大学, 2014. |
Li SP. Impact of nano-ZnO on activity and nitrification of the activated sludge in SBR[D]. Harbin:Harbin Institute of Technology, 2014. | |
[55] |
Wu J, Lu H, Zhu G, et al. Regulation of membrane fixation and energy production/conversion for adaptation and recovery of ZnO nanoparticle impacted Nitrosomonas europaea[J]. Appl Microbiol Biotechnol, 2017, 101(7):2953-2965.
doi: 10.1007/s00253-017-8092-0 URL |
[56] |
Ni SQ, Ni J, Yang N, et al. Effect of magnetic nanoparticles on the performance of activated sludge treatment system[J]. Bioresour Technol, 2013, 143:555-561.
doi: 10.1016/j.biortech.2013.06.041 URL |
[57] |
Fang X, Yu R, Li B, et al. Stresses exerted by ZnO, CeO2 and anatase TiO2 nanoparticles on the Nitrosomonas europaea[J]. J Colloid Interface Sci, 2010, 348(2):329-334.
doi: 10.1016/j.jcis.2010.04.075 URL |
[58] |
Sheng Z, Liu Y. Effects of silver nanoparticles on wastewater biofilms[J]. Water Res, 2011, 45(18):6039-6050.
doi: 10.1016/j.watres.2011.08.065 URL |
[59] |
Dixon DP, et al. Roles for glutathione transferases in plant secon-dary metabolism[J]. Phytochemistry, 2010, 71(4):338-350.
doi: 10.1016/j.phytochem.2009.12.012 URL |
[60] |
Ghelfi A, Gaziola SA, Cia MC, et al. Cloning, expression, molecular modelling and docking analysis of glutathione transferase from Saccharum officinarum[J]. Ann Appl Biol, 2011, 159(2):267-280.
doi: 10.1111/aab.2011.159.issue-2 URL |
[61] |
Huang Z, et al. Alleviation of heavy metal and silver nanoparticle toxicity and enhancement of their removal by hydrogen sulfide in Phanerochaete chrysosporium[J]. Chemosphere, 2019, 224:554-561.
doi: 10.1016/j.chemosphere.2019.02.190 URL |
[62] |
Li Q, Song W, Sun M, et al. Composition change and adsorption performance of EPS from Bacillus vallismortis sp. induced by Na2S[J]. Ecotoxicol Environ Saf, 2019, 185:109679.
doi: 10.1016/j.ecoenv.2019.109679 URL |
[1] | 张宇红, 董先博, 刘香宇, 许家琪, 徐子祾. 新型异养硝化-好氧反硝化菌Paracoccus sp. QD-19的分离及脱氮特性研究[J]. 生物技术通报, 2023, 39(3): 301-310. |
[2] | 高宇轩, 靳静晨, 徐利杉, 高雅娟, 张闻天, 李晨晨, 张国伟, 靳永胜. 耐盐异养硝化-好氧反硝化菌Bacillus megatherium N07的分离及脱氮特性[J]. 生物技术通报, 2022, 38(7): 247-257. |
[3] | 赵洋, 孙慧明, 林浩澎, 罗娉婷, 朱雅婷, 陈琼华, 舒琥. 一株安全高效的好氧反硝化菌Pseudomonas stutzeri DZ11的生物安全性及脱氮性能研究[J]. 生物技术通报, 2022, 38(10): 226-234. |
[4] | 连红民, 邱忠平, 何昆明, 周文秀. 一株好氧反硝化-异养硝化菌的筛选及脱氮特性研究[J]. 生物技术通报, 2015, 31(6): 138-143. |
[5] | 郑丽侠, 张大伟. 一株异养硝化细菌的分离鉴定及紫外诱变育种[J]. 生物技术通报, 2013, 0(12): 184-188. |
[6] | 张红;. 维生素C和病毒[J]. , 1985, 0(10): 118-118. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||