生物技术通报 ›› 2022, Vol. 38 ›› Issue (3): 203-212.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0691
收稿日期:
2021-06-01
出版日期:
2022-03-26
发布日期:
2022-04-06
作者简介:
潘英杰,女,硕士研究生,研究方向:分子生物学;E-mail: 基金资助:
PAN Ying-jie(), ZHANG Ying(), WU Qi-man, LI Zheng-qing
Received:
2021-06-01
Published:
2022-03-26
Online:
2022-04-06
摘要:
植物的糖既能参与细胞的碳和能量代谢,又能作为信号分子促进植株生长发育并参与调控植物对逆境胁迫的响应。目前诸多研究表明抗寒锻炼中可溶性糖的积累有助于保护植物抵御冻害,黄瓜等园艺作物的抗冷性在外源施糖后提高,但具体机制尚未明确。糖能够促进植株通过表观形态、生理生化及分子水平等方面对非生物逆境胁迫响应、调控植株的抗性。糖代谢过程与脱落酸(ABA)等植物激素的调控密切相关。WRKY作为ABA相关逆境应答信号通路中的核心转录因子,同是糖代谢调控机制中的重要因子,或许在响应冷胁迫的相关代谢机制中参与发挥着重要作用。综述了糖对园艺作物冷适应的响应及调控的分子机理,并分析讨论了WRKY家族对园艺植物糖调控冷适应效应响应的机理。
潘英杰, 张颖, 武杞蔓, 李正青. WRKY对糖调控园艺作物冷适应的研究进展[J]. 生物技术通报, 2022, 38(3): 203-212.
PAN Ying-jie, ZHANG Ying, WU Qi-man, LI Zheng-qing. A Review of WRKY Mediated Regulation of Sugar for Cold Acclimation in Horticultural Crops[J]. Biotechnology Bulletin, 2022, 38(3): 203-212.
逆境 Stress | 物种 Species | 外源糖 Exogenous sugar | 变量Variable | 参考文献 Reference | |||
---|---|---|---|---|---|---|---|
品质 Quality | 生理、生化 Physiology,biochemistry | 激素 Hormone | 分子机理 Molecular mechanisms | ||||
无 None | 苹果 Apple | ALA | 果实着色、外观品质↑ Fruit coloring and appearance quality 果皮花青素含量↑ Anthocyanin content in pericarp | [ | |||
草莓 Strawberry | 蔗糖 Sucrose | 花青素和类胡萝卜素含量↑ Anthocyanin and carotenoid content | 抗坏血酸含量↑ Ascorbic acid content | [ | |||
蓝莓 Blueberry | 蔗糖 Sucrose | 可溶性总糖、花色苷含量↑ Total soluble sugar and anthocyanin 可滴定酸含量↓Titratable acid | 黄酮和抗氧化能力↓ Flavonoids and antioxidant capacity | [ | |||
苹果 Apple | 葡萄糖 Glucose | 短枝顶芽长度、宽度及质量↑ Length,width and quality of terminal bud of short branch 淀粉↑ Amylopectin | 酸性与中性蔗糖转化酶活性↓ Acid and neutral sucrose invertase activity 蔗糖合酶分解方向酶活性↓ Enzyme activity in the direction of sucrose synthase decomposition | 顶芽糖代谢相关基因及Genes related to glucose metabolism in apical buds 2个MdTPS基因响应 2 MdTPS genes response 成花关键基因 ↑Key genes for flowering | [ | ||
茄子Eggplant | 葡萄糖 Glucose | 叶片变绿The leaves turn green 节间距↓Internode distance 可溶性糖↑Soluble sugars | 抗氧化酶活性↑Antioxidant enzyme activity 叶片质膜相对透性↓Relative permeability of plasma membrane of leaves | [ | |||
冷 胁 迫 Cold stress | 番茄 Tomato | ALA | 叶绿素合成↑ Chlorophyll synthesis 膜脂过氧化↓ Membrane lipid peroxidation | 内源H2O2、JA、NO参与 Internal source H2O2,JA,and NO | RBOH1、GSTU43表达↑ RBOH1 and GSTU43 expression | [ | |
茶树 Tea tree | ALA | 茶叶品质↑ Tea quality | 光合能力↑ Photosynthetic capacity | [ | |||
玉米 Corn | 海藻糖 Trehalose | 根表面积、根长、 Root surface area and root length 鲜干重↑Fresh and dry weight | 渗透物质的积累↑Accumulation of osmotic substances 膜脂过氧化↓Membrane lipid peroxidation | [ | |||
黄瓜 Cucumber | 海藻糖 Trehalose | 叶片膜脂过氧化↓Membrane lipid peroxidation of leaves 叶绿素含量↑Chlorophyll content | [1] |
表1 外源糖在园艺植物应对冷胁迫中的作用
Table 1 Roles of exogenous sugar in horticulture plants' response to cold stress
逆境 Stress | 物种 Species | 外源糖 Exogenous sugar | 变量Variable | 参考文献 Reference | |||
---|---|---|---|---|---|---|---|
品质 Quality | 生理、生化 Physiology,biochemistry | 激素 Hormone | 分子机理 Molecular mechanisms | ||||
无 None | 苹果 Apple | ALA | 果实着色、外观品质↑ Fruit coloring and appearance quality 果皮花青素含量↑ Anthocyanin content in pericarp | [ | |||
草莓 Strawberry | 蔗糖 Sucrose | 花青素和类胡萝卜素含量↑ Anthocyanin and carotenoid content | 抗坏血酸含量↑ Ascorbic acid content | [ | |||
蓝莓 Blueberry | 蔗糖 Sucrose | 可溶性总糖、花色苷含量↑ Total soluble sugar and anthocyanin 可滴定酸含量↓Titratable acid | 黄酮和抗氧化能力↓ Flavonoids and antioxidant capacity | [ | |||
苹果 Apple | 葡萄糖 Glucose | 短枝顶芽长度、宽度及质量↑ Length,width and quality of terminal bud of short branch 淀粉↑ Amylopectin | 酸性与中性蔗糖转化酶活性↓ Acid and neutral sucrose invertase activity 蔗糖合酶分解方向酶活性↓ Enzyme activity in the direction of sucrose synthase decomposition | 顶芽糖代谢相关基因及Genes related to glucose metabolism in apical buds 2个MdTPS基因响应 2 MdTPS genes response 成花关键基因 ↑Key genes for flowering | [ | ||
茄子Eggplant | 葡萄糖 Glucose | 叶片变绿The leaves turn green 节间距↓Internode distance 可溶性糖↑Soluble sugars | 抗氧化酶活性↑Antioxidant enzyme activity 叶片质膜相对透性↓Relative permeability of plasma membrane of leaves | [ | |||
冷 胁 迫 Cold stress | 番茄 Tomato | ALA | 叶绿素合成↑ Chlorophyll synthesis 膜脂过氧化↓ Membrane lipid peroxidation | 内源H2O2、JA、NO参与 Internal source H2O2,JA,and NO | RBOH1、GSTU43表达↑ RBOH1 and GSTU43 expression | [ | |
茶树 Tea tree | ALA | 茶叶品质↑ Tea quality | 光合能力↑ Photosynthetic capacity | [ | |||
玉米 Corn | 海藻糖 Trehalose | 根表面积、根长、 Root surface area and root length 鲜干重↑Fresh and dry weight | 渗透物质的积累↑Accumulation of osmotic substances 膜脂过氧化↓Membrane lipid peroxidation | [ | |||
黄瓜 Cucumber | 海藻糖 Trehalose | 叶片膜脂过氧化↓Membrane lipid peroxidation of leaves 叶绿素含量↑Chlorophyll content | [1] |
物种 Species | 数目 Number | 已鉴定功能 Identified function | 响应机制 Response mechanism | 参考文献 Reference | ||
---|---|---|---|---|---|---|
生长发育 Growth | 病原体响应 Response to pathogen | 低温响应 Response to low temperature | ||||
番茄 Tomato | 86 | 多数I类 如SlWRKY2、SlWRKY63、 SlWRKY49 | SlWPKY78、SlWPKY14、SlWPKY58、SlWPKY49、SlWPKY21、SlWPKY72、SlWPKY68 | SlWRKY2、SlWRKY6、SlWRKY9、SlWRKY11、SlWRKY21、SlWRKY24、SlWRKY35、SlWRKY43、SlWRKY50、SlWRKY59、SlWRKY69、SlWRKY23、SlWRKY24、SlWRKY35、SlWRKY43、SlWRKY49、SlWRKY59、SlWRKY62、SlWRKY1、SlWRKY8、SlWRKY61、SlWRKY79等 | SlWRKY复合体发挥功能 SlWRKY-complex plays its function ICE-CBF-COR途径;与其他转录因子互作 ICE-CBF-COR pathways;interaction with other transcription factors | [ |
黄瓜Cucumber | 57 | CsWRKY25、CsWRKY32、CsWRKY50、 CsWRKY52、 CsWRKY59 | CsWRKY18、CsWRKY21、CsWRKY25、CsWRKY40、CsWRKY57 显著上调表达(strong induction of gene expression) CsWRKY2、CsWRKY4、CsWRKY23、CsWRKY33、CsWRKY36、CsWRKY46上调表达(moderate induction of gene expression) CsWRKY28、CsWRKY53、CsWRKY55下调表达(reduction of gene expression) | CsWRKY2、CsWRKY32与MAPK7互作 CsWRKY2 and CsWRKY32 interaction with MAPK7 CsWRKY46与ABI5启动子中的W-box相互作用 CsWRKY46 and ABI5 interaction with W-box | [ | |
草莓 Strawberry | 62 | FvWRKY27、FvWRKY41、FvWRKY56、FvWRKY62等9个上调表达 32个下调表达 | [ | |||
西瓜 Watermelon | 57 | 56个ClWRKY | 7个上调表达,Cla018059(ClWRKY55)和 Cla021170(ClWRKY20);12个下调表达 | 抗氧化能力↑ Antioxidant capacity | [ | |
葡萄 Grape | 59 | VvWRKY55、VvWRKY14、VvWRKY12、VvWRKY52、VvWRKY28、VvWRKY43、VvWRKY49、VvWRKY37、VvWRKY08、VvWRKY58、VvWRKY33、VvWRKY39、VvWRKY19、VvWRKY47、VvWRKY44、VvWRKY51、VvWRKY45、VvWRKY31、VvWRKY06、VvWRKY34、VvWRKY26、VvWRKY53上调表达 VvWRKY11、VvWPKY16、VvWPKY22、VvWPKY29、VvWPKY41下调表达 | 3个VvWRKY(VvWRKY28、42和55)可能参与ABA依赖的信号通路 3 VvWRKY(VvWRKY28,42 and 55 participate in ABA-dependent signaling pathways 另外12个VvWRKY可能参与ABA不依赖的信号通路 Other 12 VvWRKYs participate in ABA-independent signaling pathways | [ |
表2 WRKY基因在各类园艺作物中的数目与功能
Table 2 Number and function of WRKY in various horticultural crops
物种 Species | 数目 Number | 已鉴定功能 Identified function | 响应机制 Response mechanism | 参考文献 Reference | ||
---|---|---|---|---|---|---|
生长发育 Growth | 病原体响应 Response to pathogen | 低温响应 Response to low temperature | ||||
番茄 Tomato | 86 | 多数I类 如SlWRKY2、SlWRKY63、 SlWRKY49 | SlWPKY78、SlWPKY14、SlWPKY58、SlWPKY49、SlWPKY21、SlWPKY72、SlWPKY68 | SlWRKY2、SlWRKY6、SlWRKY9、SlWRKY11、SlWRKY21、SlWRKY24、SlWRKY35、SlWRKY43、SlWRKY50、SlWRKY59、SlWRKY69、SlWRKY23、SlWRKY24、SlWRKY35、SlWRKY43、SlWRKY49、SlWRKY59、SlWRKY62、SlWRKY1、SlWRKY8、SlWRKY61、SlWRKY79等 | SlWRKY复合体发挥功能 SlWRKY-complex plays its function ICE-CBF-COR途径;与其他转录因子互作 ICE-CBF-COR pathways;interaction with other transcription factors | [ |
黄瓜Cucumber | 57 | CsWRKY25、CsWRKY32、CsWRKY50、 CsWRKY52、 CsWRKY59 | CsWRKY18、CsWRKY21、CsWRKY25、CsWRKY40、CsWRKY57 显著上调表达(strong induction of gene expression) CsWRKY2、CsWRKY4、CsWRKY23、CsWRKY33、CsWRKY36、CsWRKY46上调表达(moderate induction of gene expression) CsWRKY28、CsWRKY53、CsWRKY55下调表达(reduction of gene expression) | CsWRKY2、CsWRKY32与MAPK7互作 CsWRKY2 and CsWRKY32 interaction with MAPK7 CsWRKY46与ABI5启动子中的W-box相互作用 CsWRKY46 and ABI5 interaction with W-box | [ | |
草莓 Strawberry | 62 | FvWRKY27、FvWRKY41、FvWRKY56、FvWRKY62等9个上调表达 32个下调表达 | [ | |||
西瓜 Watermelon | 57 | 56个ClWRKY | 7个上调表达,Cla018059(ClWRKY55)和 Cla021170(ClWRKY20);12个下调表达 | 抗氧化能力↑ Antioxidant capacity | [ | |
葡萄 Grape | 59 | VvWRKY55、VvWRKY14、VvWRKY12、VvWRKY52、VvWRKY28、VvWRKY43、VvWRKY49、VvWRKY37、VvWRKY08、VvWRKY58、VvWRKY33、VvWRKY39、VvWRKY19、VvWRKY47、VvWRKY44、VvWRKY51、VvWRKY45、VvWRKY31、VvWRKY06、VvWRKY34、VvWRKY26、VvWRKY53上调表达 VvWRKY11、VvWPKY16、VvWPKY22、VvWPKY29、VvWPKY41下调表达 | 3个VvWRKY(VvWRKY28、42和55)可能参与ABA依赖的信号通路 3 VvWRKY(VvWRKY28,42 and 55 participate in ABA-dependent signaling pathways 另外12个VvWRKY可能参与ABA不依赖的信号通路 Other 12 VvWRKYs participate in ABA-independent signaling pathways | [ |
[1] | 胡慧芳. 外源海藻糖对黄瓜幼苗抗冷性的影响[J]. 北方园艺, 2008(2):11-13. |
Hu HF. The effect of exogenous trehalose on cold resistance of cucumber seedlings[J]. North Hortic, 2008(2):11-13. | |
[2] | 吴旭红. 中药种衣剂对大豆幼苗抗低温胁迫能力影响研究初报[J]. 大豆通报, 2005(4):11-12. |
Wu XH. A preliminary study on the effect of traditional Chinese medicine seed coating on the resistance of soybean seedlings to low temperature stress[J]. Soybean Bull, 2005(4):11-12. | |
[3] | 陈俊伟, 张上隆, 张良诚. 糖对源库关系的调控与植物糖信号转导途径[J]. 细胞生物学杂志, 2002, 24(5):266-270. |
Chen JW, Zhang SL, Zhang LC. Regulation of source-sink relationship by sugar and plant sugar signal transduction pathway[J]. Chin J Coll Biol, 2002, 24(5):266-270. | |
[4] | 戚莹雪, 王蕾, 王尧尧, 等. 植物WRKY类转录因子在非生物胁迫下的功能与作用机制[J]. 分子植物育种, 2019, 17(18):5973-5979. |
Qi YX, Wang L, Wang YY, et al. Function and mechanism of WRKY transcription factors of plants under abiotic stress[J]. Mol Plant Breed, 2019, 17(18):5973-5979. | |
[5] | 张绪, 赵琳, 钱龙, 等. 海藻酸分解菌研究进展[J]. 生命科学, 2012, 24(5):475-482. |
Zhang X, Zhao L, Qian L, et al. Research progress of alginolytic bacteria[J]. Chin Bull Life Sci, 2012, 24(5):475-482. | |
[6] |
黄宇, 林智勇, 荣俊冬, 等. 脱落酸对低温下雷公藤幼苗光合作用及叶绿素荧光的影响[J]. 应用生态学报, 2011, 22(12):3150-3156.
pmid: 22384581 |
Huang Y, Lin ZY, Rong JD, et al. Effects of exogenous abscisic acid(ABA)on the photosynjournal and chlorophyll fluorescence parameters of Tripterygium wilfordii seedlings exposed to low temperature[J]. Chin J Appl Ecol, 2011, 22(12):3150-3156.
pmid: 22384581 |
|
[7] | 赵楠楠, 刘立峰. 植物WRKY转录因子及其生物学功能[J]. 分子植物育种, 2019, 17(21):7040-7046. |
Zhao NN, Liu LF. WRKY transcription factors and their biological functions in plants[J]. Mol Plant Breed, 2019, 17(21):7040-7046. | |
[8] | 何亚飞, 李霞, 谢寅峰. 植物中糖信号及其对逆境调控的研究进展[J]. 植物生理学报, 2016, 52(3):241-249. |
He YF, Li X, Xie YF. Research progress in sugar signal and its regulation of stress in plants[J]. Plant Physiol J, 2016, 52(3):241-249. | |
[9] | 韩文君, 赵帅, 刘会会, 等. 一株多糖降解菌的分离、鉴定与琼脂糖降解能力[J]. 微生物学报, 2012, 52(6):776-783. |
Han WJ, Zhao S, Liu HH, et al. Isolation, identification and agarose degradation of a polysaccharide-degrading marine bacterium Persicobacter sp. JZB09[J]. Acta Microbiol Sin, 2012, 52(6):776-783. | |
[10] | 陈丽, 张林维, 薛婉立. 褐藻寡糖的制备及抑菌性研究[J]. 中国饲料, 2007(9):34-35, 42. |
Chen L, Zhang LW, Xue WL. Study on the preparation and bacteriostasis of brown algae oligosaccharides[J]. China Feed, 2007(9):34-35, 42. | |
[11] | 余劲聪, 何舒雅, 林克明, 等. 我国海藻寡糖领域发展态势分析[J]. 中国农业科技导报, 2016, 18(6):164-174. |
Yu JC, He SY, Lin KM, et al. Development situation analysis of seaweed oligosaccharides in China[J]. J Agric Sci Technol, 2016, 18(6):164-174. | |
[12] | 汪良驹, 王中华, 李志强, 等. 5-氨基乙酰丙酸促进苹果果实着色的效应[J]. 果树学报, 2004, 21(6):512-515. |
Wang LJ, Wang ZH, Li ZQ, et al. Effect of 5-aminolevulinic acid on enhancing apple fruit coloration[J]. J Fruit Sci, 2004, 21(6):512-515. | |
[13] | 凌亚杰. 外源蔗糖和脱落酸调控草莓果实成熟的机理探讨[D]. 雅安:四川农业大学, 2018. |
Ling YJ. The mechanism study of the effect of exogenous sucrose and abscisic acid on strawberrry fruit ripening[D]. Ya’an:Sichuan Agricultural University, 2018. | |
[14] | 彭舒, 张婷渟, 李丽, 等. 外源蔗糖处理对蓝莓果实发育过程关键品质的影响[J]. 绿色科技, 2020(17):82-84. |
Peng S, Zhang TT, Li L, et al. Effects of exogenous sucrose treatment on key qualities of blueberry fruit during development[J]. J Green Sci Technol, 2020(17):82-84. | |
[15] | 张丽之, 张昕, 左希亚, 等. 外源葡萄糖对‘长富2号’苹果花芽生理分化期可溶性糖和相关基因表达的影响[J]. 园艺学报, 2019, 46(1):11-24. |
Zhang LZ, Zhang X, Zuo XY, et al. Effects of exogenous glucose treatment on soluble sugar and expression of related genes during floral bud differentiation stage in terminal SpurBuds of ‘nagafu 2’ apple[J]. Acta Hortic Sin, 2019, 46(1):11-24. | |
[16] | 王星剑, 郑诚乐, 何碧珠, 等. 外源葡萄糖对贮运中茄子穴盘苗生长和抗逆性的影响[J]. 亚热带农业研究, 2017, 13(1):30-35. |
Wang XJ, Zheng CL, He BZ, et al. Effect of exogenous glucose application on plant growth and stress resistance of eggplant plug-seedlings during storage and transportation[J]. Subtrop Agric Res, 2017, 13(1):30-35. | |
[17] | 刘涛. 5-氨基乙酰丙酸调控番茄耐冷性的作用机制[D]. 杨凌:西北农林科技大学, 2019. |
Liu T. The mechanism of 5-aminolevulinic acid in regulating tomato cold tolerance[D]. Yangling:Northwest A & F University, 2019. | |
[18] | 燕飞, 蒋文华, 曲东, 等. 外源5-氨基乙酰丙酸对低温胁迫下茶树叶片光合及生理特性的影响[J]. 茶叶科学, 2020, 40(5):597-606. |
Yan F, Jiang WH, Qu D, et al. Effects of exogenous 5-aminolevulinic acid on photosynthetic and physiological characteristics of tea leaves under low temperature stress[J]. J Tea Sci, 2020, 40(5):597-606. | |
[19] | 刘旋, 田礼欣, 佟昊阳, 等. 低温胁迫下玉米幼苗根系受外源海藻糖调控的生理表现[J]. 生态学杂志, 2018, 37(8):2354-2361. |
Liu X, Tian LX, Tong HY, et al. Physiological manifestations of maize seedling roots regulated by exogenous trehalose under low temperature stress[J]. Chin J Ecol, 2018, 37(8):2354-2361. | |
[20] |
Sami F, Yusuf M, Faizan M, et al. Role of sugars under abiotic stress[J]. Plant Physiol Biochem, 2016, 109:54-61.
doi: 10.1016/j.plaphy.2016.09.005 URL |
[21] | 李鑫. 低温胁迫下硅对水稻叶片生理特性及土壤硅素形态的影响[D]. 哈尔滨:东北农业大学, 2019. |
Li X. Effects of silicon preparations on physiological and biochemical characteristics of rice leaves and soil silicon morphology under low temperature stress[D]. Harbin:Northeast Agricultural University, 2019. | |
[22] |
Hu MY, Shi ZG, Zhang ZB, et al. Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress[J]. Plant Growth Regul, 2012, 68(2):177-188.
doi: 10.1007/s10725-012-9705-3 URL |
[23] |
Moenne A, González A. Chitosan-, alginate- carrageenan-derived oligosaccharides stimulate defense against biotic and abiotic stresses, and growth in plants:a historical perspective[J]. Carbohydr Res, 2021, 503:108298.
doi: 10.1016/j.carres.2021.108298 URL |
[24] | 庞椿朋. 棉子糖家族寡糖提高番茄低温抗性的作用研究[D]. 沈阳:沈阳农业大学, 2019. |
Pang CP. Study on the effect of raffinose family oligosaccharides in low temperature resistance of tomato[D]. Shenyang:Shenyang Agricultural University, 2019. | |
[25] | 雷素珍. 茶陵野生稻OrCrRlkl基因的功能研究[D]. 长沙:湖南师范大学, 2017. |
Lei SZ. Functional analysis of OrCrRlkl in Chaling common wild rice[D]. Changsha:Hunan Normal University, 2017. | |
[26] |
Livingston DP, Hincha DK, Heyer AG. Fructan and its relationship to abiotic stress tolerance in plants[J]. Cell Mol Life Sci, 2009, 66(13):2007-2023.
doi: 10.1007/s00018-009-0002-x pmid: 19290476 |
[27] | Janská A, Marsík P, Zelenková S, et al. Cold stress and acclimation - what is important for metabolic adjustment?[J]. Plant Biol:Stuttg, 2010, 12(3):395-405. |
[28] |
Li J, Wang X, Lin X, et al. Alginate-derived oligosaccharides promote water stress tolerance in cucumber(Cucumis sativus L.)[J]. Plant Physiol Biochem, 2018, 130:80-88.
doi: 10.1016/j.plaphy.2018.06.040 URL |
[29] |
Assmann SM, Jegla T. Guard cell sensory systems:recent insights on stomatal responses to light, abscisic acid, and CO2[J]. Curr Opin Plant Biol, 2016, 33:157-167.
doi: S1369-5266(16)30106-6 pmid: 27518594 |
[30] |
Sami F, Siddiqui H, Hayat S. Interaction of glucose and phytohormone signaling in plants[J]. Plant Physiol Biochem, 2019, 135:119-126.
doi: 10.1016/j.plaphy.2018.11.005 URL |
[31] |
Price J, Li TC, Kang SG, et al. Mechanisms of glucose signaling du-ring germination of Arabidopsis[J]. Plant Physiol, 2003, 132(3):1424-1438.
pmid: 12857824 |
[32] | 吴珊, 张欣欣. 不受ABA诱导的SnRK2蛋白激酶家族研究进展[J]. 基因组学与应用生物学, 2018, 37(3):1364-1369. |
Wu S, Zhang XX. Research progress of ABA-independent sucrose non-fermenting protein kinase 2[J]. Genom Appl Biol, 2018, 37(3):1364-1369. | |
[33] |
颜君, 郭兴启, 曹学成. WRKY转录因子的基因组水平研究现状[J]. 生物技术通报, 2015, 31(11):9-17.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.11.005 |
Yan J, Guo XQ, Cao XC. Progress of genome-wide researches on WRKY transcription factors[J]. Biotechnol Bull, 2015, 31(11):9-17.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.11.005 |
|
[34] | 马勇, 鲍牧兰, 张红霞, 等. 甜瓜WRKY转录因子家族基因生物信息学分析[J]. 基因组学与应用生物学, 2017, 36(11):4761-4769. |
Ma Y, Bao ML, Zhang HX, et al. Bioinformatics analysis of WRKY transcription factor genes family in melon[J]. Genom Appl Biol, 2017, 36(11):4761-4769. | |
[35] | 潘园园, 徐祥彬, 王春玲, 等. WRKY转录因子的研究概况[J]. 浙江农业科学, 2012, 53(2):253-257, 261. |
Pan YY, Xu XB, Wang CL, et al. General situation of research on WRKY transcription factor[J]. J Zhejiang Agric Sci, 2012, 53(2):253-257, 261. | |
[36] |
Alexandrova KS, Conger BV. Isolation of two somatic embryogenesis-related genes from orchardgrass(Dactylis glomerata)[J]. Plant Sci, 2002, 162(2):301-307.
doi: 10.1016/S0168-9452(01)00571-4 URL |
[37] |
Lagacé M, Matton DP. Characterization of a WRKY transcription factor expressed in late Torpedo-stage embryos of Solanum chacoense[J]. Planta, 2004, 219(1):185-189.
pmid: 15045588 |
[38] |
Ishida T, Hattori S, Sano R, et al. Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation[J]. Plant Cell, 2007, 19(8):2531-2543.
doi: 10.1105/tpc.107.052274 URL |
[39] |
肖玉洁, 李泽明, 易鹏飞, 等. 转录因子参与植物低温胁迫响应调控机理的研究进展[J]. 生物技术通报, 2018, 34(12):1-9.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0240 |
Xiao YJ, Li ZM, Yi PF, et al. Research progress on response mechanism of transcription factors involved in plant cold stress[J]. Biotechnol Bull, 2018, 34(12):1-9. | |
[40] | 王艺璇, 孟庆伟, 马娜娜. 番茄低温响应WRKY转录因子的鉴定和分析[J]. 植物生理学报, 2021, 57(6):1349-1362. |
Wang YX, Meng QW, Ma NN. Characterization and analysis of some chilling-response WRKY transcription factors in tomato[J]. Plant Physiol J, 2021, 57(6):1349-1362. | |
[41] | 张颖, 刘佳, 廉想, 等. 黄瓜CsWRKY32基因的cDNA克隆及生物信息学分析[J]. 沈阳师范大学学报:自然科学版, 2018, 36(5):441-445. |
Zhang Y, Liu J, Lian X, et al. cDNA clone and bioinformatics analysis of CsWRKY32 in cucumber[J]. J Shenyang Norm Univ:Nat Sci Ed, 2018, 36(5):441-445. | |
[42] | 刘艾京. 异三聚体G蛋白不同亚基在不同辐照度UV-B辐射诱导拟南芥叶片基因表达中的作用研究[D]. 西安:陕西师范大学, 2016. |
Liu(A/Y)J. Study on the role of different subunits of heterotrimer G protein in gene expression in Arabidopsis thaliana leaves induced by different irradiance UV-B radiation[D]. Xi’an:Shaanxi Normal University, 2016. | |
[43] | 刘雨轩. 番茄WRKY基因家族成员鉴定及表达分析[D]. 沈阳:沈阳农业大学, 2020. |
Liu YX. Identification and expression analysis of WRKY gene family in Solanum lycopersicum[D]. Shenyang:Shenyang Agricultural University, 2020. | |
[44] |
Zhang Y, Yu H, et al. CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner[J]. Plant Physiol Biochem, 2016, 108:478-487.
doi: 10.1016/j.plaphy.2016.08.013 URL |
[45] |
Ling J, Jiang W, et al. Genome-wide analysis of WRKY gene family in Cucumis sativus[J]. BMC Genomics, 2011, 12:471.
doi: 10.1186/1471-2164-12-471 pmid: 21955985 |
[46] | 未魏. 野生草莓WRKY和MAPK基因家族鉴定、表达及FvWRKY42基因功能研究[D]. 杨凌:西北农林科技大学, 2017. |
Wei W. Genome-wide identification and expression of WRKY and MAPK gene family in the diploid woodland strawberry Fragaria vesca and functional characterization of FvWRKY42[D]. Yangling:Northwest A & F University, 2017. | |
[47] | 刘越. 西瓜WRKY家族基因分析及低温响应WRKY基因功能鉴定[D]. 武汉:华中农业大学, 2018. |
Liu Y. Identification of WRKY family genes and function characterization of low temperature responsive WRKYs in watermelon[D]. Wuhan:Huazhong Agricultural University, 2018. | |
[48] |
Wang L, Zhu W, Fang L, et al. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera[J]. BMC Plant Biol, 2014, 14:103.
doi: 10.1186/1471-2229-14-103 URL |
[49] |
Zhang H, Zhao Y, Zhu JK. Thriving under stress:how plants balance growth and the stress response[J]. Dev Cell, 2020, 55(5):529-543.
doi: 10.1016/j.devcel.2020.10.012 pmid: 33290694 |
[50] | 李佳琪, 汤洁, 李明月, 等. 不同分子量的褐藻寡糖对黄瓜幼苗光合作用及生长的影响[J]. 中国农业大学学报, 2018, 23(9):53-59. |
Li JQ, Tang J, Li MY, et al. Effects of different molecular weight alginate-derived oligosaccharide on photosynthetic characters and the growth of cucumber seedlings[J]. J China Agric Univ, 2018, 23(9):53-59. | |
[51] | 谷端银, 王秀峰, 杨凤娟, 等. 施用外源物质对园艺作物抗逆性影响研究进展[J]. 北方园艺, 2016(3):195-198. |
Gu DY, Wang XF, Yang FJ, et al. Research progress of exogenous substances on horticultural crops resistance[J]. North Hortic, 2016(3):195-198. | |
[52] |
黄幸, 丁峰, 彭宏祥, 等. 植物WRKY转录因子家族研究进展[J]. 生物技术通报, 2019, 35(12):129-143.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0626 |
Huang X, Ding F, Peng HX, et al. Research progress on family of plant WRKY transcription factors[J]. Biotechnol Bull, 2019, 35(12):129-143. | |
[53] |
Huang T, Yu D, Wang X. VvWRKY22 transcription factor interacts with VvSnRK1. 1/VvSnRK1. 2 and regulates sugar accumulation in grape[J]. Biochem Biophys Res Commun, 2021, 554:193-198.
doi: 10.1016/j.bbrc.2021.03.092 URL |
[54] | 董蕴琦. 新型抗病毒复配剂筛选及其作用机制研究[D]. 沈阳:沈阳农业大学, 2018. |
Dong YQ. Screening and its action mechanism of a new compounded antiviral agent[D]. Shenyang:Shenyang Agricultural University, 2018. | |
[55] |
Huang T, Yang JL, Yu D, et al. Bioinformatics analysis of WRKY transcription factors in grape and their potential roles prediction in sugar and abscisic acid signaling pathway[J]. J Plant Biochem Biotechnol, 2021, 30(1):67-80.
doi: 10.1007/s13562-020-00571-y URL |
[1] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[2] | 刘玉玲, 王梦瑶, 孙琦, 马利花, 朱新霞. 启动子RD29A对转雪莲SikCDPK1基因烟草抗逆性的影响[J]. 生物技术通报, 2023, 39(9): 168-175. |
[3] | 韩浩章, 张丽华, 李素华, 赵荣, 王芳, 王晓立. 盐碱胁迫诱导的猴樟酵母cDNA文库构建及CbP5CS上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 236-245. |
[4] | 吕秋谕, 孙培媛, 冉彬, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子基因FtbHLH3的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 194-203. |
[5] | 徐靖, 朱红林, 林延慧, 唐力琼, 唐清杰, 王效宁. 甘薯IbHQT1启动子的克隆及上游调控因子的鉴定[J]. 生物技术通报, 2023, 39(8): 213-219. |
[6] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[7] | 陈晓, 于茗兰, 吴隆坤, 郑晓明, 逄洪波. 植物lncRNA及其对低温胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(7): 1-12. |
[8] | 郭怡婷, 赵文菊, 任延靖, 赵孟良. 菊芋NAC转录因子家族基因的鉴定及分析[J]. 生物技术通报, 2023, 39(6): 217-232. |
[9] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[10] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[11] | 张新博, 崔浩亮, 史佩华, 高锦春, 赵顺然, 陶晨雨. 低起始量的免疫共沉淀技术研究进展[J]. 生物技术通报, 2023, 39(4): 227-235. |
[12] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[13] | 葛颜锐, 赵冉, 徐静, 李若凡, 胡云涛, 李瑞丽. 植物维管形成层发育及其调控的研究进展[J]. 生物技术通报, 2023, 39(3): 13-25. |
[14] | 蒋路园, 丰美静, 杜雨晴, 邸葆, 陈段芬, 邱德有, 杨艳芳. 红豆杉低温半致死温度和低温胁迫下紫杉烷含量[J]. 生物技术通报, 2023, 39(3): 232-242. |
[15] | 刘铖霞, 孙宗艳, 罗云波, 朱鸿亮, 曲桂芹. bHLH转录因子的磷酸化调控植物生理功能的研究进展[J]. 生物技术通报, 2023, 39(3): 26-34. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||