生物技术通报 ›› 2022, Vol. 38 ›› Issue (5): 228-239.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0731
孙德权(), 陆新华, 李伟明, 胡玉林, 段雅婕, 庞振才, 胡会刚()
收稿日期:
2021-06-06
出版日期:
2022-05-26
发布日期:
2022-06-10
作者简介:
孙德权,男,博士,副研究员,研究方向:纳米生物技术;E-mail: 基金资助:
SUN De-quan(), LU Xin-hua, LI Wei-ming, HU Yu-lin, DUAN Ya-jie, PANG Zhen-cai, HU Hui-gang()
Received:
2021-06-06
Published:
2022-05-26
Online:
2022-06-10
摘要:
介孔二氧化硅纳米粒(mesoporous silica nanoparticles,MSNs)具有高容量介孔空间、比表面积大、稳定性强、内外表面易于修饰和生物相容性好等优点,其在农业上的应用已成为当前国内外研究的热点。综述近年来国内外MSNs在农业生产上的应用进展,详细阐述MSNs作为载运系统在农业投入品和转基因方面的优势,讨论MSNs在环境污染治理、农产品贮藏保鲜、探测传感器等方面应用的特点,解析植物吸收、运输和积累MSNs的过程以及其与植物互作的原理,综合评估MSNs的生物安全性。最后,针对目前存在的问题和发展前景进行展望,以期为更有效地利用MSNs解决农业生产中的实际问题提供参考与理论支撑。
孙德权, 陆新华, 李伟明, 胡玉林, 段雅婕, 庞振才, 胡会刚. 介孔二氧化硅纳米粒在农业中的应用[J]. 生物技术通报, 2022, 38(5): 228-239.
SUN De-quan, LU Xin-hua, LI Wei-ming, HU Yu-lin, DUAN Ya-jie, PANG Zhen-cai, HU Hui-gang. Application of Mesoporous Silica Nanoparticles in Agriculture[J]. Biotechnology Bulletin, 2022, 38(5): 228-239.
图2 氨基修饰的MSNs对拟南芥生长发育的影响 图片引用自文献[87]
Fig. 2 Effects of amine-functionalized MSNs on the growth and development of A. Thaliana Figure cited from reference[87]
[1] | 陈星濛. 纳米技术在农业中的应用[J]. 湖北农业科学, 2019, 58(S2):13-15, 20. |
Chen XM. Application of nanotechnology in agriculture[J]. Hubei Agric Sci, 2019, 58(S2):13-15, 20. | |
[2] |
Xin XP, Judy JD, Sumerlin BB, et al. Nano-enabled agriculture:from nanoparticles to smart nanodelivery systems[J]. Environ Chem, 2020, 17(6):413.
doi: 10.1071/EN19254 URL |
[3] | 高鸿飞, 范世航, 刘婧琳, 等. 纳米材料在植物遗传转化中的应用[J]. 中国油料作物学报, 2021, 43(1):64-69. |
Gao HF, Fan SH, Liu JL, et al. Application of nanomaterials in plant genetic transformation[J]. Chin J Oil Crop Sci, 2021, 43(1):64-69. | |
[4] |
Fu L, Wang Z, Dhankher OP, et al. Nanotechnology as a new sustainable approach for controlling crop diseases and increasing agricultural production[J]. J Exp Bot, 2020, 71(2):507-519.
doi: 10.1093/jxb/erz314 URL |
[5] |
高梦迪, 盛茂银, 傅籍锋. 纳米材料对植物生长发育的影响[J]. 生物技术通报, 2019, 35(7):172-180.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-1022 |
Gao MD, Sheng MY, Fu JF. Effects of nanomaterials on plant growth and development[J]. Biotechnol Bull, 2019, 35(7):172-180. | |
[6] | Guo HY, White JC, Wang ZY, et al. Nano-enabled fertilizers to control the release and use efficiency of nutrients[J]. Curr Opin Environ Sci Heal, 2018, 6:77-83. |
[7] |
Nuruzzaman M, Rahman MM, Liu Y, et al. Nanoencapsulation, nano-guard for pesticides:a new window for safe application[J]. J Agric Food Chem, 2016, 64(7):1447-1483.
doi: 10.1021/acs.jafc.5b05214 URL |
[8] |
Sarlak N, Taherifar A, Salehi F. Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment[J]. J Agric Food Chem, 2014, 62(21):4833-4838.
doi: 10.1021/jf404720d URL |
[9] |
Ribes À, Santiago-Felipe S, Bernardos A, et al. Two new fluorogenic aptasensors based on capped mesoporous silica nanoparticles to detect Ochratoxin A[J]. ChemistryOpen, 2017, 6(5):653-659.
doi: 10.1002/open.201700106 URL |
[10] | 谭靓, 胡长鹰, 王志伟. 纳米二氧化钛抗菌食品包装复合膜的研究进展[J]. 食品安全质量检测学报, 2020, 11(22):8341-8350. |
Tan L, Hu CY, Wang ZW. Research progress of nano-titanium dioxide in antimicrobial food packaging composite film[J]. J Food Saf Qual, 2020, 11(22):8341-8350. | |
[11] |
Popat A, Liu J, Hu QH, et al. Adsorption and release of biocides with mesoporous silica nanoparticles[J]. Nanoscale, 2012, 4(3):970-975.
doi: 10.1039/C2NR11691J URL |
[12] |
Abdelrahman TM, Qin XY, Li DL, et al. Pectinase-responsive carriers based on mesoporous silica nanoparticles for improving the translocation and fungicidal activity of prochloraz in rice plants[J]. Chem Eng J, 2021, 404:126440.
doi: 10.1016/j.cej.2020.126440 URL |
[13] | 刘强. 不同植物篱系统对坡耕地农田径流污染物的去除研究[D]. 雅安: 四川农业大学, 2016. |
Liu Q. Research on removal efficiency of the sloping farmland pollutants in surface runoff using different hedgerow systems[D]. Ya’an: Sichuan Agricultural University, 2016. | |
[14] | 何顺, 高云昊, 万虎, 等. 基于介孔二氧化硅纳米粒子的农药可控释放研究进展[J]. 农药学学报, 2016, 18(4):416-423. |
He S, Gao YH, Wan H, et al. Recent progress in the application of mesoporous silica nanoparticles to controlled pesticides delivery system[J]. Chin J Pestic Sci, 2016, 18(4):416-423. | |
[15] |
Jin L, Liu X, Bian CH, et al. Fabrication linalool-functionalized hollow mesoporous silica spheres nanoparticles for efficiently enhance bactericidal activity[J]. Chin Chem Lett, 2020, 31(8):2137-2141.
doi: 10.1016/j.cclet.2019.12.020 URL |
[16] |
Li ZZ, Wen LX, Shao L, et al. Fabrication of porous hollow silica nanoparticles and their applications in drug release control[J]. J Control Release, 2004, 98(2):245-254.
doi: 10.1016/j.jconrel.2004.04.019 URL |
[17] |
Wen LX, Li ZZ, Zou HK, et al. Controlled release of avermectin from porous hollow silica nanoparticles[J]. Pest Manag Sci, 2005, 61(6):583-590.
pmid: 15714463 |
[18] |
Liu F, Wen LX, Li ZZ, et al. Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide[J]. Mater Res Bull, 2006, 41(12):2268-2275.
doi: 10.1016/j.materresbull.2006.04.014 URL |
[19] |
Li ZZ, Xu SA, Wen LX, et al. Controlled release of avermectin from porous hollow silica nanoparticles:influence of shell thickness on loading efficiency, UV-shielding property and release[J]. J Control Release, 2006, 111(1/2):81-88.
doi: 10.1016/j.jconrel.2005.10.020 URL |
[20] |
Li ZZ, Chen JF, Liu F, et al. Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin[J]. Pest Manag Sci, 2007, 63(3):241-246.
doi: 10.1002/ps.1301 URL |
[21] |
Sharma MVP, Sadanandam G, Ratnamala A, et al. An efficient and novel porous nanosilica supported TiO2 photocatalyst for pesticide degradation using solar light[J]. J Hazard Mater, 2009, 171(1/2/3):626-633.
doi: 10.1016/j.jhazmat.2009.06.040 URL |
[22] |
Prado AGS, Moura AO, Nunes AR. Nanosized silica modified with carboxylic acid as support for controlled release of herbicides[J]. J Agric Food Chem, 2011, 59(16):8847-8852.
doi: 10.1021/jf202509g URL |
[23] |
Chen J, Wang W, Xu Y, et al. Slow-release formulation of a new biological pesticide, pyoluteorin, with mesoporous silica[J]. J Agric Food Chem, 2011, 59(1):307-311.
doi: 10.1021/jf103640t URL |
[24] |
Wibowo D, Zhao CX, Peters BC, et al. Sustained release of fipronil insecticide in vitro and in vivo from biocompatible silica nanocapsules[J]. J Agric Food Chem, 2014, 62(52):12504-12511.
doi: 10.1021/jf504455x URL |
[25] | Wanyika H. Sustained release of fungicide metalaxyl by mesoporous silica nanospheres[J]. J Nanoparticle Res, 2013, 15(8):1-9. |
[26] |
Janatova A, Bernardos A, Smid J, et al. Long-term antifungal activity of volatile essential oil components released from mesoporous silica materials[J]. Ind Crops Prod, 2015, 67:216-220.
doi: 10.1016/j.indcrop.2015.01.019 URL |
[27] |
Chen HY, Lin YS, Zhou HJ, et al. Synthesis and characterization of chlorpyrifos/copper(II)schiff base mesoporous silica with pH sensitivity for pesticide sustained release[J]. J Agric Food Chem, 2016, 64(43):8095-8102.
doi: 10.1021/acs.jafc.6b03262 URL |
[28] |
Chen HY, Lin YS, Zhou HJ, et al. Highly efficient alginate sodium encapsulated chlorpyrifos/copper(ii)Schiff base mesoporous silica sustained release system with pH and ion response for pesticide delivery[J]. RSC Adv, 2016, 6(115):114714-114721.
doi: 10.1039/C6RA23836J URL |
[29] |
Cao LD, Zhang HR, Cao C, et al. Quaternized chitosan-capped mesoporous silica nanoparticles as nanocarriers for controlled pesticide release[J]. Nanomaterials, 2016, 6(7):126.
doi: 10.3390/nano6070126 URL |
[30] |
Sun RJ, Wang WQ, Wen YQ, et al. Recent advance on mesoporous silica nanoparticles-based controlled release system:intelligent switches open up new horizon[J]. Nanomaterials, 2015, 5(4):2019-2053.
doi: 10.3390/nano5042019 URL |
[31] |
Kaziem AE, Gao YH, He S, et al. Synthesis and insecticidal activity of enzyme-triggered functionalized hollow mesoporous silica for controlled release[J]. J Agric Food Chem, 2017, 65(36):7854-7864.
doi: 10.1021/acs.jafc.7b02560 URL |
[32] |
Kaziem AE, Gao Y, Zhang Y, et al. Α-Amylase triggered carriers based on cyclodextrin anchored hollow mesoporous silica for enhancing insecticidal activity of avermectin against Plutella xylostella[J]. J Hazard Mater, 2018, 359:213-221.
doi: S0304-3894(18)30589-2 pmid: 30036751 |
[33] |
Xu CL, Cao LD, Zhao PY, et al. Emulsion-based synchronous pesticide encapsulation and surface modification of mesoporous silica nanoparticles with carboxymethyl chitosan for controlled azoxystrobin release[J]. Chem Eng J, 2018, 348:244-254.
doi: 10.1016/j.cej.2018.05.008 URL |
[34] |
Lu X, Sun D, Rookes JE, et al. Nanoapplication of a resistance inducer to reduce Phytophthora disease in pineapple(Ananas comosus L.)[J]. Front Plant Sci, 2019, 10:1238.
doi: 10.3389/fpls.2019.01238 URL |
[35] |
Shan YP, Cao LD, Xu CL, et al. Sulfonate-functionalized mesoporous silica nanoparticles as carriers for controlled herbicide diquat dibromide release through electrostatic interaction[J]. Int J Mol Sci, 2019, 20(6):1330.
doi: 10.3390/ijms20061330 URL |
[36] |
Gao YH, Xiao YN, Mao KK, et al. Thermoresponsive polymer-encapsulated hollow mesoporous silica nanoparticles and their application in insecticide delivery[J]. Chem Eng J, 2020, 383:123169.
doi: 10.1016/j.cej.2019.123169 URL |
[37] |
Zhao PY, Cao LD, Ma DK, et al. Synthesis of pyrimethanil-loaded mesoporous silica nanoparticles and its distribution and dissipation in cucumber plants[J]. Molecules, 2017, 22(5):817.
doi: 10.3390/molecules22050817 URL |
[38] |
Zhao P, Cao L, Ma D, et al. Translocation, distribution and degradation of prochloraz-loaded mesoporous silica nanoparticles in cucumber plants[J]. Nanoscale, 2018, 10(4):1798-1806.
doi: 10.1039/C7NR08107C URL |
[39] |
Xu YB, Xu CL, Huang QL, et al. Size effect of mesoporous silica nanoparticles on pesticide loading, release, and delivery in cucumber plants[J]. Appl Sci, 2021, 11(2):575.
doi: 10.3390/app11020575 URL |
[40] |
Zhu F, Liu XG, Cao LD, et al. Uptake and distribution of fenoxanil-loaded mesoporous silica nanoparticles in rice plants[J]. Int J Mol Sci, 2018, 19(10):2854.
doi: 10.3390/ijms19102854 URL |
[41] |
Sattary M, Amini J, Hallaj R. Antifungal activity of the lemongrass and clove oil encapsulated in mesoporous silica nanoparticles against wheat’s take-all disease[J]. Pestic Biochem Physiol, 2020, 170:104696.
doi: S0048-3575(20)30191-7 pmid: 32980050 |
[42] | 汪玉洁, 陈日远, 刘厚诚, 等. 纳米材料在农业上的应用及其对植物生长和发育的影响[J]. 植物生理学报, 2017, 53(6):933-942. |
Wang YJ, Chen RY, Liu HC, et al. Applications of nanomaterials in agriculture and its effects on the growth and development of plants[J]. Plant Physiol J, 2017, 53(6):933-942. | |
[43] |
Wanyika H, Gatebe E, Kioni P, et al. Mesoporous silica nanoparticles carrier for urea:potential applications in agrochemical delivery systems[J]. J Nanosci Nanotechnol, 2012, 12(3):2221-2228.
doi: 10.1166/jnn.2012.5801 URL |
[44] |
de Silva M, Siriwardena DP, Sandaruwan C, et al. Urea-silica nanohybrids with potential applications for slow and precise release of nitrogen[J]. Mater Lett, 2020, 272:127839.
doi: 10.1016/j.matlet.2020.127839 URL |
[45] |
Singh K, Ram S, Nehra A, et al. Effect of magnetized water on urea-loading efficiency of mesoporous nano-silica:a seed germination study on wheat crop[J]. J Nanosci Nanotechnol, 2019, 19(4):2016-2026.
doi: 10.1166/jnn.2019.16508 URL |
[46] | 白杨. 纳米SiO2-聚乙烯醇-γ-聚谷氨酸复合物包膜肥料研制及其养分缓释机理[D]. 沈阳: 沈阳农业大学, 2020. |
Bai Y. Manufacture of nano-SiO2-polyvinyl alcohol-γ-glutamic acid composite coated fertilizer and its nutrient slow and release mechanism[D]. Shenyang: Shenyang Agricultural University, 2020. | |
[47] |
Mushtaq A, Jamil N, Rizwan S, et al. Engineered Silica Nanoparticles and silica nanoparticles containing controlled release fertilizer for drought and saline areas[J]. IOP Conf Ser:Mater Sci Eng, 2018, 414:012029.
doi: 10.1088/1757-899X/414/1/012029 URL |
[48] |
Naseem F, Zhi Y, Farrukh MA, et al. Mesoporous ZnAl2Si10O24 nanofertilizers enable high yield of Oryza sativa L[J]. Sci Rep, 2020, 10:10841.
doi: 10.1038/s41598-020-67611-4 pmid: 32616915 |
[49] | 孙德权, 陆新华, 陈海丽, 等. 介孔二氧化硅纳米肥料的制备及控制释放[J]. 热带作物学报, 2020, 41(9):1905-1911. |
Sun DQ, Lu XH, Chen HL, et al. Preparation and controlled release of nanofertilizer mediated by mesoporous silica nanoparticles[J]. Chin J Trop Crops, 2020, 41(9):1905-1911. | |
[50] |
Hajiahmadi Z, Shirzadian-Khorramabad R, Kazemzad M, et al. A novel, simple, and stable mesoporous silica nanoparticle-based gene transformation approach in Solanum lycopersicum[J]. 3 Biotech, 2020, 10(8):370.
doi: 10.1007/s13205-020-02359-2 pmid: 32832330 |
[51] |
Torney F, Trewyn BG, Lin VS, et al. Mesoporous silica nanoparticles deliver DNA and chemicals into plants[J]. Nat Nanotechnol, 2007, 2(5):295-300.
doi: 10.1038/nnano.2007.108 URL |
[52] |
Martin-Ortigosa S, Valenstein JS, Lin VSY, et al. Gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to plant cells via the biolistic method[J]. Adv Funct Mater, 2012, 22(17):3576-3582.
doi: 10.1002/adfm.201200359 URL |
[53] |
Martin-Ortigosa S, Peterson DJ, Valenstein JS, et al. Mesoporous silica nanoparticle-mediated intracellular cre protein delivery for maize genome editing via loxP site excision[J]. Plant Physiol, 2014, 164(2):537-547.
doi: 10.1104/pp.113.233650 pmid: 24376280 |
[54] |
Zolghadrnasab M, Mousavi A, Farmany A, et al. Ultrasound-mediated gene delivery into suspended plant cells using polyethyleneimine-coated mesoporous silica nanoparticles[J]. Ultrason Sonochem, 2021, 73:105507.
doi: 10.1016/j.ultsonch.2021.105507 URL |
[55] |
Chang FP, Kuang LY, Huang CA, et al. A simple plant gene delivery system using mesoporous silica nanoparticles as carriers[J]. J Mater Chem B, 2013, 1(39):5279-5287.
doi: 10.1039/c3tb20529k URL |
[56] |
Fu YQ, Li LH, Wang H, et al. Silica nanoparticles-mediated stable genetic transformation in Nicotiana tabacum[J]. Chem Res Chin Univ, 2015, 31(6):976-981.
doi: 10.1007/s40242-015-5088-0 URL |
[57] |
Yang H, Zheng K, Zhang ZM, et al. Adsorption and protection of plasmid DNA on mesoporous silica nanoparticles modified with various amounts of organosilane[J]. J Colloid Interface Sci, 2012, 369(1):317-322.
doi: 10.1016/j.jcis.2011.12.043 URL |
[58] |
Niu BY, Zhou YX, Wen T, et al. Proper functional modification and optimized adsorption conditions improved the DNA loading capacity of mesoporous silica nanoparticles[J]. Colloids Surf A:Physicochem Eng Aspects, 2018, 548:98-107.
doi: 10.1016/j.colsurfa.2018.03.035 URL |
[59] |
Xie Y, Cheng W, Tsang PE, et al. Remediation and phytotoxicity of decabromodiphenyl ether contaminated soil by zero valent iron nanoparticles immobilized in mesoporous silica microspheres[J]. J Environ Manage, 2016, 166:478-483.
doi: 10.1016/j.jenvman.2015.10.042 URL |
[60] |
Fouad DM, El-Said WA, Ali MH, et al. Silica-gold nanocomposite for removal of organophosphorous pesticides[J]. Plasmonics, 2017, 12(3):869-875.
doi: 10.1007/s11468-016-0338-7 URL |
[61] |
Albertini F, Ribeiro T, Alves S, et al. Boron-chelating membranes based in hybrid mesoporous silica nanoparticles for water purification[J]. Mater Des, 2018, 141:407-413.
doi: 10.1016/j.matdes.2018.01.001 URL |
[62] | Mohamad DF, Osman NS, Nazri MKHM, et al. Synthesis of mesoporous silica nanoparticle from banana peel ash for removal of phenol and methyl orange in aqueous solution[J]. Mater Today:Proc, 2019, 19:1119-1125. |
[63] | Beagan AM. Cholesterol-functionalised mesoporous silica nanoparticles for removal of naphthalene from water[J]. Int J Environ Anal Chem, 2021:1-15. |
[64] | To PK, Ma HT, Nguyen Hoang L, et al. Nitrate removal from waste-water using silica nanoparticles[J]. J Chem, 2020, 2020:1-6. |
[65] |
Kenawy IMM, Abou El-Reash YG, Hassanien MM, et al. Use of microwave irradiation for modification of mesoporous silica nanoparticles by thioglycolic acid for removal of cadmium and mercury[J]. Microporous Mesoporous Mater, 2018, 258:217-227.
doi: 10.1016/j.micromeso.2017.09.021 URL |
[66] |
Al-Asmar A, Giosafatto CVL, Sabbah M, et al. Effect of mesoporous silica nanoparticles on the physicochemical properties of pectin packaging material for strawberry wrapping[J]. Nanomaterials, 2019, 10(1):52.
doi: 10.3390/nano10010052 URL |
[67] |
Shi SY, Wang W, Liu LQ, et al. Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature[J]. J Food Eng, 2013, 118(1):125-131.
doi: 10.1016/j.jfoodeng.2013.03.029 URL |
[68] | 尹月玲, 刘瑶, 章建浩, 等. 纳米SiO2复合涂膜材料包装松花蛋的保鲜效果[J]. 农业工程学报, 2012, 28(S1):281-287. |
Yin YL, Liu Y, Zhang JH, et al. Effect of composite conting with nano-silicon dioxide on fresh-keeping of preserved eggs[J]. Trans Chin Soc Agric Eng, 2012, 28(S1):281-287. | |
[69] |
Tan H, Ma L, Guo T, et al. A novel fluorescence aptasensor based on mesoporous silica nanoparticles for selective and sensitive detection of aflatoxin B1[J]. Anal Chim Acta, 2019, 1068:87-95.
doi: 10.1016/j.aca.2019.04.014 URL |
[70] |
Xu Y, Kutsanedzie FYH, Hassan M, et al. Mesoporous silica supported orderly-spaced gold nanoparticles SERS-based sensor for pesticides detection in food[J]. Food Chem, 2020, 315:126300.
doi: 10.1016/j.foodchem.2020.126300 URL |
[71] |
Sánchez G, Curiel D, Ratera I, et al. Modified mesoporous silica nanoparticles as a reusable, selective chromogenic sensor for mercury(II)recognition[J]. Dalton Trans, 2013, 42(18):6318-6326.
doi: 10.1039/c2dt32243a pmid: 23325035 |
[72] |
Nair R, Varghese SH, Nair BG, et al. Nanoparticulate material delivery to plants[J]. Plant Sci, 2010, 179(3):154-163.
doi: 10.1016/j.plantsci.2010.04.012 URL |
[73] |
Lee H, Lytton-Jean AK, Chen Y, et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery[J]. Nat Nanotechnol, 2012, 7(6):389-393.
doi: 10.1038/nnano.2012.73 URL |
[74] | Hussain HI, Yi ZF, Rookes JE, et al. Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants[J]. J Nanoparticle Res, 2013, 15(6):1-15. |
[75] |
Sun D, Hussain HI, Yi Z, et al. Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles[J]. Plant Cell Rep, 2014, 33(8):1389-1402.
doi: 10.1007/s00299-014-1624-5 URL |
[76] |
Sun D, Hussain HI, Yi Z, et al. Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin[J]. Chemosphere, 2016, 152:81-91.
doi: 10.1016/j.chemosphere.2016.02.096 URL |
[77] |
Zhao P, Yuan W, Xu C, et al. Enhancement of spirotetramat transfer in cucumber plant using mesoporous silica nanoparticles as carriers[J]. J Agric Food Chem, 2018, 66(44):11592-11600.
doi: 10.1021/acs.jafc.8b04415 URL |
[78] | 李博, 陶功胜, 谢寅峰, 等. 叶面喷施纳米SiO2对髯毛箬竹的生理调节效应[J]. 南京林业大学学报:自然科学版, 2012, 36(4):161-164. |
Li B, Tao GS, Xie YF, et al. Physiological effects under the condition of spraying nano-SiO2 onto the Indocalamus barbatus McClure leaves[J]. J Nanjing For Univ:Nat Sci Ed, 2012, 36(4):161-164. | |
[79] |
Suriyaprabha R, Karunakaran G, Yuvakkumar R, et al. Silica nanoparticles for increased silica availability in maize(Zea mays. L)seeds under hydroponic conditions[J]. Curr Nanosci, 2012, 8(6):902-908.
doi: 10.2174/157341312803989033 URL |
[80] | Tantawy AS, Salama YM, El-Nemr MA, et al. Nano silicon application improves salinity tolerance of sweet pepper plants[J]. Int J Chem Res Technol, 2015, 8(10):11-17. |
[81] |
Suciaty T, Purnomo D, Sakya AT, et al. The effect of nano-silica fertilizer concentration and rice hull ash doses on soybean(Glycine max(L.)Merrill)growth and yield[J]. IOP Conf Ser:Earth Environ Sci, 2018, 129:012009.
doi: 10.1088/1755-1315/129/1/012009 URL |
[82] |
Cui J, Liu T, Li F, et al. Silica nanoparticles alleviate cadmium toxicity in rice cells:Mechanisms and size effects[J]. Environ Pollut, 2017, 228:363-369.
doi: 10.1016/j.envpol.2017.05.014 URL |
[83] |
de Asgari F, Majd A, Jonoubi P, et al. Effects of silicon nanoparticles on molecular, chemical, structural and ultrastructural characteristics of oat(Avena sativa L.)[J]. Plant Physiol Biochem, 2018, 127:152-160.
doi: 10.1016/j.plaphy.2018.03.021 URL |
[84] |
Le VN, Rui Y, Gui X, et al. Uptake, transport, distribution and bio-effects of SiO2 nanoparticles in Bt-transgenic cotton[J]. J Nanobiotechnology, 2014, 12:50.
doi: 10.1186/s12951-014-0050-8 URL |
[85] | Derbalah A, Shenashen M, Hamza A, et al. Antifungal activity of fabricated mesoporous silica nanoparticles against early blight of tomato[J]. Egypt J Basic Appl Sci, 2018, 5(2):145-150. |
[86] |
Buchman JT, Elmer WH, Ma CX, et al. Chitosan-coated mesoporous silica nanoparticle treatment of Citrullus lanatus(watermelon):enhanced fungal disease suppression and modulated expression of stress-related genes[J]. ACS Sustainable Chem Eng, 2019, 7(24):19649-19659.
doi: 10.1021/acssuschemeng.9b04800 URL |
[87] |
Lu X, Sun D, Zhang X, et al. Stimulation of photosynthesis and enhancement of growth and yield in Arabidopsis thaliana treated with amine-functionalized mesoporous silica nanoparticles[J]. Plant Physiol Biochem, 2020, 156:566-577.
doi: 10.1016/j.plaphy.2020.09.036 URL |
[88] | 龚束芳, 刘阳, 速馨逸, 等. 纳米硅肥对远东芨芨草幼苗模拟抗旱的影响[J]. 草业科学, 2018, 35(12):2924-2930. |
Gong SF, Liu Y, Su XY, et al. Influence of nano-silicon fertilizer on osmotic stress in Achnatherum extremiorientale[J]. Pratacultural Sci, 2018, 35(12):2924-2930. | |
[89] | 刘俊渤, 常海波, 马景勇, 等. 纳米SiO2对水稻稻瘟病的抗病效应及对水稻生长发育的影响[J]. 吉林农业大学学报, 2012, 34(2):157-161, 165. |
Liu JB, Chang HB, Ma JY, et al. Effects of nano-silica on rice’s resistance to Magnaporthe oryzae and on rice growth[J]. J Jilin Agric Univ, 2012, 34(2):157-161, 165. | |
[90] | 王荔军, 王运华, 周益林, 等. 纳米结构SiO2与植物真菌病害发生的关系[J]. 华中农业大学学报, 2001, 20(6):593-597. |
Wang LJ, Wang YH, Zhou YL, et al. Relationship between nanostructure SiO2 and occurrence of plant fungi[J]. J Huazhong Agric, 2001, 20(6):593-597. | |
[91] |
Khodakovskaya MV, de Silva K, Nedosekin DA, et al. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions[J]. PNAS, 2011, 108(3):1028-1033.
doi: 10.1073/pnas.1008856108 pmid: 21189303 |
[1] | 赵洋, 孙慧明, 林浩澎, 罗娉婷, 朱雅婷, 陈琼华, 舒琥. 一株安全高效的好氧反硝化菌Pseudomonas stutzeri DZ11的生物安全性及脱氮性能研究[J]. 生物技术通报, 2022, 38(10): 226-234. |
[2] | 姚琳通, 刘娅婷, 刘雅静, 陈真真. 介孔二氧化硅在肿瘤治疗领域的研究进展[J]. 生物技术通报, 2019, 35(2): 182-191. |
[3] | 柳晓丹, 许文涛, 黄昆仑, 梅晓宏. 复合性状转基因植物安全性评价的研究进展[J]. 生物技术通报, 2016, 32(6): 1-6. |
[4] | 韩绪军;张立波;冯悦;唐颖蕾;魏大巧;彭金辉;夏雪山;. 载ZnO/活性碳复合材料抗菌性能及安全性研究[J]. , 2010, 0(01): 200-204. |
[5] | . 《生物技术通报》稿约[J]. , 2009, 0(02): 142-142. |
[6] | . 《生物技术通报》稿约[J]. , 2008, 0(06): 194-194. |
[7] | . 《生物技术通报》稿约[J]. , 2008, 0(01): 186-186. |
[8] | . 《生物技术通报》稿约[J]. , 2007, 0(06): 170-170. |
[9] | 蒋勤. 《农业与环境生物技术文摘》[J]. , 2000, 0(06): 52-52. |
[10] | . 生物防治[J]. , 1996, 0(06): 67-69. |
[11] | 朱遐. 美农部取消OAB和ABRAC机构[J]. , 1996, 0(05): 19-20. |
[12] | 陶冶. 生物多样性缔约国赞同生物安全性运输准则[J]. , 1996, 0(04): 30-31. |
[13] | 李思经. 欧洲新闻界关注生物安全性[J]. , 1996, 0(03): 13-14. |
[14] | 吴南君;. 美国参议院通过法案建立生物技术政策委员会[J]. , 1989, 0(02): 7-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||