生物技术通报 ›› 2022, Vol. 38 ›› Issue (5): 36-46.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0139
• 堆肥微生物专题(专题主编: 王禄山 教授) • 上一篇 下一篇
高雪彦1(), 陈林旭2, 陈显轲2, 庞昕2, 潘登3, 林建群2()
收稿日期:
2022-02-11
出版日期:
2022-05-26
发布日期:
2022-06-10
作者简介:
高雪彦,女,博士,研究方向:资源与环境微生物; 基金资助:
GAO Xue-yan1(), CHEN Lin-xu2, CHEN Xian-ke2, PANG Xin2, PAN Deng3, LIN Jian-qun2()
Received:
2022-02-11
Published:
2022-05-26
Online:
2022-06-10
摘要:
嗜酸硫杆菌(属)(Acidithiobacillus spp.)能够氧化亚铁、硫或还原性无机硫化合物(reduced inorganic sulfur compounds,RISCs)获得能量,固定二氧化碳,是一类典型的嗜酸性化能自养微生物。嗜酸硫杆菌广泛分布于酸性矿水、热泉等酸性环境中,是地球生态系统硫和铁元素循环的主要推动者。嗜酸硫杆菌独特的生理代谢特征和极端环境适应性,使其广泛应用于生物浸出领域。本文综述了嗜酸硫杆菌的生理代谢特征和极端环境下的适应机制,阐述了嗜酸硫杆菌在工农业中的应用,讨论了面向国家重大需求,嗜酸硫杆菌在今后的主要研究方向和需要解决的关键科学问题,为嗜酸硫杆菌在生理代谢、环境适应和工农业应用的研究提供重要的线索和启示。
高雪彦, 陈林旭, 陈显轲, 庞昕, 潘登, 林建群. 嗜酸硫杆菌在工农业中的应用[J]. 生物技术通报, 2022, 38(5): 36-46.
GAO Xue-yan, CHEN Lin-xu, CHEN Xian-ke, PANG Xin, PAN Deng, LIN Jian-qun. Application of Acidithiobacillus spp. in Industry and Agriculture[J]. Biotechnology Bulletin, 2022, 38(5): 36-46.
菌种 Species | 生长pH值 Growth pH | 硫代谢能力 Sulfur metab- olism ability | 铁代谢能力 Iron metabo- lism ability | 氢代谢能力 Hydrogen met- abolism ability |
---|---|---|---|---|
A. ferrooxidans[ | 1.3-4.5 | + | + | + |
A. ferrivorans[ | 1.9-3.4 | + | + | (+) |
A. ferriphilus[ | 1.5- | + | + | - |
A. ferridurans[ | 1.4-3.0 | + | + | + |
A. ferrianus[ | 1.3-3.7 | + | + | + |
A. thiooxidans[ | 0.5-5.5 | + | - | - |
A. caldus[ | 1.0-3.5 | + | - | + |
A. albertensis[ | 0.5-6.0 | + | - | NR |
A. sulfuriphilus[ | 1.8-7.0 | + | - | - |
表1 九种嗜酸硫杆菌基本生理代谢特征
Table 1 Physiological and metabolic characteristics of 9 species of Acidithiobacillus spp.
菌种 Species | 生长pH值 Growth pH | 硫代谢能力 Sulfur metab- olism ability | 铁代谢能力 Iron metabo- lism ability | 氢代谢能力 Hydrogen met- abolism ability |
---|---|---|---|---|
A. ferrooxidans[ | 1.3-4.5 | + | + | + |
A. ferrivorans[ | 1.9-3.4 | + | + | (+) |
A. ferriphilus[ | 1.5- | + | + | - |
A. ferridurans[ | 1.4-3.0 | + | + | + |
A. ferrianus[ | 1.3-3.7 | + | + | + |
A. thiooxidans[ | 0.5-5.5 | + | - | - |
A. caldus[ | 1.0-3.5 | + | - | + |
A. albertensis[ | 0.5-6.0 | + | - | NR |
A. sulfuriphilus[ | 1.8-7.0 | + | - | - |
[1] |
Sriaporn C, Campbell KA, van Kranendonk MJ, et al. Genomic adaptations enabling Acidithiobacillus distribution across wide-ranging hot spring temperatures and pHs[J]. Microbiome, 2021, 9(1):135.
doi: 10.1186/s40168-021-01090-1 URL |
[2] |
Liu YJ, Wu SL, Southam G, et al. Bioaugmentation with Acidithiobacillus species accelerates mineral weathering and formation of secondary mineral cements for hardpan development in sulfidic Pb-Zn tailings[J]. J Hazard Mater, 2021, 411:124988.
doi: 10.1016/j.jhazmat.2020.124988 URL |
[3] |
Vishniac W, Santer M. The thiobacilli[J]. Bacteriol Rev, 1957, 21(3):195-213.
doi: 10.1128/br.21.3.195-213.1957 URL |
[4] |
Wang R, Lin JQ, Liu XM, et al. Sulfur oxidation in the acidophilic autotrophic Acidithiobacillus spp[J]. Front Microbiol, 2019, 9:3290.
doi: 10.3389/fmicb.2018.03290 URL |
[5] |
Schrenk MO, Edwards KJ, Goodman RM, et al. Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans:implications for generation of acid mine drainage[J]. Science, 1998, 279(5356):1519-1522.
pmid: 9488647 |
[6] |
Hallberg KB, González-Toril E, Johnson DB. Acidithiobacillus ferrivorans, sp. nov.;facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments[J]. Extremophiles, 2010, 14(1):9-19.
doi: 10.1007/s00792-009-0282-y pmid: 19787416 |
[7] |
Hedrich S, Johnson DB. Acidithiobacillus ferridurans sp. nov., an acidophilic iron-, sulfur- and hydrogen-metabolizing chemolithotrophic gammaproteobacterium[J]. Int J Syst Evol Microbiol, 2013, 63(Pt_11):4018-4025.
doi: 10.1099/ijs.0.049759-0 URL |
[8] |
Falagán C, Johnson DB. Acidithiobacillus ferriphilus sp. nov., a facultatively anaerobic iron- and sulfur-metabolizing extreme acidophile[J]. Int J Syst Evol Microbiol, 2016, 66(1):206-211.
doi: 10.1099/ijsem.0.000698 URL |
[9] |
Norris PR, Falagán C, Moya-Beltrán A, et al. Acidithiobacillus ferrianus sp. nov. :an ancestral extremely acidophilic and facultatively anaerobic chemolithoautotroph[J]. Extremophiles, 2020, 24(2):329-337.
doi: 10.1007/s00792-020-01157-1 pmid: 31980944 |
[10] |
Yang L, Zhao D, Yang J, et al. Acidithiobacillus thiooxidans and its potential application[J]. Appl Microbiol Biotechnol, 2019, 103(19):7819-7833.
doi: 10.1007/s00253-019-10098-5 pmid: 31463545 |
[11] |
Chen LX, Ren YL, Lin JQ, et al. Acidithiobacillus caldus sulfur oxidation model based on transcriptome analysis between the wild type and sulfur oxygenase reductase defective mutant[J]. PLoS One, 2012, 7(9):e39470.
doi: 10.1371/journal.pone.0039470 URL |
[12] |
Castro M, Moya-Beltrán A, Covarrubias PC, et al. Draft genome sequence of the type strain of the sulfur-oxidizing acidophile, Acidithiobacillus albertensis(DSM 14366)[J]. Stand Genomic Sci, 2017, 12:77.
doi: 10.1186/s40793-017-0282-y URL |
[13] |
Falagán C, Moya-Beltrán A, Castro M, et al. Acidithiobacillus sulfuriphilus sp. nov. :an extremely acidophilic sulfur-oxidizing chemolithotroph isolated from a neutral pH environment[J]. Int J Syst Evol Microbiol, 2019, 69(9):2907-2913.
doi: 10.1099/ijsem.0.003576 URL |
[14] | Hedrich S, Johnson DB. Aerobic and anaerobic oxidation of hydrogen by acidophilic bacteria[J]. FEMS Microbiol Lett, 2013, 349(1):40-45. |
[15] |
Bosecker K. Bioleaching:metal solubilization by microorganisms[J]. FEMS Microbiol Rev, 1997, 20(3/4):591-604.
doi: 10.1111/j.1574-6976.1997.tb00340.x URL |
[16] |
Rohwerder T, Gehrke T, Kinzler K, et al. Bioleaching review part A:progress in bioleaching:fundamentals and mechanisms of bacterial metal sulfide oxidation[J]. Appl Microbiol Biotechnol, 2003, 63(3):239-248.
pmid: 14566432 |
[17] | Mangold S, Valdés J, Holmes DS, et al. Sulfur metabolism in the extreme acidophile Acidithiobacillus caldus[J]. Front Microbiol, 2011, 2:17. |
[18] |
Quatrini R, Appia-Ayme C, Denis Y, et al. Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans[J]. BMC Genomics, 2009, 10:394.
doi: 10.1186/1471-2164-10-394 pmid: 19703284 |
[19] |
Valdés J, Pedroso I, Quatrini R, et al. Acidithiobacillus ferrooxidans metabolism:from genome sequence to industrial applications[J]. BMC Genom, 2008, 9:597.
doi: 10.1186/1471-2164-9-597 URL |
[20] |
Feng SS, Yang HL, Wang W. System-level understanding of the potential acid-tolerance components of Acidithiobacillus thiooxidans ZJJN-3 under extreme acid stress[J]. Extremophiles, 2015, 19(5):1029-1039.
doi: 10.1007/s00792-015-0780-z URL |
[21] |
Li LF, Fu LJ, Lin JQ, et al. The σ 54-dependent two-component system regulating sulfur oxidization(Sox)system in Acidithio-bacillus caldus and some chemolithotrophic bacteria[J]. Appl Microbiol Biotechnol, 2017, 101(5):2079-2092.
doi: 10.1007/s00253-016-8026-2 pmid: 27966049 |
[22] |
Ingledew WJ. Thiobacillus ferrooxidans. The bioenergetics of an acidophilic chemolithotroph[J]. Biochim Biophys Acta, 1982, 683(2):89-117.
pmid: 6295474 |
[23] | Bruscella P, Appia-Ayme C, Levicán G, et al. Differential expression of two bc1 complexes in the strict acidophilic chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans suggests a model for their respective roles in iron or sulfur oxidation[J]. Microbiology(Reading), 2007, 153(Pt 1):102-110. |
[24] | Yarzábal A, Appia-Ayme C, Ratouchniak J, et al. Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin[J]. Microbiology(Reading), 2004, 150(Pt 7):2113-2123. |
[25] |
Yarzábal A, Duquesne K, Bonnefoy V. Rusticyanin gene expression of Acidithiobacillus ferrooxidans ATCC 33020 in sulfur- and in ferrous iron media[J]. Hydrometallurgy, 2003, 71(1/2):107-114.
doi: 10.1016/S0304-386X(03)00146-4 URL |
[26] |
Kucera J, Lochman J, Bouchal P, et al. A model of aerobic and anaerobic metabolism of hydrogen in the extremophile Acidithiobacillus ferrooxidans[J]. Front Microbiol, 2020, 11:610836.
doi: 10.3389/fmicb.2020.610836 URL |
[27] |
Lacasse MJ, Zamble DB. NiFe]-hydrogenase maturation[J]. Biochemistry, 2016, 55(12):1689-1701.
doi: 10.1021/acs.biochem.5b01328 URL |
[28] | Adams MWW, Mortenson LE, Chen JS. Hydrogenase[J]. Biochim Biophys Acta BBA Rev Bioenerg, 1980, 594(2/3):105-176. |
[29] |
Fischer J, Quentmeier A, Kostka S, et al. Purification and characterization of the hydrogenase from Thiobacillus ferrooxidans[J]. Arch Microbiol, 1996, 165(5):289-296.
pmid: 8661919 |
[30] |
Schröder O, Bleijlevens B, de Jongh TE, et al. Characterization of a cyanobacterial-like uptake[NiFe]hydrogenase:EPR and FTIR spectroscopic studies of the enzyme from Acidithiobacillus ferrooxidans[J]. J Biol Inorg Chem, 2007, 12(2):212-233.
pmid: 17082918 |
[31] |
Gao XY, Fu CG, Hao LK, et al. The substrate-dependent regulatory effects of the AfeI/R system in Acidithiobacillus ferrooxidans reveals the novel regulation strategy of quorum sensing in acidophiles[J]. Environ Microbiol, 2021, 23(2):757-773.
doi: 10.1111/1462-2920.15163 URL |
[32] |
Whiteley M, Diggle SP, Greenberg EP. Progress in and promise of bacterial quorum sensing research[J]. Nature, 2017, 551(7680):313-320.
doi: 10.1038/nature24624 URL |
[33] |
Papenfort K, Bassler BL. Quorum sensing signal-response systems in Gram-negative bacteria[J]. Nat Rev Microbiol, 2016, 14(9):576-588.
doi: 10.1038/nrmicro.2016.89 pmid: 27510864 |
[34] |
Farah C, Vera M, Morin D, et al. Evidence for a functional quorum-sensing type AI-1 system in the extremophilic bacterium Acidithiobacillus ferrooxidans[J]. Appl Environ Microbiol, 2005, 71(11):7033-7040.
doi: 10.1128/AEM.71.11.7033-7040.2005 URL |
[35] | Rivas M, Seeger M, Holmes DS, et al. A Lux-like quorum sensing system in the extreme acidophile Acidithiobacillus ferrooxidans[J]. Biol Res, 2005, 38(2/3):283-297. |
[36] |
Qiu CS, Xie SY, Liu NN, et al. Removal behavior and chemical speciation distributions of heavy metals in sewage sludge during bioleaching and combined bioleaching/Fenton-like processes[J]. Sci Rep, 2021, 11(1):14879.
doi: 10.1038/s41598-021-94216-2 URL |
[37] |
Rivas M, Seeger M, Jedlicki E, et al. Second acyl homoserine lactone production system in the extreme acidophile Acidithiobacillus ferrooxidans[J]. Appl Environ Microbiol, 2007, 73(10):3225-3231.
doi: 10.1128/AEM.02948-06 URL |
[38] |
González A, Bellenberg S, Mamani S, et al. AHL signaling molecules with a large acyl chain enhance biofilm formation on sulfur and metal sulfides by the bioleaching bacterium Acidithiobacillus ferrooxidans[J]. Appl Microbiol Biotechnol, 2013, 97(8):3729-3737.
doi: 10.1007/s00253-012-4229-3 pmid: 22752316 |
[39] |
Bellenberg S, Díaz M, Noël N, et al. Biofilm formation, communication and interactions of leaching bacteria during colonization of pyrite and sulfur surfaces[J]. Res Microbiol, 2014, 165(9):773-781.
doi: 10.1016/j.resmic.2014.08.006 pmid: 25172572 |
[40] |
Mamani S, Moinier D, Denis Y, et al. Insights into the quorum sensing regulon of the acidophilic Acidithiobacillus ferrooxidans revealed by transcriptomic in the presence of an acyl homoserine lactone superagonist analog[J]. Front Microbiol, 2016, 7:1365.
doi: 10.3389/fmicb.2016.01365 pmid: 27683573 |
[41] | Narla AV, Borenstein DB, Wingreen NS. A biophysical limit for quorum sensing in biofilms[J]. PNAS, 2021, 118(21):e2022818118. |
[42] |
Gao XY, Liu XJ, Fu CA, et al. Novel strategy for improvement of the bioleaching efficiency of Acidithiobacillus ferrooxidans based on the AfeI/R quorum sensing system[J]. Minerals, 2020, 10(3):222.
doi: 10.3390/min10030222 URL |
[43] |
Teitzel GM, Parsek MR. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa[J]. Appl Environ Microbiol, 2003, 69(4):2313-2320.
doi: 10.1128/AEM.69.4.2313-2320.2003 URL |
[44] | Nies DH. Efflux-mediated heavy metal resistance in prokaryotes[J]. FEMS Microbiol Rev, 2003, 27(2/3):313-339. |
[45] |
Alvarez S, Jerez CA. Copper ions stimulate polyphosphate degradation and phosphate efflux in Acidithiobacillus ferrooxidans[J]. Appl Environ Microbiol, 2004, 70(9):5177-5182.
doi: 10.1128/AEM.70.9.5177-5182.2004 URL |
[46] |
Navarro CA, von Bernath D, Jerez CA. Heavy metal resistance strategies of acidophilic bacteria and their acquisition:importance for biomining and bioremediation[J]. Biol Res, 2013, 46(4):363-371.
doi: 10.4067/S0716-97602013000400008 URL |
[47] |
Baker-Austin C, Dopson M. Life in acid:pH homeostasis in acidophiles[J]. Trends Microbiol, 2007, 15(4):165-171.
pmid: 17331729 |
[48] |
Krulwich TA, Sachs G, Padan E. Molecular aspects of bacterial pH sensing and homeostasis[J]. Nat Rev Microbiol, 2011, 9(5):330-343.
doi: 10.1038/nrmicro2549 pmid: 21464825 |
[49] |
Mykytczuk NCS, Trevors JT, Ferroni GD, et al. Cytoplasmic membrane fluidity and fatty acid composition of Acidithiobacillus ferrooxidans in response to pH stress[J]. Extremophiles, 2010, 14(5):427-441.
doi: 10.1007/s00792-010-0319-2 pmid: 20582711 |
[50] |
Tyson GW, Chapman J, Hugenholtz P, et al. Community structure and metabolism through reconstruction of microbial genomes from the environment[J]. Nature, 2004, 428(6978):37-43.
doi: 10.1038/nature02340 URL |
[51] |
Nguyen TH, Won S, Ha MG, et al. Bioleaching for environmental remediation of toxic metals and metalloids:a review on soils, sediments, and mine tailings[J]. Chemosphere, 2021, 282:131108.
doi: 10.1016/j.chemosphere.2021.131108 URL |
[52] |
Mousavi SM, Yaghmaei S, Vossoughi M, et al. Zinc extraction from Iranian low-grade complex zinc-lead ore by two native microorganisms:Acidithiobacillus ferrooxidans and Sulfobacillus[J]. Int J Miner Process, 2006, 80(2/3/4):238-243.
doi: 10.1016/j.minpro.2006.05.001 URL |
[53] |
Yang CR, Qin WQ, Lai SS, et al. Bioleaching of a low grade nickel-copper-cobalt sulfide ore[J]. Hydrometallurgy, 2011, 106(1/2):32-37.
doi: 10.1016/j.hydromet.2010.11.013 URL |
[54] |
Romo E, Weinacker DF, Zepeda AB, et al. Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite[J]. Braz J Microbiol, 2013, 44(2):523-528.
doi: 10.1590/S1517-83822013005000043 pmid: 24294251 |
[55] |
Roy JJ, Cao B, Madhavi S. A review on the recycling of spent lithium-ion batteries(LIBs)by the bioleaching approach[J]. Chemosphere, 2021, 282:130944.
doi: 10.1016/j.chemosphere.2021.130944 URL |
[56] | Forti V.; Baldé C. P.; Kuehr R., et al. The Global E-waste Monitor 2020. Quantities, flows, and the circular economy potential[M]. Bonn/Geneva/Rotterdam:United Nations University(UNU)/United Nations Institute for Training and Research(UNITAR)- co-hosted SCYCLE Programme, International Telecommunication Union(ITU)& International Solid Waste Association(ISWA), 2020. |
[57] |
Kadivar S, Pourhossein F, Mousavi SM. Recovery of valuable metals from spent mobile phone printed circuit boards using biochar in indirect bioleaching[J]. J Environ Manag, 2021, 280:111642.
doi: 10.1016/j.jenvman.2020.111642 URL |
[58] |
Pourhossein F, Mousavi SM. A novel step-wise indirect bioleaching using biogenic ferric agent for enhancement recovery of valuable metals from waste light emitting diode(WLED)[J]. J Hazard Mater, 2019, 378:120648.
doi: 10.1016/j.jhazmat.2019.05.041 URL |
[59] | 第二次全国污染源普查公报[J]. 环境保护, 2020, 48(18):8-10. |
The second national pollution source census bulletin[J]. Environ Prot, 2020, 48(18):8-10. | |
[60] |
Kremser K, Thallner S, Strbik D, et al. Leachability of metals from waste incineration residues by iron- and sulfur-oxidizing bacteria[J]. J Environ Manage, 2021, 280:111734.
doi: 10.1016/j.jenvman.2020.111734 URL |
[61] |
Gholami RM, Borghei SM, Mousavi SM. Bacterial leaching of a spent Mo-Co-Ni refinery catalyst using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans[J]. Hydrometallurgy, 2011, 106(1/2):26-31.
doi: 10.1016/j.hydromet.2010.11.011 URL |
[62] | Cheng R, Zhou W, Lin L, et al. Removal of high concentrations of H2S from simulated natural gas by Acidithiobacillus ferrooxidans immobilized on polyurethane foam[J]. J Chem Technol Biotechnol, 2013, 88(5):975-978. |
[63] |
Liu FW, Lei YS, Shi J, et al. Effect of microbial nutrients supply on coal bio-desulfurization[J]. J Hazard Mater, 2020, 384:121324.
doi: 10.1016/j.jhazmat.2019.121324 URL |
[64] |
McFarland BL. Biodesulf urization[J]. Curr Opin Microbiol, 1999, 2(3):257-264.
pmid: 10383871 |
[65] |
Kiragosyan K, Picard M, Timmers PHA, et al. Effect of methanethiol on process performance, selectivity and diversity of sulfur-oxidizing bacteria in a dual bioreactor gas biodesulfurization system[J]. J Hazard Mater, 2020, 398:123002.
doi: 10.1016/j.jhazmat.2020.123002 URL |
[66] |
Waksman SA, Joffe JS. Acid production by a new sulfur-oxidizing bacterium[J]. Science, 1921, 53(1366):216.
pmid: 17831199 |
[67] |
Nareshkumar R, Nagendran R, Parvathi K. Bioleaching of heavy metals from contaminated soil using Acidithiobacillus thiooxidans:effect of sulfur/soil ratio[J]. World J Microbiol Biotechnol, 2008, 24(8):1539-1546.
doi: 10.1007/s11274-007-9639-5 URL |
[1] | 姚近东, 汤华妹, 杨文霄, 张丽珊, 林向民. 恩诺沙星胁迫下嗜水气单胞菌的比较蛋白质组学研究[J]. 生物技术通报, 2023, 39(4): 288-296. |
[2] | 晏雄鹰, 王振, 王霞, 杨世辉. 微生物硫代谢与抗逆性[J]. 生物技术通报, 2023, 39(11): 150-167. |
[3] | 崔亚铨, 冯守帅, 黄兴, 陈金才, 杨海麟. 铜耐受定向驯化强化嗜酸喜温硫杆菌浸出贫黄铜矿[J]. 生物技术通报, 2019, 35(8): 95-102. |
[4] | 余润兰,刘阿娟,刘亚楠,刘学端,邱冠周,曾伟民. 微生物浸出过程中胞外蛋白的作用及其机理研究进展[J]. 生物技术通报, 2017, 33(7): 62-68. |
[5] | 赵雪淞, 王冬旭, 刘鑫, 石倩倩, 史帅. 金属离子对中等嗜热混合菌活性的影响[J]. 生物技术通报, 2017, 33(12): 151-155. |
[6] | 聂毅磊,陈宏,罗立津,贾纬,陈星伟. 一种浸矿混合菌种的筛选、鉴定及浸矿的研究[J]. 生物技术通报, 2016, 32(8): 177-183. |
[7] | 李凌凌, 吕早生, 杨忠华, 左振宇, 李尧益. 脂环酸芽孢杆菌A1的分离鉴定及其对中低品位磷矿的溶磷研究[J]. 生物技术通报, 2016, 32(11): 224-234. |
[8] | 王以斌, 张爱军, 刘芳明, 郑洲, 缪锦来. 南极冰藻对南极极端环境的适应性研究进展[J]. 生物技术通报, 2016, 32(10): 128-134. |
[9] | 朱允华;李俭;方俊;田云;卢向阳;. 宏基因组技术在开发极端环境未培养微生物中的应用[J]. , 2011, 0(09): 52-58. |
[10] | 张成桂;夏金兰;王晶;邱冠周;. 嗜酸硫杆菌属硫氧化系统研究进展[J]. , 2007, 0(01): 59-65. |
[11] | 汪开. 煤净化细菌的分离和利用获美国专利[J]. , 2003, 0(04): 52-52. |
[12] | 蒋勤. Current Advances in Applied Microbiology & Biotechnology《应用微生物学和生物技术近期进展》[J]. , 1999, 0(05): 54-55. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||