[1] Panda S, Akcil A, Pradhan N, et al.Current scenario of chalcopyrite bioleaching:a review on the recent advances to its heap-leach technology[J]. Bioresource Technology, 2015, 196:694-706. [2] Johnson DB.Biomining goes underground[J]. Nature Geoscience, 2015, 8(3):165-166. [3] Shiers DW, Collinson DM, Watling HR.Life in heaps:a review of microbial responses to variable acidity in sulfide mineral bioleaching heaps for metal extraction[J]. Research in Microbiology, 2016, 167(7):576-586. [4] 聂毅磊, 陈宏, 罗立津, 等. 一种浸矿混合菌种的筛选、鉴定及浸矿的研究[J]. 生物技术通报, 2016, 32(8):177-183. [5] Feng S, Yang H, Yu X, et al.A novel and highly efficient system for chalcopyrite bioleaching by mixed strains of Acidithiobacillus[J]. Bioresource Technology, 2013, 129:456-462. [6] Martínez-Bussenius C, Navarro CA, Jerez CA.Microbial copper resistance:importance in biohydrometallurgy[J]. Microbial Biotechnology, 2017, 10(2):279-295. [7] Xia LX, Yin C, Cai LY, et al.Metabolic changes of Acidithiobacillus caldus under Cu2+ stress[J]. Journal of Basic Microbiology, 2011, 50(6):591-598. [8] 赵雪淞, 王冬旭, 刘鑫, 等. 金属离子对中等嗜热混合菌活性的影响[J]. 生物技术通报, 2017, 33(12):151-155. [9] Mangold S, Vald SJ, Holmes DS, et al.Sulfur metabolism in the extreme acidophile Acidithiobacillus caldus[J]. Frontiers in Microbiology, 2011, 2(1):17. [10] Zhang X, Liu XD, He Q, et al.Gene turnover contributes to the evolutionary adaptation of Acidithiobacillus caldus:Insights from comparative genomics[J]. Frontiers in Microbiology, 2016, 7:1960. [11] Wang YG, Zeng WM, Qiu GZ, et al.A moderately thermophilic mixed microbial culture for bioleaching of chalcopyrite concentrate at high pulp density[J]. Applied & Environmental Microbiology, 2014, 80(2):741-750. [12] Watkin ELJ, Keeling SE, Perrot FA, et al.Metals tolerance in moderately thermophilic isolates from a spent copper sulfide heap, closely related to Acidithiobacillus caldus, Acidimicrobium ferrooxidans and Sulfobacillus thermosulfidooxidans[J]. Journal of Industrial Microbiology & Biotechnology, 2009, 36(3):461-465. [13] Qi H, Wu XL, Jiang Y, et al.Differential gene expression and bioinformatics analysis of copper resistance gene afe-1073 in Acidithiobacillus ferrooxidans[J]. Biological Trace Element Research, 2013, 152(1):91-97. [14] Oetiker N, Norambuena R, Martínez-Bussenius C, et al.Possible role of envelope components in the extreme copper resistance of the biomining Acidithiobacillus ferrooxidans[J]. Genes, 2018, 9(7):347. [15] Yang HY, Liu W, Chen GB, et al.Function of microorganism and reaction pathway for carrollite dissolution during bioleaching[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(8):2718-2724. [16] Johnson DB.Biomining-biotechnologies for extracting and recovering metals from ores and waste materials[J]. Current Opinion in Biotechnology, 2014, 30:24-31. [17] 张宪. 嗜酸氧化硫硫杆菌的全基因组测序及硫氧化途径研究[D]. 长沙:中南大学, 2014. [18] Ye M, Yan P, Sun S, et al.Bioleaching combined brine leaching of heavy metals from lead-zinc mine tailings:Transformations during the leaching process[J]. Chemosphere, 2016, 168:1115-1125. [19] Zeng WM, Zhou HB, Liu XD, et al.Preservation of moderately thermophilic culture by freeze drying and frozen preservation way and effect on subsequent bioleaching of chalcopyrite[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(5):882-887. [20] Zeng W, Qiu G, Zhou H, et al.Characterization of extracellular polymeric substances extracted during the bioleaching of chalcopyrite concentrate[J]. Hydrometallurgy, 2010, 96(3):177-180. |