生物技术通报 ›› 2022, Vol. 38 ›› Issue (5): 93-99.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0937
李洋(), 张晓天, 朴静子, 周如军(), 李自博, 关海雯
收稿日期:
2021-07-22
出版日期:
2022-05-26
发布日期:
2022-06-10
作者简介:
李洋,女,硕士研究生,研究方向:植物病原真菌学;E-mail: 基金资助:
LI Yang(), ZHANG Xiao-tian, PIAO Jing-zi, ZHOU Ru-jun(), LI Zi-bo, GUAN Hai-wen
Received:
2021-07-22
Published:
2022-05-26
Online:
2022-06-10
摘要:
光是真菌感知和适应环境的重要信息载体,调控多种生理生化过程。痂囊腔菌素(Elsinochromes,ESC)是花生疮痂病菌重要的毒力因子,蓝光对其具有正调控作用,为了进一步揭示光调控ESC机制,开展了花生疮痂病菌蓝光受体基因EaWC 1克隆、生物信息学分析和表达模式研究。结果表明,蓝光受体基因EaWC 1全长为3 261bp,具有一个完整的开放阅读框,编码长度为1 086个氨基酸的蛋白质,相对分子质量11.95 kD,理论等电点为8.81,具有核定位信号,为稳定亲水性蛋白。qPCR定量分析表明,EaWC 1基因表达受到蓝光诱导,其表达模式与ESC毒素含量呈显著正相关。研究结果对于阐明花生疮痂病菌蓝光受体生物功能,揭示ESC毒素生物合成光调控机制和调控网络奠定了理论基础。
李洋, 张晓天, 朴静子, 周如军, 李自博, 关海雯. 花生疮痂病菌蓝光受体EaWC 1基因克隆及生物信息学分析[J]. 生物技术通报, 2022, 38(5): 93-99.
LI Yang, ZHANG Xiao-tian, PIAO Jing-zi, ZHOU Ru-jun, LI Zi-bo, GUAN Hai-wen. Cloning and Bioinformatics Analysis of Blue-light Receptor EaWC 1 Gene in Elsinoë arachidis[J]. Biotechnology Bulletin, 2022, 38(5): 93-99.
种名Species | GenBank ID |
---|---|
Elsinoe fawcettii | KAF4549824.1 |
Elsinoe australis | TKX21094.1 |
Elsinoe ampelina | KAF2224433.1 |
Alternaria alternata | QBZ93284.1 |
Cercospora zeae maydis | AEH41590.1 |
Pseudocercospora musae | KXT04460.1 |
Dothistroma septosporum | EME40353.1 |
Trichoderma atroviride | AAU14171.1 |
Neurospora crassa | CAA63964.2 |
Aspergillus nidulans | AAP47230.1 |
Mucor circinelloides | CAJ13843.2 |
Phycomyces blakesleeanus | ABB77846.1 |
Hortaea werneckii | RMY69450.1 |
表1 WC 1同源基因序列信息
Table 1 Sequence information of WC 1 homologous gene
种名Species | GenBank ID |
---|---|
Elsinoe fawcettii | KAF4549824.1 |
Elsinoe australis | TKX21094.1 |
Elsinoe ampelina | KAF2224433.1 |
Alternaria alternata | QBZ93284.1 |
Cercospora zeae maydis | AEH41590.1 |
Pseudocercospora musae | KXT04460.1 |
Dothistroma septosporum | EME40353.1 |
Trichoderma atroviride | AAU14171.1 |
Neurospora crassa | CAA63964.2 |
Aspergillus nidulans | AAP47230.1 |
Mucor circinelloides | CAJ13843.2 |
Phycomyces blakesleeanus | ABB77846.1 |
Hortaea werneckii | RMY69450.1 |
[1] |
Yu Z, Fischer R. Light sensing and responses in fungi[J]. Nat Rev Microbiol, 2019, 17(1):25-36.
doi: 10.1038/s41579-018-0109-x URL |
[2] | 王艺, 韦小丽. 不同光照对植物生长、生理生化和形态结构影响的研究进展[J]. 山地农业生物学报, 2010, 29(4):353-359, 370. |
Wang Y, Wei XL. Advance on the effects of different light environments on growth, physiological biochemistry and morphostructure of plant[J]. J Mt Agric Biol, 2010, 29(4):353-359, 370. | |
[3] |
Fischer R, Aguirre J, Herrera-Estrella A, et al. The complexity of fungal vision[J]. Microbiol Spectr, 2016, 4(6):FUNK-0020-2016. DOI: 10.1128/microbiolspec.funk-0020-2016.
doi: 10.1128/microbiolspec.funk-0020-2016 |
[4] |
Corrochano LM. Fungal photoreceptors:sensory molecules for fungal development and behaviour[J]. Photochem Photobiol Sci, 2007, 6(7):725-736.
doi: 10.1039/b702155k URL |
[5] |
Kertesz-Chaloupková K, Walser PJ, Granado JD, et al. Blue light overrides repression of asexual sporulation by mating type genes in the Basidiomycete Coprinus cinereus[J]. Fungal Genet Biol, 1998, 23(1):95-109.
pmid: 9514695 |
[6] |
Sanz C, Rodríguez-Romero J, Idnurm A, et al. Phycomyces MADB interacts with MADA to form the primary photoreceptor complex for fungal phototropism[J]. PNAS, 2009, 106(17):7095-7100.
doi: 10.1073/pnas.0900879106 URL |
[7] | Zhu P, Zhang C, Xiao H, et al. Exploitable regulatory effects of light on growth and development of Botrytis cinerea[J]. J Plant Pathol, 2013, 95(3):509-517. |
[8] |
Ma YJ, Sun CX, Wang JW. Enhanced production of hypocrellin A in submerged cultures of Shiraia bambusicola by red light[J]. Photochem Photobiol, 2019, 95(3):812-822.
doi: 10.1111/php.13038 URL |
[9] | 郭明敏, 杨涛, 卜宁, 等. 大型真菌光受体及其功能研究进展[J]. 菌物学报, 2015, 34(5):880-889. |
Guo MM, Yang T, Bu N, et al. Photoreceptor and its functions in macrofungi:a review[J]. Mycosystema, 2015, 34(5):880-889. | |
[10] |
Fuller KK, Loros JJ, Dunlap JC. Fungal photobiology:visible light as a signal for stress, space and time[J]. Curr Genet, 2015, 61(3):275-288.
doi: 10.1007/s00294-014-0451-0 pmid: 25323429 |
[11] |
Losi A, Gärtner W. The evolution of flavin-binding photoreceptors:an ancient chromophore serving trendy blue-light sensors[J]. Annu Rev Plant Biol, 2012, 63:49-72.
doi: 10.1146/annurev-arplant-042811-105538 pmid: 22136567 |
[12] |
Crosthwaite SK, Dunlap JC, Loros JJ. Neurospora wc-1 and wc-2:transcription, photoresponses, and the origins of circadian rhythmicity[J]. Science, 1997, 276(5313):763-769.
pmid: 9115195 |
[13] |
Cheng P, Yang YH, Gardner KH, et al. PAS domain-mediated WC-1/WC-2 interaction is essential for maintaining the steady-state level of WC-1 and the function of both proteins in circadian clock and light responses of Neurospora[J]. Mol Cell Biol, 2002, 22(2):517-524.
doi: 10.1128/MCB.22.2.517-524.2002 pmid: 11756547 |
[14] |
Röhrig J, Kastner C, Fischer R. Light inhibits spore germination through phytochrome in Aspergillus nidulans[J]. Curr Genet, 2013, 59(1/2):55-62.
doi: 10.1007/s00294-013-0387-9 URL |
[15] |
Fuller KK, Ringelberg CS, Loros JJ, et al. The fungal pathogen Aspergillus fumigatus regulates growth, metabolism, and stress resistance in response to light[J]. mBio, 2013, 4(2):e00142-13. DOI: 10.1128/mbio.00142-13.
doi: 10.1128/mbio.00142-13 |
[16] |
Kim H, Son H, Lee YW. Effects of light on secondary metabolism and fungal development of Fusarium graminearum[J]. J Appl Microbiol, 2014, 116(2):380-389.
doi: 10.1111/jam.12381 pmid: 24176027 |
[17] |
Silva F, Torres-Martínez S, Garre V. Distinct white collar-1 genes control specific light responses in Mucor circinelloides[J]. Mol Microbiol, 2006, 61(4):1023-1037.
doi: 10.1111/j.1365-2958.2006.05291.x URL |
[18] |
Cervantes-Badillo MG, Muñoz-Centeno T, Uresti-Rivera EE, et al. The Trichoderma atroviride photolyase-encoding gene is transcriptionally regulated by non-canonical light response elements[J]. Febs J, 2013, 280(15):3697-3708.
doi: 10.1111/febs.12362 pmid: 23721733 |
[19] |
Pruβ S, Fetzner R, Seither K, et al. Role of the Alternaria alternata blue-light receptor LreA(white-collar 1)in spore formation and secondary metabolism[J]. Appl Environ Microbiol, 2014, 80(8):2582-2591.
doi: 10.1128/AEM.00327-14 URL |
[20] |
Kim H, Ridenour JB, Dunkle LD, et al. Regulation of stomatal tropism and infection by light in Cercospora Zeae-maydis:evidence for coordinated host/pathogen responses to photoperiod?[J]. PLoS Pathog, 2011, 7(7):e1002113.
doi: 10.1371/journal.ppat.1002113 URL |
[21] | 张观红. 灰霉菌蓝光受体基因bcwc1的功能分析[D]. 上海: 华东师范大学, 2014. |
Zhang GH. Functional analysis of white collar-1 Bcwc1 in Botrytis cinerea[D]. Shanghai: East China Normal University, 2014. | |
[22] | Daub ME, Chung KR. Photoactivated Perylenequinone Toxins in Plant Pathogenesis.[M]// B. edsPlantRelationships. TheMycota(A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research). Berlin: Springer, 2009:201-219 |
[23] | Liao HL. Molecular and genetic determination of the role of elsinochrome toxins produced by Elsinoe fawcettii causing citrus scab[D]. Florida: University of Florida, 2008. |
[24] | 焦文莉. 花生疮痂病菌光生物学及全基因组序列分析[D]. 沈阳: 沈阳农业大学, 2019. |
Jiao WL. Photobiology and whole genome analysis of Elsinoë arachidis[D]. Shenyang: Shenyang Agricultural University, 2019. | |
[25] |
Ballario P, Vittorioso P, Magrelli A, et al. White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein[J]. EMBO J, 1996, 15(7):1650-1657.
pmid: 8612589 |
[26] |
Froehlich AC, Liu Y, Loros JJ, et al. White collar-1, a circadian blue light photoreceptor, binding to the frequency promoter[J]. Science, 2002, 297(5582):815-819.
pmid: 12098706 |
[27] |
Lokhandwala J, Hopkins HC, Rodriguez-Iglesias A, et al. Structural biochemistry of a fungal LOV domain photoreceptor reveals an evolutionarily conserved pathway integrating light and oxidative stress[J]. Structure, 2015, 23(1):116-125.
doi: S0969-2126(14)00368-2 pmid: 25533487 |
[28] |
Zoltowski BD, Vaccaro B, Crane BR. Mechanism-based tuning of a LOV domain photoreceptor[J]. Nat Chem Biol, 2009, 5(11):827-834.
doi: 10.1038/nchembio.210 pmid: 19718042 |
[29] |
Amaral PP, Dinger ME, Mercer TR, et al. The eukaryotic genome as an RNA machine[J]. Science, 2008, 319(5871):1787-1789.
doi: 10.1126/science.1155472 pmid: 18369136 |
[30] |
Estrada AF, Avalos J. The White Collar protein WcoA of Fusarium fujikuroi is not essential for photocarotenogenesis, but is involved in the regulation of secondary metabolism and conidiation[J]. Fungal Genet Biol, 2008, 45(5):705-718.
doi: 10.1016/j.fgb.2007.12.003 URL |
[1] | 吕秋谕, 孙培媛, 冉彬, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子基因FtbHLH3的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 194-203. |
[2] | 王佳蕊, 孙培媛, 柯瑾, 冉彬, 李洪有. 苦荞糖基转移酶基因FtUGT143的克隆及表达分析[J]. 生物技术通报, 2023, 39(8): 204-212. |
[3] | 孙明慧, 吴琼, 刘丹丹, 焦小雨, 王文杰. 茶树CsTMFs的克隆与表达分析[J]. 生物技术通报, 2023, 39(7): 151-159. |
[4] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[5] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[6] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[7] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
[8] | 刘思佳, 王浩楠, 付宇辰, 闫文欣, 胡增辉, 冷平生. ‘西伯利亚’百合LiCMK基因克隆及功能分析[J]. 生物技术通报, 2023, 39(3): 196-205. |
[9] | 平怀磊, 郭雪, 余潇, 宋静, 杜春, 王娟, 张怀璧. 滇牡丹PdANS的克隆、表达及与花青素含量的相关性[J]. 生物技术通报, 2023, 39(3): 206-217. |
[10] | 王涛, 漆思雨, 韦朝领, 王艺清, 戴浩民, 周喆, 曹士先, 曾雯, 孙威江. CsPPR和CsCPN60-like在茶树白化叶片中的表达分析及互作蛋白验证[J]. 生物技术通报, 2023, 39(3): 218-231. |
[11] | 庞强强, 孙晓东, 周曼, 蔡兴来, 张文, 王亚强. 菜心BrHsfA3基因克隆及其对高温胁迫的响应[J]. 生物技术通报, 2023, 39(2): 107-115. |
[12] | 苗淑楠, 高宇, 李昕儒, 蔡桂萍, 张飞, 薛金爱, 季春丽, 李润植. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析[J]. 生物技术通报, 2023, 39(2): 96-106. |
[13] | 葛雯冬, 王腾辉, 马天意, 范震宇, 王玉书. 结球甘蓝PRX基因家族全基因组鉴定与逆境条件下的表达分析[J]. 生物技术通报, 2023, 39(11): 252-260. |
[14] | 杨旭妍, 赵爽, 马天意, 白玉, 王玉书. 三个甘蓝WRKY基因的克隆及其对非生物胁迫的表达[J]. 生物技术通报, 2023, 39(11): 261-269. |
[15] | 陈楚怡, 杨小梅, 陈胜艳, 陈斌, 岳莉然. ABA和干旱胁迫下菊花脑ZF-HD基因家族的表达分析[J]. 生物技术通报, 2023, 39(11): 270-282. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||