生物技术通报 ›› 2022, Vol. 38 ›› Issue (8): 12-23.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1350
收稿日期:
2021-10-25
出版日期:
2022-08-26
发布日期:
2022-09-14
作者简介:
位欣欣,女,硕士研究生,研究方向:植物抗逆分子生物学;E-mail: 基金资助:
Received:
2021-10-25
Published:
2022-08-26
Online:
2022-09-14
摘要:
MYB是真核生物体内最大的转录因子家族之一,其成员在植物的生长发育、次生物质代谢、生物及非生物胁迫应答等多种生理过程中发挥重要作用。MYB基于特定的功能域与靶基因相互识别,对相关基因的表达进行调控,从而影响植物的发育及代谢过程。目前,MYB类转录因子家族部分成员的功能已经得到解析,涉及次生代谢、生物及非生物胁迫中的功能及表达调控等方面,本文基于以上研究进展进行综述,为MYB类转录因子的深入研究提供借鉴。
位欣欣, 兰海燕. 植物MYB转录因子调控次生代谢及逆境响应的研究进展[J]. 生物技术通报, 2022, 38(8): 12-23.
WEI Xin-xin, LAN Hai-yan. Advances in the Regulation of Plant MYB Transcription Factors in Secondary Metabolism and Stress Response[J]. Biotechnology Bulletin, 2022, 38(8): 12-23.
植物名称 Plant species | 转录因子 Transcription factor | 次生代谢产物 Secondary metabolism | 参考文献 Reference |
---|---|---|---|
拟南芥Arabidopsis thaliana | AtMYB20/42/43 | 促进木质素的生物合成Promoting lignin biosynthesis | [ |
杨梅M. rubra | MrMYB1 | 正调控花青素的积累Positive regulation of anthocyanin biosynthesis | [ |
美洲黑杨P. deltoides | PdMYB118 | 调节创伤诱导的花青素的积累Regulation of wound-induced anthocyanin accumulation | [ |
红梨P. pyrifolia | PyMYB10/114 | 正调控花青素的积累Positive regulation of anthocyanin biosynthesis | [ |
杨树Populus | PtrMYB57 | 负调控花青素的生物合成Negative regulation of anthocyanin biosynthesis | [ |
杜梨P. betulifolia | PbMYB12b | 正向调控黄酮醇的生物合成Positive regulation of flavonol biosynthesis | [ |
茄子S. melongena | SmMYB75 | 正调控花青素的积累Positive regulation of anthocyanin biosynthesis | [ |
苹果 M. domestica | MdMYB22 | 正向调控黄酮醇的生物合成Positive regulation of flavonol biosynthesis | [ |
葡萄V. vinifera | VvMYBC2L2 | 抑制花青素合成Inhibition of anthocyanin synthesis | [ |
玉米Z. mays | ZmMYB167 | 参与木质素生物合成Participation in lignin biosynthesis | [ |
毛白杨P. tomentosa | PtoMYB216 | 参与木质素生物合成Participation in lignin biosynthesis | [ |
番茄S. lycopersicum | SlMYB31 | 调节番茄角质层蜡生物合成Regulation of biosynthesis of tomato cuticle wax | [ |
菊花C. morifolium | CmMYB#7/6 | 抑制花青素合成Negative regulation of anthocyanin synthesis | [ |
CmMYB8 | 抑制木质素和黄酮的合成Inhibition of synthesis of lignin and flavonoids | [ | |
大豆G.max | GmMYB176 | 调控异黄酮生物合成Regulation of isoflavone biosynthesis | [ |
GmMYB12 | 参与黄酮类化合物的合成Involvement in synthesis of flavonoids | [ | |
丹参S. miltiorrhiza | SmMYB98 | 参与丹参酮和丹酚酸代谢Participation in tanshinone and salvianolic acid metabolism | [ |
柳橙C. sinensis | CsMYB330/308 | 调控柑桔汁囊木质化Regulation of citrus juice sac lignification | [ |
桉Eucalyptus | EgMYB1 | 抑制木质部细胞壁木质素的沉积Inhibition of lignin deposition in xylem cell wall | [ |
香蕉Musa nana | MusaMYB31 | 抑制木质素和多酚的合成Inhibition of synthesis of lignin and polyphenol | [ |
麻疯树J. carcas | JcMYB1 | 参与种子油脂合成Participation in seed oil synthesis | [ |
辣椒C. annuum | CaMYB31 | 调控辣椒素类生物合成Regulation of capsaicin biosynthesis | [ |
表1 MYB转录因子在次生代谢调控中的作用
Table 1 Roles of MYB transcription factors(TFs)in the regulation of secondary metabolism
植物名称 Plant species | 转录因子 Transcription factor | 次生代谢产物 Secondary metabolism | 参考文献 Reference |
---|---|---|---|
拟南芥Arabidopsis thaliana | AtMYB20/42/43 | 促进木质素的生物合成Promoting lignin biosynthesis | [ |
杨梅M. rubra | MrMYB1 | 正调控花青素的积累Positive regulation of anthocyanin biosynthesis | [ |
美洲黑杨P. deltoides | PdMYB118 | 调节创伤诱导的花青素的积累Regulation of wound-induced anthocyanin accumulation | [ |
红梨P. pyrifolia | PyMYB10/114 | 正调控花青素的积累Positive regulation of anthocyanin biosynthesis | [ |
杨树Populus | PtrMYB57 | 负调控花青素的生物合成Negative regulation of anthocyanin biosynthesis | [ |
杜梨P. betulifolia | PbMYB12b | 正向调控黄酮醇的生物合成Positive regulation of flavonol biosynthesis | [ |
茄子S. melongena | SmMYB75 | 正调控花青素的积累Positive regulation of anthocyanin biosynthesis | [ |
苹果 M. domestica | MdMYB22 | 正向调控黄酮醇的生物合成Positive regulation of flavonol biosynthesis | [ |
葡萄V. vinifera | VvMYBC2L2 | 抑制花青素合成Inhibition of anthocyanin synthesis | [ |
玉米Z. mays | ZmMYB167 | 参与木质素生物合成Participation in lignin biosynthesis | [ |
毛白杨P. tomentosa | PtoMYB216 | 参与木质素生物合成Participation in lignin biosynthesis | [ |
番茄S. lycopersicum | SlMYB31 | 调节番茄角质层蜡生物合成Regulation of biosynthesis of tomato cuticle wax | [ |
菊花C. morifolium | CmMYB#7/6 | 抑制花青素合成Negative regulation of anthocyanin synthesis | [ |
CmMYB8 | 抑制木质素和黄酮的合成Inhibition of synthesis of lignin and flavonoids | [ | |
大豆G.max | GmMYB176 | 调控异黄酮生物合成Regulation of isoflavone biosynthesis | [ |
GmMYB12 | 参与黄酮类化合物的合成Involvement in synthesis of flavonoids | [ | |
丹参S. miltiorrhiza | SmMYB98 | 参与丹参酮和丹酚酸代谢Participation in tanshinone and salvianolic acid metabolism | [ |
柳橙C. sinensis | CsMYB330/308 | 调控柑桔汁囊木质化Regulation of citrus juice sac lignification | [ |
桉Eucalyptus | EgMYB1 | 抑制木质部细胞壁木质素的沉积Inhibition of lignin deposition in xylem cell wall | [ |
香蕉Musa nana | MusaMYB31 | 抑制木质素和多酚的合成Inhibition of synthesis of lignin and polyphenol | [ |
麻疯树J. carcas | JcMYB1 | 参与种子油脂合成Participation in seed oil synthesis | [ |
辣椒C. annuum | CaMYB31 | 调控辣椒素类生物合成Regulation of capsaicin biosynthesis | [ |
植物名称Plant species | 转录因子Transcription factor | 响应胁迫类型Stress responses | 参考文献Reference |
---|---|---|---|
拟南芥A. thaliana | AtMYB49 | 盐Salt | [ |
AtMYB4 | 镉离子Cadmium | [ | |
AtMYB42 | 盐Salt | [ | |
AtMYB30 | 盐Salt;旱Drought;高温High temperature | [ | |
AtMYB12/75 | 盐Salt;旱Drought | [ | |
AtMYB41 | 旱(敏感)Drought(sensitive) | [ | |
AtMYB94/96 | 旱Drought;冷Cold | [ | |
AtMYB60 | 旱(敏感)Drought(sensitive) | [ | |
AtMYB15 | 冷(敏感)Cold(sensitive) | [ | |
AtMYBC1 | 冷(敏感)Cold(sensitive) | [ | |
玉米Z. mays | ZmMYB3R | 盐Salt;干旱Drought | [ |
旱地棉Gossypium aridum | GaMYB85 | 干旱Drought | [ |
水稻Oryza sativa | OsARM1 | 砷离子Arsenic ion | [ |
OsMYB55 | 高温High temperature | [ | |
OsMYB30 | 褐飞虱Brown planthopper | [ | |
OsMYB6 | 盐Salt | [ | |
OsMYB91 | 盐Salt | [ | |
大豆G. max | GmMYB12 | 盐Salt;干旱Drought | [ |
GmMYB48 | 低磷Low phosphorus | [ | |
小麦Triticum aestivum | TaMYB31 | 干旱Drought | [ |
TaPHR3-A1 | 低磷Low phosphorus | [ | |
百合L. longiflorum | LlMYB305 | 高温High temperature | [ |
苹果M. domestica | MdMYB23 | 冷Cold | [ |
MdMYB30 | 炭疽病菌Colletotrichum gloeosporioides | [ | |
MdMYB73 | 真菌性葡萄孢菌Botryosphaeria dothidea | [ | |
猕猴桃A. chinensis | AcMYB3R | 盐Salt;干旱Drought | [ |
蒺藜苜蓿Medicago truncatula | MtMYBS1 | 盐Salt | [ |
辣椒C. annuum | CaPHL8 | 青枯病菌RSI of R. solanacearum | [ |
野生葡萄Vitis davidii | VdMYB1 | 白粉病Powdery mildew disease | [ |
野生大豆G. soja | GsMYB15 | 盐Salt;棉铃虫Helicoverpa armigera | [ |
野草莓F. vesca | FvMYB24 | 盐Salt | [ |
芥菜B. juncea | BjMYB1 | 灰葡萄孢菌Botrytis cinerea | [ |
番茄S. lycopersicum | SlLeAN2 | 高温High temperature | [ |
萝卜R. sativus | RsMYB1 | 锌Zinc;铜Copper;镉Cadmium | [ |
盐角草S. brachiata | SbMYB15 | 镉Cadmium;镍Nickel | [ |
表2 MYB转录因子在植物胁迫响应中的作用
Table 2 Roles of MYB transcription factors(TFs)in plant stress responses
植物名称Plant species | 转录因子Transcription factor | 响应胁迫类型Stress responses | 参考文献Reference |
---|---|---|---|
拟南芥A. thaliana | AtMYB49 | 盐Salt | [ |
AtMYB4 | 镉离子Cadmium | [ | |
AtMYB42 | 盐Salt | [ | |
AtMYB30 | 盐Salt;旱Drought;高温High temperature | [ | |
AtMYB12/75 | 盐Salt;旱Drought | [ | |
AtMYB41 | 旱(敏感)Drought(sensitive) | [ | |
AtMYB94/96 | 旱Drought;冷Cold | [ | |
AtMYB60 | 旱(敏感)Drought(sensitive) | [ | |
AtMYB15 | 冷(敏感)Cold(sensitive) | [ | |
AtMYBC1 | 冷(敏感)Cold(sensitive) | [ | |
玉米Z. mays | ZmMYB3R | 盐Salt;干旱Drought | [ |
旱地棉Gossypium aridum | GaMYB85 | 干旱Drought | [ |
水稻Oryza sativa | OsARM1 | 砷离子Arsenic ion | [ |
OsMYB55 | 高温High temperature | [ | |
OsMYB30 | 褐飞虱Brown planthopper | [ | |
OsMYB6 | 盐Salt | [ | |
OsMYB91 | 盐Salt | [ | |
大豆G. max | GmMYB12 | 盐Salt;干旱Drought | [ |
GmMYB48 | 低磷Low phosphorus | [ | |
小麦Triticum aestivum | TaMYB31 | 干旱Drought | [ |
TaPHR3-A1 | 低磷Low phosphorus | [ | |
百合L. longiflorum | LlMYB305 | 高温High temperature | [ |
苹果M. domestica | MdMYB23 | 冷Cold | [ |
MdMYB30 | 炭疽病菌Colletotrichum gloeosporioides | [ | |
MdMYB73 | 真菌性葡萄孢菌Botryosphaeria dothidea | [ | |
猕猴桃A. chinensis | AcMYB3R | 盐Salt;干旱Drought | [ |
蒺藜苜蓿Medicago truncatula | MtMYBS1 | 盐Salt | [ |
辣椒C. annuum | CaPHL8 | 青枯病菌RSI of R. solanacearum | [ |
野生葡萄Vitis davidii | VdMYB1 | 白粉病Powdery mildew disease | [ |
野生大豆G. soja | GsMYB15 | 盐Salt;棉铃虫Helicoverpa armigera | [ |
野草莓F. vesca | FvMYB24 | 盐Salt | [ |
芥菜B. juncea | BjMYB1 | 灰葡萄孢菌Botrytis cinerea | [ |
番茄S. lycopersicum | SlLeAN2 | 高温High temperature | [ |
萝卜R. sativus | RsMYB1 | 锌Zinc;铜Copper;镉Cadmium | [ |
盐角草S. brachiata | SbMYB15 | 镉Cadmium;镍Nickel | [ |
图2 拟南芥MYB转录因子参与ABA介导信号模式图 ABA:Abscisic acid,脱落酸;SA:salicylic acid,水杨酸;PP2Cs:protein phosphatase 2C,蛋白磷酸酶;MIEL1:RING-type E3 ligase,RING型E3连接酶;miR399f:microRNA399 precursor gene,microRNA399前体基因;RD22:responsive to dehydration 22,干旱响应基因22;HDA15:histone deacetylases,蛋白脱乙酰化酶;ROPs:RHO GTPase of plants;ABI4:ABA insensitive 4,ABA不敏感基因;ABI1:ABA insensitive 1;RCAR1/PYL9:ABA receptors,ABA受体;ABFs:abscisic acid-responsive element binding factors,脱落酸响应元件结合因子;GH3:encoding auxin-conjugating enzymes,编码生长素-结合酶;SID2:salicylic acid induction deficient 2,水杨酸合成基因
Fig. 2 Schematic diagram of ABA-mediated signaling in which MYB transcription factors are involved in Arabidopsis
图3 MYB转录因子参与植物激素调控生长发育网络图 JA:Jasmonic acid,茉莉酸;GA:gibberellin,赤霉素;CK:cytokinin,细胞分裂素;ARF8.4:auxin response factor 8.4,生长素响应因子8.4;ARF17:auxin response factor 17,生长素响应因子17;NST1/NST2:NAC secondary wall thickening promoting factor 1/2,NAC次生壁增厚促进因子1/2;JAZs:jasmonate-ZIM domain containing protein;COI1:coronatine insensitive 1,JA信号感知蛋白;MYC:bHLH transcription factor;DELLA:negative regulatory factors in gibberellin signaling pathway;ZFP6:zinc finger protein 6,锌指蛋白6;C2H2:C2H2 zinc finger protein;CPR5:cell progression regulator 5,细胞周期调节因子
Fig. 3 MYB transcription factors involved in plant horm-one regulation of growth and development network
[1] |
Ng DWK, Abeysinghe JK, Kamali M. Regulating the regulators:the control of transcription factors in plant defense signaling[J]. Int J Mol Sci, 2018, 19(12):3737.
doi: 10.3390/ijms19123737 URL |
[2] |
Kranz H, Scholz K, Weisshaar B. C-MYB oncogene-like genes encoding three MYB repeats occur in all major plant lineages[J]. Plant J, 2000, 21(2):231-235.
pmid: 10743663 |
[3] |
Rosinski JA, Atchley WR. Molecular evolution of the MYB family of transcription factors:evidence for polyphyletic origin[J]. J Mol Evol, 1998, 46(1):74-83.
pmid: 9419227 |
[4] |
Ramalingam A, Kudapa H, Pazhamala LT, et al. Gene expression and yeast two-hybrid studies of 1R-MYB transcription factor mediating drought stress response in chickpea(Cicer arietinum L.)[J]. Front Plant Sci, 2015, 6:1117.
doi: 10.3389/fpls.2015.01117 pmid: 26734027 |
[5] |
Liu XF, Yin XR, Allan AC, et al. The role of MrbHLH1 and MrMYB1 in regulating anthocyanin biosynthetic genes in tobacco and Chinese bayberry(Myrica rubra)during anthocyanin biosynthesis[J]. Plant Cell Tissue Organ Cult, 2013, 115(3):285-298.
doi: 10.1007/s11240-013-0361-8 URL |
[6] |
Shen XJ, Wang YY, Zhang YX, et al. Overexpression of the wild soybean R2R3-MYB transcription factor GsMYB15 enhances resistance to salt stress and Helicoverpa armigera in transgenic Arabidopsis[J]. Int J Mol Sci, 2018, 19(12):3958.
doi: 10.3390/ijms19123958 URL |
[7] |
Wang HH, Wang XQ, Yu CY, et al. MYB transcription factor PdMYB118 directly interacts with bHLH transcription factor PdTT8 to regulate wound-induced anthocyanin biosynthesis in poplar[J]. BMC Plant Biol, 2020, 20(1):173.
doi: 10.1186/s12870-020-02389-1 URL |
[8] |
Shi SL, Liu Y, He YJ, et al. R2R3-MYB transcription factor SmMYB75 promotes anthocyanin biosynthesis in eggplant(Solanum melongena L.)[J]. Sci Hortic, 2021, 282:110020.
doi: 10.1016/j.scienta.2021.110020 URL |
[9] |
Wang YY, Zhang XD, Zhao YR, et al. Transcription factor PyHY5 binds to the promoters of PyWD40and PyMYB10 and regulates its expression in red pear ‘Yunhongli No.1’[J]. Plant Physiol Biochem, 2020, 154:665-674.
doi: 10.1016/j.plaphy.2020.07.008 URL |
[10] |
Wan SZ, Li CF, Ma XD, et al. PtrMYB57 contributes to the negative regulation of anthocyanin and proanthocyanidin biosynthesis in poplar[J]. Plant Cell Rep, 2017, 36(8):1263-1276.
doi: 10.1007/s00299-017-2151-y URL |
[11] |
Zhu ZG, Li GR, Liu L, et al. A R2R3-MYB transcription factor, VvMYBC2L2, functions as a transcriptional repressor of anthocyanin biosynthesis in grapevine(Vitis vinifera L.)[J]. Molecules, 2018, 24(1):92.
doi: 10.3390/molecules24010092 URL |
[12] |
Xiang LL, Liu XF, Li H, et al. CmMYB#7, an R3 MYB transcription factor, acts as a negative regulator of anthocyanin biosynthesis in Chrysanthemum[J]. J Exp Bot, 2019, 70(12):3111-3123.
doi: 10.1093/jxb/erz121 pmid: 30994176 |
[13] |
Zhai R, Zhao YX, Wu M, et al. The MYB transcription factor PbMYB12b positively regulates flavonol biosynthesis in pear fruit[J]. BMC Plant Biol, 2019, 19(1):85.
doi: 10.1186/s12870-019-1687-0 pmid: 30791875 |
[14] |
Wang N, Xu HF, Jiang SH, et al. MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple(Malus sieversii f. niedzwetzkyana)[J]. Plant J, 2017, 90(2):276-292.
doi: 10.1111/tpj.13487 URL |
[15] |
Anguraj Vadivel AK, Renaud J, Kagale S, et al. GmMYB176 regulates multiple steps in isoflavonoid biosynthesis in soybean[J]. Front Plant Sci, 2019, 10:562.
doi: 10.3389/fpls.2019.00562 URL |
[16] |
Geng P, Zhang S, Liu JY, et al. MYB20, MYB42, MYB43, and MYB 85 regulate phenylalanine and lignin biosynthesis during secondary cell wall formation[J]. Plant Physiol, 2020, 182(3):1272-1283.
doi: 10.1104/pp.19.01070 pmid: 31871072 |
[17] |
Bhatia R, Dalton S, Roberts LA, et al. Modified expression of ZmMYB167 in Brachypodium distachyon and Zea mays leads to increased cell wall lignin and phenolic content[J]. Sci Rep, 2019, 9(1):8800.
doi: 10.1038/s41598-019-45225-9 URL |
[18] |
Tian QY, Wang XQ, Li CF, et al. Functional characterization of the poplar R2R3-MYB transcription factor PtoMYB216 involved in the regulation of lignin biosynthesis during wood formation[J]. PLoS One, 2013, 8(10):e76369.
doi: 10.1371/journal.pone.0076369 URL |
[19] |
Zhu L, Guan YX, Zhang ZH, et al. CmMYB8 encodes an R2R3 MYB transcription factor which represses lignin and flavonoid synthesis in Chrysanthemum[J]. Plant Physiol Biochem, 2020, 149:217-224.
doi: 10.1016/j.plaphy.2020.02.010 URL |
[20] |
Jia N, Liu JQ, Sun YF, et al. Citrus sinensis MYB transcription factors CsMYB330 and CsMYB308 regulate fruit juice sac lignification through fine-tuning expression of the Cs4CL1 gene[J]. Plant Sci, 2018, 277:334-343.
doi: 10.1016/j.plantsci.2018.10.006 URL |
[21] |
Soler M, Plasencia A, Larbat R, et al. The Eucalyptus linker histone variant EgH1. 3 cooperates with the transcription factor EgMYB1 to control lignin biosynthesis during wood formation[J]. New Phytol, 2017, 213(1):287-299.
doi: 10.1111/nph.14129 URL |
[22] |
Tak H, Negi S, Ganapathi TR. Overexpression of MusaMYB31, a R2R3 type MYB transcription factor gene indicate its role as a negative regulator of lignin biosynthesis in banana[J]. PLoS One, 2017, 12(2):e0172695.
doi: 10.1371/journal.pone.0172695 URL |
[23] |
Xiong C, Xie QM, Yang QH, et al. WOOLLY, interacting with MYB transcription factor MYB31, regulates cuticular wax biosynthesis by modulating CER6 expression in tomato[J]. Plant J, 2020, 103(1):323-337.
doi: 10.1111/tpj.14733 URL |
[24] |
Khan K, Kumar V, Niranjan A, et al. JcMYB1, a Jatropha R2R3MYB transcription factor gene, modulates lipid biosynthesis in transgenic plants[J]. Plant Cell Physiol, 2018, 60(2):462-475.
doi: 10.1093/pcp/pcy223 URL |
[25] |
Han K, Jang S, Lee JH, et al. A MYB transcription factor is a candidate to control pungency in Capsicum annuum[J]. Theor Appl Genet, 2019, 132(4):1235-1246.
doi: 10.1007/s00122-018-03275-z URL |
[26] |
Hao XL, Pu ZQ, Cao G, et al. Tanshinone and salvianolic acid biosynthesis are regulated by SmMYB98 in Salvia miltiorrhiza hairy roots[J]. J Adv Res, 2020, 23:1-12.
doi: 10.1016/j.jare.2020.01.012 URL |
[27] |
Wang FB, Ren XQ, Zhang F, et al. A R2R3-type MYB transcription factor gene from soybean, GmMYB12, is involved in flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis[J]. Plant Biotechnol Rep, 2019, 13(3):219-233.
doi: 10.1007/s11816-019-00530-7 URL |
[28] |
Zhang P, Wang RL, Yang XP, et al. The R2R3-MYB transcription factor AtMYB49 modulates salt tolerance in Arabidopsis by modulating the cuticle formation and antioxidant defence[J]. Plant Cell Environ, 2020, 43(8):1925-1943.
doi: 10.1111/pce.13784 URL |
[29] |
Tang YH, Bao XX, Zhi YL, et al. Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice[J]. Front Plant Sci, 2019, 10:168.
doi: 10.3389/fpls.2019.00168 URL |
[30] |
Wu JD, Jiang YL, Liang YN, et al. Expression of the maize MYB transcription factor ZmMYB3R enhances drought and salt stress tolerance in transgenic plants[J]. Plant Physiol Biochem, 2019, 137:179-188.
doi: 10.1016/j.plaphy.2019.02.010 URL |
[31] |
Sun YH, Zhao J, Li XY, et al. E2 conjugases UBC1 and UBC2 regulate MYB42-mediated SOS pathway in response to salt stress in Arabidopsis[J]. New Phytol, 2020, 227(2):455-472.
doi: 10.1111/nph.16538 URL |
[32] |
Gong QY, Li S, Zheng Y, et al. SUMOylation of MYB30 enhances salt tolerance by elevating alternative respiration via transcriptionally upregulating AOX1a in Arabidopsis[J]. Plant J, 2020, 102(6):1157-1171.
doi: 10.1111/tpj.14689 URL |
[33] |
Wang FB, Kong WL, Wong G, et al. AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana[J]. Mol Genet Genomics, 2016, 291(4):1545-1559.
doi: 10.1007/s00438-016-1203-2 URL |
[34] |
Wang SS, Shi MY, Zhang Y, et al. FvMYB24, a strawberry R2R3-MYB transcription factor, improved salt stress tolerance in transgenic Arabidopsis[J]. Biochem Biophys Res Commun, 2021, 569:93-99.
doi: 10.1016/j.bbrc.2021.06.085 URL |
[35] |
Zhang YB, Tang W, Wang LH, et al. Kiwifruit(Actinidia chinensis)R1R2R3-MYB transcription factor AcMYB3R enhances drought and salinity tolerance in Arabidopsis thaliana[J]. J Integr Agric, 2019, 18(2):417-427.
doi: 10.1016/S2095-3119(18)62127-6 URL |
[36] |
Xu R, Wang YH, Zheng H, et al. Salt-induced transcription factor MYB74 is regulated by the RNA-directed DNA methylation pathway in Arabidopsis[J]. J Exp Bot, 2015, 66(19):5997-6008.
doi: 10.1093/jxb/erv312 URL |
[37] |
Zhu N, Cheng SF, Liu XY, et al. The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice[J]. Plant Sci, 2015, 236:146-156.
doi: 10.1016/j.plantsci.2015.03.023 URL |
[38] |
Dong W, Song YG, Zhao Z, et al. The Medicago truncatula R2R3-MYB transcription factor gene MtMYBS1 enhances salinity tolerance when constitutively expressed in Arabidopsis thaliana[J]. Biochem Biophys Res Commun, 2017, 490(2):225-230.
doi: 10.1016/j.bbrc.2017.06.025 URL |
[39] |
Mehrtens F, Kranz H, Bednarek P, et al. The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis[J]. Plant Physiol, 2005, 138(2):1083-1096.
pmid: 15923334 |
[40] |
Teng S, Keurentjes J, Bentsink L, et al. Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene[J]. Plant Physiol, 2005, 139(4):1840-1852.
doi: 10.1104/pp.105.066688 URL |
[41] |
Lee SB, Kim HU, Suh MC. MYB94 and MYB96 additively activate cuticular wax biosynthesis in Arabidopsis[J]. Plant Cell Physiol, 2016, 57(11):2300-2311.
doi: 10.1093/pcp/pcw147 URL |
[42] |
Zhao Y, Cheng XY, Liu XD, et al. The wheat MYB transcription factor TaMYB31 is involved in drought stress responses in Arabidopsis[J]. Front Plant Sci, 2018, 9:1426.
doi: 10.3389/fpls.2018.01426 pmid: 30323824 |
[43] |
Cominelli E, Sala TA, Calvi D, et al. Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability[J]. Plant J, 2008, 53(1):53-64.
pmid: 17971045 |
[44] |
Oh JE, Kwon Y, Kim JH, et al. A dual role for MYB60 in stomatal regulation and root growth of Arabidopsis thaliana under drought stress[J]. Plant Mol Biol, 2011, 77(1/2):91-103.
doi: 10.1007/s11103-011-9796-7 URL |
[45] | Jung C, Seo JS, Han SW, et al. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis[J]. Plant Physiol, 2008, 146(2):623-635. |
[46] |
Jaradat MR, Feurtado JA, Huang DQ, et al. Multiple roles of the transcription factor AtMYBR1/AtMYB44 in ABA signaling, stress responses, and leaf senescence[J]. BMC Plant Biol, 2013, 13:192.
doi: 10.1186/1471-2229-13-192 pmid: 24286353 |
[47] |
Seo PJ, Xiang FN, Qiao M, et al. The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis[J]. Plant Physiol, 2009, 151(1):275-289.
doi: 10.1104/pp.109.144220 URL |
[48] |
Butt HI, Yang ZE, Gong Q, et al. GaMYB85, an R2R3 MYB gene, in transgenic Arabidopsis plays an important role in drought tolerance[J]. BMC Plant Biol, 2017, 17(1):142.
doi: 10.1186/s12870-017-1078-3 URL |
[49] |
Lee HG, Seo PJ. The MYB96-HHP module integrates cold and abscisic acid signaling to activate the CBF-COR pathway in Arabidopsis[J]. Plant J, 2015, 82(6):962-977.
doi: 10.1111/tpj.12866 URL |
[50] |
Kim SH, Kim HS, Bahk S, et al. Phosphorylation of the transcriptional repressor MYB15 by mitogen-activated protein kinase 6 is required for freezing tolerance in Arabidopsis[J]. Nucleic Acids Res, 2017, 45(11):6613-6627.
doi: 10.1093/nar/gkx417 URL |
[51] |
An JP, Li R, Qu FJ, et al. R2R3-MYB transcription factor MdMYB23 is involved in the cold tolerance and proanthocyanidin accumulation in apple[J]. Plant J, 2018, 96(3):562-577.
doi: 10.1111/tpj.14050 URL |
[52] | 翟红. 拟南芥AtMYBC1基因在非生物胁迫反应中的功能研究[D]. 哈尔滨: 东北农业大学, 2009. |
Zhai H. Functional analysis of gene AtMYBC1in Arabidopsis thaliana under abiotic stresses[D]. Harbin: Northeast Agricultural University, 2009. | |
[53] |
Liao CC, Zheng Y, Guo Y. MYB30 transcription factor regulates oxidative and heat stress responses through ANNEXIN-mediated cytosolic calcium signaling in Arabidopsis[J]. New Phytol, 2017, 216(1):163-177.
doi: 10.1111/nph.14679 URL |
[54] |
Wu Z, Li T, Liu XY, et al. A novel R2R3-MYB transcription factor LlMYB305 from Lilium longiflorum plays a positive role in thermotolerance via activating heat-protective genes[J]. Environ Exp Bot, 2021, 184:104399.
doi: 10.1016/j.envexpbot.2021.104399 URL |
[55] | Meng X, Wang JR, Wang GD, et al. An R2R3-MYB gene, LeAN2, positively regulated the thermo-tolerance in transgenic tomato[J]. J Plant Physiol, 2015, 175:1-8. |
[56] |
Casaretto JA, El-Kereamy A, Zeng B, et al. Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance[J]. BMC Genomics, 2016, 17:312.
doi: 10.1186/s12864-016-2659-5 pmid: 27129581 |
[57] |
Zhang JY, Zhou X, Xu Y, et al. Soybean SPX1 is an important component of the response to phosphate deficiency for phosphorus homeostasis[J]. Plant Sci, 2016, 248:82-91.
doi: 10.1016/j.plantsci.2016.04.010 URL |
[58] |
Zheng XW, Liu C, Qiao L, et al. The MYB transcription factor TaPHR3-A1 is involved in phosphate signaling and governs yield-related traits in bread wheat[J]. J Exp Bot, 2020, 71(19):5808-5822.
doi: 10.1093/jxb/eraa355 URL |
[59] |
Wang FZ, Chen MX, Yu LJ, et al. OsARM1, an R2R3 MYB transcription factor, is involved in regulation of the response to arsenic stress in rice[J]. Front Plant Sci, 2017, 8:1868.
doi: 10.3389/fpls.2017.01868 URL |
[60] |
Agarwal P, Mitra M, Banerjee S, et al. MYB4 transcription factor, a member of R2R3-subfamily of MYB domain protein, regulates cadmium tolerance via enhanced protection against oxidative damage and increases expression of PCS1 and MT1C in Arabidopsis[J]. Plant Sci, 2020, 297:110501.
doi: 10.1016/j.plantsci.2020.110501 URL |
[61] |
Ai TN, Naing AH, Yun BW, et al. Overexpression of RsMYB1 enhances anthocyanin accumulation and heavy metal stress tolerance in transgenic Petunia[J]. Front Plant Sci, 2018, 9:1388.
doi: 10.3389/fpls.2018.01388 URL |
[62] |
Sapara KK, Khedia J, Agarwal P, et al. SbMYB15 transcription factor mitigates cadmium and nickel stress in transgenic tobacco by limiting uptake and modulating antioxidative defence system[J]. Funct Plant Biol, 2019, 46(8):702-714.
doi: 10.1071/FP18234 pmid: 31023418 |
[63] |
Zhang YL, Zhang CL, Wang GL, et al. The R2R3 MYB transcription factor MdMYB30 modulates plant resistance against pathogens by regulating cuticular wax biosynthesis[J]. BMC Plant Biol, 2019, 19(1):362.
doi: 10.1186/s12870-019-1918-4 URL |
[64] |
Gu KD, Zhang QY, Yu JQ, et al. R2R3-MYB transcription factor MdMYB73 confers increased resistance to the fungal pathogen Botryosphaeria dothidea in apples via the salicylic acid pathway[J]. J Agric Food Chem, 2021, 69(1):447-458.
doi: 10.1021/acs.jafc.0c06740 URL |
[65] |
Noman A, Hussain A, Adnan M, et al. A novel MYB transcription factor CaPHL8 provide clues about evolution of pepper immunity againstsoil borne pathogen[J]. Microb Pathog, 2019, 137:103758.
doi: 10.1016/j.micpath.2019.103758 URL |
[66] |
Yu YH, Guo DL, Li GR, et al. The grapevine R2R3-type MYB transcription factor VdMYB1 positively regulates defense responses by activating the stilbene synthase gene 2(VdSTS2)[J]. BMC Plant Biol, 2019, 19(1):478.
doi: 10.1186/s12870-019-1993-6 URL |
[67] |
Gao Y, Jia SW, Wang CL, et al. BjMYB1, a transcription factor implicated in plant defence through activating BjCHI1 chitinase expression by binding to a W-box-like element[J]. J Exp Bot, 2016, 67(15):4647-4658.
doi: 10.1093/jxb/erw240 URL |
[68] |
He J, Liu YQ, Yuan DY, et al. An R2R3 MYB transcription factor confers brown planthopper resistance by regulating the phenylalanine ammonia-lyase pathway in rice[J]. Proc Natl Acad Sci USA, 2020, 117(1):271-277.
doi: 10.1073/pnas.1902771116 URL |
[69] |
Lee HG, Seo PJ. MYB96 recruits the HDA15 protein to suppress negative regulators of ABA signaling in Arabidopsis[J]. Nat Commun, 2019, 10(1):1713.
doi: 10.1038/s41467-019-09417-1 URL |
[70] |
Lee HG, Seo PJ. The Arabidopsis MIEL1 E3 ligase negatively regulates ABA signalling by promoting protein turnover of MYB96[J]. Nat Commun, 2016, 7:12525.
doi: 10.1038/ncomms12525 URL |
[71] |
Seo PJ, Xiang FN, Qiao M, et al. The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis[J]. Plant Physiol, 2009, 151(1):275-289.
doi: 10.1104/pp.109.144220 URL |
[72] |
Seo PJ, Park CM. MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis[J]. New Phytol, 2010, 186(2):471-483.
doi: 10.1111/j.1469-8137.2010.03183.x URL |
[73] |
Reyes JL, Chua NH. ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination[J]. Plant J, 2007, 49(4):592-606.
pmid: 17217461 |
[74] |
Kim JH, Hyun WY, Nguyen HN, et al. AtMyb7, a subgroup 4 R2R3 Myb, negatively regulates ABA-induced inhibition of seed germination by blocking the expression of the bZIP transcription factor ABI5[J]. Plant Cell Environ, 2015, 38(3):559-571.
doi: 10.1111/pce.12415 URL |
[75] |
Baek D, Chun HJ, Kang S, et al. A role for Arabidopsis miR399f in salt, drought, and ABA signaling[J]. Mol Cells, 2016, 39(2):111-118.
doi: 10.14348/molcells.2016.2188 URL |
[76] |
Yu YT, Wu Z, Lu K, et al. Overexpression of the MYB37 transcription factor enhances abscisic acid sensitivity, and improves both drought tolerance and seed productivity in Arabidopsis thaliana[J]. Plant Mol Biol, 2016, 90(3):267-279.
doi: 10.1007/s11103-015-0411-1 URL |
[77] |
Gao S, Zhang YL, Yang L, et al. AtMYB20 is negatively involved in plant adaptive response to drought stress[J]. Plant Soil, 2014, 376(1/2):433-443.
doi: 10.1007/s11104-013-1992-6 URL |
[78] |
Li DK, Li Y, Zhang L, et al. Arabidopsis ABA receptor RCAR1/PYL9 interacts with an R2R3-type MYB transcription factor, AtMYB44[J]. Int J Mol Sci, 2014, 15(5):8473-8490.
doi: 10.3390/ijms15058473 URL |
[79] |
Song SS, Qi TC, Huang H, et al. The Jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect Jasmonate-regulated stamen development in Arabidopsis[J]. Plant Cell, 2011, 23(3):1000-1013.
doi: 10.1105/tpc.111.083089 URL |
[80] |
Cheng H, Song SS, Xiao LT, et al. Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis[J]. PLoS Genet, 2009, 5(3):e1000440.
doi: 10.1371/journal.pgen.1000440 URL |
[81] |
Xu XF, Wang B, Feng YF, et al. AUXIN RESPONSE FACTOR17 directly regulates MYB108 for anther dehiscence[J]. Plant Physiol, 2019, 181(2):645-655.
doi: 10.1104/pp.19.00576 URL |
[82] |
Yang CY, Song J, Ferguson AC, et al. Transcription factor MYB26 is key to spatial specificity in anther secondary thickening formation[J]. Plant Physiol, 2017, 175(1):333-350.
doi: 10.1104/pp.17.00719 URL |
[83] | 刘艳霞, 王娟, 兰海燕. 基因调控网络调节植物表皮毛发育的研究进展[J]. 分子植物育种, 2017, 15(4):1362-1370. |
Liu YX, Wang J, Lan HY. Advance in gene regulatory network of plant trichome development controlling[J]. Mol Plant Breed, 2017, 15(4):1362-1370. | |
[84] | 马骁, 李魁, 王志敏, 等. 植物不同类型表皮毛调控模型研究进展[J]. 生物工程学报, 2020, 36(10):2051-2065. |
Ma X, Li K, Wang ZM, et al. Research progress in regulation model in different types of plant trichome[J]. Chin J Biotechnol, 2020, 36(10):2051-2065. |
[1] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[2] | 胡明月, 杨宇, 郭仰东, 张喜春. 低温胁迫下番茄SlMYB96的功能分析[J]. 生物技术通报, 2023, 39(4): 236-245. |
[3] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[4] | 赖恭梯, 阙秋霞, 潘若, 刘雨轩, 王琦, 赖谱富, 高慧颖, 赖呈纯. 刺葡萄查尔酮合成酶基因CHS对不同光质的响应及转录因子调控分析[J]. 生物技术通报, 2022, 38(11): 129-139. |
[5] | 骆鹰, 谭智, 王帆, 刘晓霞, 罗小芳, 何福林. 银杏GbR2R3-MYB1基因的克隆及非生物胁迫应答分析[J]. 生物技术通报, 2022, 38(10): 184-194. |
[6] | 黎猛, 陈跃, 胡凤荣. miR159-GAMYB途径调控植物生长发育的研究进展[J]. 生物技术通报, 2021, 37(9): 234-247. |
[7] | 梁振霆, 唐婷. 内生菌对植物次生代谢产物的生物合成影响和抗逆功能研究[J]. 生物技术通报, 2021, 37(8): 35-45. |
[8] | 李琦, 王怡超, 刘畅, 谭何新. 黄花蒿R2R3-MYB转录因子全基因组鉴定及生物信息学分析[J]. 生物技术通报, 2021, 37(8): 65-74. |
[9] | 林艳丽, 覃建兵, 伍翔, 王岩岩, 潘佑找, 柳忠玉. 虎杖PcMYB1启动子的克隆及其活性分析[J]. 生物技术通报, 2021, 37(5): 48-55. |
[10] | 孙小倩, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子FtMYBF的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2021, 37(3): 10-17. |
[11] | 卢雯瑩, 赵磊, 李天奇, 崔鹤云, 廖平安. 蔷薇科植物果实花青苷积累研究进展[J]. 生物技术通报, 2021, 37(1): 234-245. |
[12] | 谢伟, 郝志鹏, 郭兰萍, 张莘, 张淑彬, 王幼珊, 陈保冬. 丛枝菌根影响植物萜类化合物合成与积累研究进展[J]. 生物技术通报, 2020, 36(9): 49-63. |
[13] | 高国应, 伍小方, 张大为, 周定港, 张凯旋, 严明理. MBW复合体在植物花青素合成途径中的研究进展[J]. 生物技术通报, 2020, 36(1): 126-134. |
[14] | 张麒, 陈静, 李俐, 赵明珠, 张美萍, 王义. 植物AP2/ERF转录因子家族的研究进展[J]. 生物技术通报, 2018, 34(8): 1-7. |
[15] | 王博, 王莲萍, 杨春雨, 国会艳, 魏继承. 白桦E-box元件的载体构建及与BplMYB46转录因子的互作分析[J]. 生物技术通报, 2018, 34(12): 110-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||