生物技术通报 ›› 2021, Vol. 37 ›› Issue (9): 234-247.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0028
收稿日期:
2021-01-07
出版日期:
2021-09-26
发布日期:
2021-10-25
作者简介:
黎猛,男,硕士研究生,研究方向:植物遗传育种;E-mail: 基金资助:
LI Meng(), CHEN Yue, HU Feng-rong()
Received:
2021-01-07
Published:
2021-09-26
Online:
2021-10-25
摘要:
miR159(microRNA159)是植物中一类古老而又保守的microRNA,其靶基因主要是一类编码R2R3 MYB转录因子的GAMYB-like基因。miR159-GAMYB途径高度保守,miR159通过转录后调控GAMYB在植物营养生长、开花诱导、雄性生殖、花器官发育、植物育性、果实发育、种子萌发和胁迫响应中发挥着重要作用。主要探讨了近些年来miR159-GAMYB途径对植物生长发育的影响,为今后相关研究提供参考。
黎猛, 陈跃, 胡凤荣. miR159-GAMYB途径调控植物生长发育的研究进展[J]. 生物技术通报, 2021, 37(9): 234-247.
LI Meng, CHEN Yue, HU Feng-rong. Research Progress in miR159-GAMYB Regulating Plants Growth and Development[J]. Biotechnology Bulletin, 2021, 37(9): 234-247.
物种Species | 技术方法Approach | 表型Phenotype | 参考文献Reference |
---|---|---|---|
拟南芥Arabidopsis thaliana | miR159a过表达(Columbia型) | 雄性不育 | [ |
miR159a过表达(Landsberg型) | 雄性不育、开花延迟 | [ | |
T-DNA mir159ab突变 | 植株矮小、生长延缓、叶子卷曲、角果和种子变小、种子畸形、主根变长、开花延迟 | [ | |
T-DNA mir159abc突变 | 受精异常、植株矮小、生长延缓、叶子卷曲、角果和种子变小 | [ | |
T-DNA mir159c突变 | 无 | [ | |
MIM159模拟功能缺失 | 植株矮小、生长延缓、叶子卷曲、主根变长,花萼、花瓣、花药发育异常 | [ | |
mMYB33过表达 | 植株矮小、生长延缓、叶子卷曲 | [ | |
T-DNA myb33、myb65突变 | 雄性不育、二倍体花粉 | [ | |
T-DNA myb81突变 | 花粉异常 | [ | |
T-DNA myb97、myb101、myb120突变 | 种子糊粉异常、雄性不育 | [ | |
水稻Oryza sativa | miR159过表达 | 叶鞘畸形、节间伸长异常、雄性不育、花药变白皱缩、花变小、雌蕊棕色皱缩 | [ |
STTM159模拟功能缺失 | 植株矮小,叶、圆锥花序尺寸变小、节间缩短、种子变小 | [ | |
MIM159模拟功能缺失 | 植株矮小、生长延缓、剑叶短小 | [ | |
gamyb转座子插入突变 | 叶鞘畸形、节间伸长异常、雄性不育花药变白皱缩、花变小 | [ | |
番茄Solanum lycopersicum | miR159过表达 | 果实早熟、单性结实、植株变矮、花变小 | [ |
MIM159模拟功能缺失 | 植株变高、种子变多 | [ | |
RNAi沉默SlMYB33 | 花粉成熟异常、低育性、果实变小、开花延迟 | [ | |
SlMYB33过表达 | 果实增大、开花延迟 | [ | |
大岩桐Sinningia speciosa | miR159a过表达 | 开花延迟 | [ |
MIM159模拟功能缺失 | 开花提前、花萼花瓣发育异常 | [ | |
烟草Nicotiana tabacum | MIM159模拟功能缺失 | 植株矮小、生长延缓、叶子变小变皱、雄蕊变短、花色变白、花型变小、开花延迟 | [ |
mNtGAMYB2过表达 | 植株矮小、生长延缓、叶子变小变皱、雄蕊变短、花色变白、花型变小 | [ | |
大麦Hordeum vulgare | HvGAMYB过表达 | 雄性不育 | [ |
草莓Fragaria × ananassa | RNAi沉默FaGAMYB | 花托成熟中止、花托颜色受抑制 | [ |
黄瓜Cucumis sativus | RNAi沉默CsGAMYB | 降低雄花和雌花的比例 | [ |
白菜Brassica campestris | miR159a过表达 | 雄性不育 | [ |
青菜Brassica rapa ssp. Chinensis | VIGS沉默BcMYB101 | 叶片上卷 | [ |
表1 miR159-GAMYB途径调控植物生长发育研究进展
Table 1 Research progress of miR159-GAMYB pathway regulating plants growth and development
物种Species | 技术方法Approach | 表型Phenotype | 参考文献Reference |
---|---|---|---|
拟南芥Arabidopsis thaliana | miR159a过表达(Columbia型) | 雄性不育 | [ |
miR159a过表达(Landsberg型) | 雄性不育、开花延迟 | [ | |
T-DNA mir159ab突变 | 植株矮小、生长延缓、叶子卷曲、角果和种子变小、种子畸形、主根变长、开花延迟 | [ | |
T-DNA mir159abc突变 | 受精异常、植株矮小、生长延缓、叶子卷曲、角果和种子变小 | [ | |
T-DNA mir159c突变 | 无 | [ | |
MIM159模拟功能缺失 | 植株矮小、生长延缓、叶子卷曲、主根变长,花萼、花瓣、花药发育异常 | [ | |
mMYB33过表达 | 植株矮小、生长延缓、叶子卷曲 | [ | |
T-DNA myb33、myb65突变 | 雄性不育、二倍体花粉 | [ | |
T-DNA myb81突变 | 花粉异常 | [ | |
T-DNA myb97、myb101、myb120突变 | 种子糊粉异常、雄性不育 | [ | |
水稻Oryza sativa | miR159过表达 | 叶鞘畸形、节间伸长异常、雄性不育、花药变白皱缩、花变小、雌蕊棕色皱缩 | [ |
STTM159模拟功能缺失 | 植株矮小,叶、圆锥花序尺寸变小、节间缩短、种子变小 | [ | |
MIM159模拟功能缺失 | 植株矮小、生长延缓、剑叶短小 | [ | |
gamyb转座子插入突变 | 叶鞘畸形、节间伸长异常、雄性不育花药变白皱缩、花变小 | [ | |
番茄Solanum lycopersicum | miR159过表达 | 果实早熟、单性结实、植株变矮、花变小 | [ |
MIM159模拟功能缺失 | 植株变高、种子变多 | [ | |
RNAi沉默SlMYB33 | 花粉成熟异常、低育性、果实变小、开花延迟 | [ | |
SlMYB33过表达 | 果实增大、开花延迟 | [ | |
大岩桐Sinningia speciosa | miR159a过表达 | 开花延迟 | [ |
MIM159模拟功能缺失 | 开花提前、花萼花瓣发育异常 | [ | |
烟草Nicotiana tabacum | MIM159模拟功能缺失 | 植株矮小、生长延缓、叶子变小变皱、雄蕊变短、花色变白、花型变小、开花延迟 | [ |
mNtGAMYB2过表达 | 植株矮小、生长延缓、叶子变小变皱、雄蕊变短、花色变白、花型变小 | [ | |
大麦Hordeum vulgare | HvGAMYB过表达 | 雄性不育 | [ |
草莓Fragaria × ananassa | RNAi沉默FaGAMYB | 花托成熟中止、花托颜色受抑制 | [ |
黄瓜Cucumis sativus | RNAi沉默CsGAMYB | 降低雄花和雌花的比例 | [ |
白菜Brassica campestris | miR159a过表达 | 雄性不育 | [ |
青菜Brassica rapa ssp. Chinensis | VIGS沉默BcMYB101 | 叶片上卷 | [ |
[1] |
Rogers K, Chen X. Biogenesis, turnover, and mode of action of plant microRNAs[J]. Plant Cell, 2013, 25(7):2383-2399.
doi: 10.1105/tpc.113.113159 URL |
[2] |
Reinhart BJ, Weinstein EG, Rhoades MW, et al. MicroRNAs in plants[J]. Genes Dev, 2002, 16(13):1616-1626.
doi: 10.1101/gad.1004402 URL |
[3] |
Baulcombe D. RNA silencing in plants[J]. Nature, 2004, 431(7006):356-363.
doi: 10.1038/nature02874 URL |
[4] |
Hu W, et al. MicroRNA mediates DNA methylation of target genes[J]. Biochem Biophys Res Commun, 2014, 444(4):676-681.
doi: 10.1016/j.bbrc.2014.01.171 URL |
[5] |
Wu L, Zhou H, Zhang Q, et al. DNA methylation mediated by a microRNA pathway[J]. Mol Cell, 2010, 38(3):465-475.
doi: 10.1016/j.molcel.2010.03.008 URL |
[6] |
Szweykowska-Kulinska Z, Jarmolowski A. Post-transcriptional regulation of MicroRNA accumulation and function:new insights from plants[J]. Mol Plant, 2018, 11(8):1006-1007.
doi: S1674-2052(18)30217-X pmid: 29990552 |
[7] |
Chávez Montes RA, Rosas-Cárdenas DFF, de Paoli E, et al. Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs[J]. Nat Commun, 2014, 5:3722.
doi: 10.1038/ncomms4722 URL |
[8] |
Dubos C, Stracke R, Grotewold E, et al. MYB transcription factors in Arabidopsis[J]. Trends Plant Sci, 2010, 15(10):573-581.
doi: 10.1016/j.tplants.2010.06.005 URL |
[9] |
Katiyar A, Smita S, Lenka SK, et al. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis[J]. BMC Genomics, 2012, 13:544.
doi: 10.1186/1471-2164-13-544 pmid: 23050870 |
[10] |
Feller A, Machemer K, Braun EL, et al. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors[J]. Plant J, 2011, 66(1):94-116.
doi: 10.1111/tpj.2011.66.issue-1 URL |
[11] | Gubler F, Kalla R, Roberts JK, et al. Gibberellin-regulated expression of a myb gene in barley aleurone cells:evidence for Myb transactivation of a high-pI alpha-amylase gene promoter[J]. Plant Cell, 1995, 7(11):1879-1891. |
[12] |
Rajagopalan R, Vaucheret H, Trejo J, et al. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana[J]. Genes Dev, 2006, 20(24):3407-3425.
doi: 10.1101/gad.1476406 URL |
[13] |
Allen RS, Li J, Stahle MI, et al. Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family[J]. PNAS, 2007, 104(41):16371-16376.
doi: 10.1073/pnas.0707653104 URL |
[14] |
Allen RS, Li J, Alonso-Peral MM, et al. MicroR159 regulation of most conserved targets in Arabidopsis has negligible phenotypic effects[J]. Silence, 2010, 1(1):18.
doi: 10.1186/1758-907X-1-18 URL |
[15] |
Stracke R, et al. The R2R3-MYB gene family in Arabidopsis thali-ana[J]. Curr Opin Plant Biol, 2001, 4(5):447-456.
pmid: 11597504 |
[16] |
Addo-Quaye C, Eshoo TW, Bartel DP, et al. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome[J]. Curr Biol, 2008, 18(10):758-762.
doi: S0960-9822(08)00528-9 pmid: 18472421 |
[17] |
German MA, Pillay M, Jeong DH, et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends[J]. Nat Biotechnol, 2008, 26(8):941-946.
doi: 10.1038/nbt1417 URL |
[18] |
Zheng Z, Reichel M, Deveson I, et al. Target RNA secondary structure is a major determinant of miR159 efficacy[J]. Plant Physiol, 2017, 174(3):1764-1778.
doi: 10.1104/pp.16.01898 URL |
[19] |
Alonso-Peral MM, et al. The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis[J]. Plant Physiol, 2010, 154(2):757-771.
doi: 10.1104/pp.110.160630 pmid: 20699403 |
[20] |
Li J, Reichel M, Li Y, et al. The functional scope of plant microRNA-mediated silencing[J]. Trends Plant Sci, 2014, 19(12):750-756.
doi: 10.1016/j.tplants.2014.08.006 URL |
[21] |
Zheng ZH, Wang NQ, Jalajakumari M, et al. miR159 represses a constitutive pathogen defense response in tobacco[J]. Plant Physiol, 2020, 182(4):2182-2198.
doi: 10.1104/pp.19.00786 URL |
[22] |
Millar AA, Lohe A, Wong G. Biology and function of miR159 in plants[J]. Plants, 2019, 8(8):255.
doi: 10.3390/plants8080255 URL |
[23] |
Millar AA, Gubler F. The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development[J]. Plant Cell, 2005, 17(3):705-721.
doi: 10.1105/tpc.104.027920 URL |
[24] |
Todesco M, Rubio-Somoza I, Paz-Ares J, et al. A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana[J]. PLoS Genet, 2010, 6(7):e1001031.
doi: 10.1371/journal.pgen.1001031 URL |
[25] |
Rubio-Somoza I, Weigel D. Coordination of flower maturation by a regulatory circuit of three microRNAs[J]. PLoS Genet, 2013, 9(3):e1003374.
doi: 10.1371/journal.pgen.1003374 URL |
[26] |
Reichel M, Li Y, Li J, et al. Inhibiting plant microRNA activity:molecular SPONGEs, target MIMICs and STTMs all display variable efficacies against target microRNAs[J]. Plant Biotechnol J, 2015, 13(7):915-926.
doi: 10.1111/pbi.2015.13.issue-7 URL |
[27] |
Zhao Y, Wen H, Teotia S, et al. Suppression of microRNA159 impacts multiple agronomic traits in rice(Oryza sativa L.)[J]. BMC Plant Biol, 2017, 17(1):215.
doi: 10.1186/s12870-017-1171-7 URL |
[28] |
Kim MH, Cho JS, Lee JH, et al. Poplar MYB transcription factor PtrMYB012 and its Arabidopsis AtGAMYB orthologs are differentially repressed by the Arabidopsis miR159 family[J]. Tree Physiol, 2018, 38(6):801-812.
doi: 10.1093/treephys/tpx164 URL |
[29] |
da Silva EM, Silva GFFE, Bidoia DB, et al. microRNA159-targeted SlGAMYB transcription factors are required for fruit set in tomato[J]. Plant J, 2017, 92(1):95-109.
doi: 10.1111/tpj.2017.92.issue-1 URL |
[30] |
Tsuji H, Aya K, et al. GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers[J]. Plant J, 2006, 47(3):427-444.
doi: 10.1111/tpj.2006.47.issue-3 URL |
[31] |
Kaneko M, Inukai Y, Ueguchi-Tanaka M, et al. Loss-of-function mutations of the rice GAMYB gene impair alpha-amylase expression in aleurone and flower development[J]. Plant Cell, 2004, 16(1):33-44.
doi: 10.1105/tpc.017327 URL |
[32] |
Li X, Bian H, Song D, et al. Flowering time control in ornamental Gloxinia(Sinningia speciosa)by manipulation of miR159 expression[J]. Ann Bot, 2013, 111(5):791-799.
doi: 10.1093/aob/mct034 URL |
[33] |
Hou HL, Zhang CW, Hou XL. Cloning and functional analysis of BcMYB101 gene involved in leaf development in pak choi(Brassica rapa ssp. chinensis)[J]. Int J Mol Sci, 2020, 21(8):2750.
doi: 10.3390/ijms21082750 URL |
[34] |
Xue T, Liu Z, Dai X, et al. Primary root growth in Arabidopsis thali-ana is inhibited by the miR159 mediated repression of MYB33, MYB65 and MYB101[J]. Plant Sci, 2017, 262:182-189.
doi: 10.1016/j.plantsci.2017.06.008 URL |
[35] |
Zhang SY, Wang J, Chen GH, et al. Functional analysis of a MYB transcription factor BrTDF1 in the tapetum development of Wucai(Brassica rapa ssp. )[J]. Sci Hortic, 2019, 257:108728.
doi: 10.1016/j.scienta.2019.108728 URL |
[36] |
Liu B, de Storme N, Geelen D. Gibberellin induces diploid pollen formation by interfering with meiotic cytokinesis[J]. Plant Physiol, 2017, 173(1):338-353.
doi: 10.1104/pp.16.00480 URL |
[37] |
Oh SA, Hoai TNT, et al. MYB81, a microspore-specific GAMYB transcription factor, promotes pollen mitosis I and cell lineage formation in Arabidopsis[J]. Plant J, 2020, 101(3):590-603.
doi: 10.1111/tpj.v101.3 URL |
[38] |
Liang Y, Tan ZM, Zhu L, et al. MYB97, MYB101 and MYB120 function as male factors that control pollen tube-synergid interaction in Arabidopsis thaliana fertilization[J]. PLoS Genet, 2013, 9(11):e1003933.
doi: 10.1371/journal.pgen.1003933 URL |
[39] |
Leydon AR, Beale KM, Woroniecka K, et al. Three MYB transcription factors control pollen tube differentiation required for sperm release[J]. Curr Biol, 2013, 23(13):1209-1214.
doi: 10.1016/j.cub.2013.05.021 URL |
[40] |
Zhao Y, Wang S, Wu W, et al. Clearance of maternal barriers by paternal miR159 to initiate endosperm nuclear division in Arabidopsis[J]. Nat Commun, 2018, 9(1):5011.
doi: 10.1038/s41467-018-07429-x URL |
[41] |
Aya K, Ueguchi-Tanaka M, Kondo M, et al. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB[J]. Plant Cell, 2009, 21(5):1453-1472.
doi: 10.1105/tpc.108.062935 URL |
[42] | 侯丹. 毛竹生殖器官发育相关miRNA挖掘与miR159-GAMYB途径对花药发育调控研究[D]. 北京:中国林业科学研究院, 2018. |
Hou D. Identification of miRNAs involved in Phyllostachys edulis reproductive organs and regulatory role of miR159-GAMYB pathway in anther development[D]. Beijing:Chinese Academy of Forestry, 2018. | |
[43] |
Zhang Y, Zhang B, Yang TW, et al. The GAMYB-like gene SlMYB33 mediates flowering and pollen development in tomato[J]. Hortic Res, 2020, 7:133.
doi: 10.1038/s41438-020-00366-1 URL |
[44] | 胡紫蔚. 白菜miR159和miR319在花粉发育中的调控作用[D]. 杭州:浙江大学, 2019. |
Hu ZW. The regulatory function of miR159 and miR319 during pollen development in Brassica campestris[D]. Hangzhou:Zhejiang University, 2019. | |
[45] |
Hu Z, Shen X, Xiang X, et al. Evolution of MIR159/319 genes in Brassica campestris and their function in pollen development[J]. Plant Mol Biol, 2019, 101(6):537-550.
doi: 10.1007/s11103-019-00920-z URL |
[46] |
Zhang Y, Zhang X, Liu B, et al. A GAMYB homologue CsGAMYB1 regulates sex expression of cucumber via an ethylene-independent pathway[J]. J Exp Bot, 2014, 65(12):3201-3213.
doi: 10.1093/jxb/eru176 pmid: 24790111 |
[47] |
Murray F, Kalla R, Jacobsen J, et al. A role for HvGAMYB in anther development[J]. Plant J, 2003, 33(3):481-491.
pmid: 12581306 |
[48] |
Wang Y, Sun F, Cao H, et al. TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response[J]. PLoS One, 2012, 7(11):e48445.
doi: 10.1371/journal.pone.0048445 URL |
[49] |
Guo WJ, David Ho TH. An abscisic acid-induced protein, HVA22, inhibits gibberellin-mediated programmed cell death in cereal aleurone cells[J]. Plant Physiol, 2008, 147(4):1710-1722.
doi: 10.1104/pp.108.120238 URL |
[50] |
Alonso-Peral MM, Sun C, Millar AA. MicroRNA159 can act as a switch or tuning microRNA independently of its abundance in Arabidopsis[J]. PLoS One, 2012, 7(4):e34751.
doi: 10.1371/journal.pone.0034751 URL |
[51] |
Gong XM, et al. A GAMYB-like gene in tomato and its expression during seed germination[J]. Planta, 2008, 228(4):563-572.
doi: 10.1007/s00425-008-0759-4 URL |
[52] |
Wang C, Jogaiah S, Zhang W, et al. Spatio-temporal expression of miRNA159 family members and their GAMYB target gene during the modulation of gibberellin-induced grapevine parthenocarpy[J]. J Exp Bot, 2018, 69(15):3639-3650.
doi: 10.1093/jxb/ery172 URL |
[53] |
Csukasi F, Donaire L, Casañal A, et al. Two strawberry miR159 family members display developmental-specific expression patterns in the fruit receptacle and cooperatively regulate Fa-GAMYB[J]. New Phytol, 2012, 195(1):47-57.
doi: 10.1111/j.1469-8137.2012.04134.x URL |
[54] |
Vallarino JG, Osorio S, et al. Central role of FaGAMYB in the transition of the strawberry receptacle from development to ripening[J]. New Phytol, 2015, 208(2):482-496.
doi: 10.1111/nph.13463 pmid: 26010039 |
[55] | 张波, 等. GA信号因子SlMYB33对番茄开花时间及果实大小的影响[J]. 西北农业学报, 2020, 29(12):1859-1866. |
Zhang B, et al. Effect of GA signal factor SlMYB33 on flowering time and fruit size of tomato[J]. Acta Agric Boreali Occidentalis Sin, 2020, 29(12):1859-1866. | |
[56] |
Gocal GF, Sheldon CC, Gubler F, et al. GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis[J]. Plant Physiol, 2001, 127(4):1682-1693.
pmid: 11743113 |
[57] |
Achard P, Herr A, Baulcombe DC, et al. Modulation of floral development by a gibberellin-regulated microRNA[J]. Development, 2004, 131(14):3357-3365.
doi: 10.1242/dev.01206 URL |
[58] | 王梦琦, 解振强, 孙欣, 等. 葡萄miR159及其靶基因VvGAMYB在花发育过程中的作用分析[J]. 园艺学报, 2017, 44(6):1061-1072. |
Wang MQ, Xie ZQ, Sun X, et al. Function analysis of miR159 and its target gene VvGAMYB in grape flower development[J]. Acta Hortic Sin, 2017, 44(6):1061-1072. | |
[59] |
Schwab R, Palatnik JF, et al. Specific effects of microRNAs on the plant transcriptome[J]. Dev Cell, 2005, 8(4):517-527.
doi: 10.1016/j.devcel.2005.01.018 URL |
[60] |
Guo C, Xu Y, Shi M, et al. Repression of miR156 by miR159 regulates the timing of the juvenile-to-adult transition in Arabidopsis[J]. Plant Cell, 2017, 29(6):1293-1304.
doi: 10.1105/tpc.16.00975 URL |
[61] |
Gao X, Zhang Q, Zhao YQ, et al. The lre-miR159a-LrGAMYB pathway mediates resistance to grey mould infection in Lilium regale[J]. Mol Plant Pathol, 2020, 21(6):749-760.
doi: 10.1111/mpp.12923 URL |
[62] |
Medina C, da Rocha M, Magliano M, et al. Characterization of microRNAs from Arabidopsis galls highlights a role for miR159 in the plant response to the root-knot nematode Meloidogyne incognita[J]. New Phytol, 2017, 216(3):882-896.
doi: 10.1111/nph.2017.216.issue-3 URL |
[63] |
Chellappan P, Vanitharani R, Fauquet CM. MicroRNA-binding viral protein interferes with Arabidopsis development[J]. PNAS, 2005, 102(29):10381-10386.
doi: 10.1073/pnas.0504439102 URL |
[64] |
Du ZY, Chen AZ, Chen WH, et al. Using a viral vector to reveal the role of MicroRNA159 in disease symptom induction by a severe strain of cucumber mosaic virus[J]. Plant Physiol, 2014, 164(3):1378-1388.
doi: 10.1104/pp.113.232090 URL |
[65] |
Li Y, et al. Ubiquitous miR159 repression of MYB33/65 in Arabidopsis rosettes is robust and is not perturbed by a wide range of stresses[J]. BMC Plant Biol, 2016, 16(1):179.
doi: 10.1186/s12870-016-0867-4 URL |
[66] |
Reyes JL, Chua NH. ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination[J]. Plant J, 2007, 49(4):592-606.
pmid: 17217461 |
[67] |
Pieczynski M, Marczewski W, Hennig J, et al. Down-regulation of CBP80 gene expression as a strategy to engineer a drought-tolerant potato[J]. Plant Biotechnol J, 2013, 11(4):459-469.
doi: 10.1111/pbi.12032 pmid: 23231480 |
[68] |
Zhang B. MicroRNA:a new target for improving plant tolerance to abiotic stress[J]. J Exp Bot, 2015, 66(7):1749-1761.
doi: 10.1093/jxb/erv013 URL |
[69] |
Murase K, Hirano Y, Sun TP, et al. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1[J]. Nature, 2008, 456(7221):459-463.
doi: 10.1038/nature07519 URL |
[70] |
Richards DE, King KE, Ait-Ali T, et al. How gibberellin regulates plant growth and development:a molecular genetic analysis of gibberellin signaling[J]. Annu Rev Plant Physiol Plant Mol Biol, 2001, 52:67-88.
doi: 10.1146/arplant.2001.52.issue-1 URL |
[71] |
Sun TP. The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants[J]. Curr Biol, 2011, 21(9):R338-R345.
doi: 10.1016/j.cub.2011.02.036 URL |
[72] | Davière JM, Achard P. Gibberellin signaling in plants[J]. Dev Camb Engl, 2013, 140(6):1147-1151. |
[73] |
Xu H, Liu Q, Yao T, et al. Shedding light on integrative GA signaling[J]. Curr Opin Plant Biol, 2014, 21:89-95.
doi: 10.1016/j.pbi.2014.06.010 URL |
[74] |
Fukazawa J, Ito T, Kamiya Y, et al. Binding of GID1 to DELLAs promotes dissociation of GAF1 from DELLA in GA dependent manner[J]. Plant Signal Behav, 2015, 10(10):e1052923.
doi: 10.1080/15592324.2015.1052923 URL |
[75] |
Aya K, Hiwatashi Y, Kojima M, et al. The Gibberellin perception system evolved to regulate a pre-existing GAMYB-mediated system during land plant evolution[J]. Nat Commun, 2011, 2:544.
doi: 10.1038/ncomms1552 URL |
[76] |
Han J, Fang J, Wang C, et al. Grapevine microRNAs responsive to exogenous gibberellin[J]. BMC Genomics, 2014, 15:111.
doi: 10.1186/1471-2164-15-111 URL |
[77] | 张文颖, 韩旭, 等. 葡萄miR159s靶基因的鉴定及其应答GA在果实不同组织的调控作用[J]. 中国农业科学, 2019, 52(16):2858-2870. |
Zhang WY, Han X, et al. Identification of the target genes of Vvmi-R159s and their regulation in response to GA in different tissues of grape berry[J]. Sci Agric Sin, 2019, 52(16):2858-2870. | |
[78] |
Palatnik JF, Wollmann H, Schommer C, et al. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319[J]. Dev Cell, 2007, 13(1):115-125.
pmid: 17609114 |
[79] |
Palatnik JF, Allen E, Wu XL, et al. Control of leaf morphogenesis by microRNAs[J]. Nature, 2003, 425(6955):257-263.
doi: 10.1038/nature01958 URL |
[80] |
Wu G, Park MY, Conway SR, et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis[J]. Cell, 2009, 138(4):750-759.
doi: 10.1016/j.cell.2009.06.031 URL |
[81] |
Wang JW, Czech B, Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana[J]. Cell, 2009, 138(4):738-749.
doi: 10.1016/j.cell.2009.06.014 URL |
[1] | 刘奎, 李兴芬, 杨沛欣, 仲昭晨, 曹一博, 张凌云. 青杄转录共激活因子PwMBF1c的功能研究与验证[J]. 生物技术通报, 2023, 39(5): 205-216. |
[2] | 魏明, 王欣玉, 伍国强, 赵萌. NAD依赖型去乙酰化酶SRT在植物表观遗传调控中的作用[J]. 生物技术通报, 2023, 39(4): 59-70. |
[3] | 张红红, 方晓峰. 相分离调控植物胁迫感知和应答的研究进展[J]. 生物技术通报, 2023, 39(11): 44-53. |
[4] | 金云倩, 王彬, 郭书磊, 赵霖熙, 韩赞平. 赤霉素调控玉米种子活力的研究进展[J]. 生物技术通报, 2023, 39(1): 84-94. |
[5] | 王楠楠, 王文佳, 朱强. 植物胁迫相关microRNA研究进展[J]. 生物技术通报, 2022, 38(8): 1-11. |
[6] | 汤茜茜, 林楚宇, 陶增. 植物组蛋白去甲基化酶研究进展[J]. 生物技术通报, 2022, 38(7): 13-22. |
[7] | 李毅丹, 单晓辉. 赤霉素代谢调控与绿色革命[J]. 生物技术通报, 2022, 38(2): 195-204. |
[8] | 殷国良, 孙文浩, 庞效云, 孙飞. 冷冻电镜技术在分子植物学研究中的应用[J]. 生物技术通报, 2022, 38(1): 15-32. |
[9] | 姚琼, 全林发, 徐淑, 董易之, 李文景, 池艳艳, 陈炳旭. 叉角厉蝽2个章鱼胺受体的基因克隆及化学农药对其表达的影响[J]. 生物技术通报, 2021, 37(10): 152-152. |
[10] | 武欢, 卢珍红, 郝向阳, 王斌, 焦元辰, 杨春梅, 程春振. 非洲菊GjMnSOD基因的克隆及表达分析[J]. 生物技术通报, 2021, 37(10): 17-25. |
[11] | 郑璐, 沈仁芳, 兰平. 植物非组蛋白赖氨酸乙酰化修饰的蛋白质组学研究进展[J]. 生物技术通报, 2021, 37(1): 77-89. |
[12] | 杨洪, 岳镒繁, 胡燕玲, 邓治, 代龙军, 李德军. 巴西橡胶树HbAIH基因的克隆及表达分析[J]. 生物技术通报, 2020, 36(5): 120-129. |
[13] | 郑伟, 周涛, 江维克, 李军, 肖承鸿, 杨昌贵, 张晨, 龚安慧, 韦德群, 毕艳. 外源PBZ和GA3对太子参发育过程内源IAA积累及其相关基因表达的影响[J]. 生物技术通报, 2019, 35(2): 46-52. |
[14] | 高秀华, 傅向东. 赤霉素信号转导及其调控植物生长发育的研究进展[J]. 生物技术通报, 2018, 34(7): 1-13. |
[15] | 何依雪, 刘文, 沈祥陵. GA与B9对马铃薯种薯生长发育的影响[J]. 生物技术通报, 2018, 34(7): 66-73. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||