生物技术通报 ›› 2022, Vol. 38 ›› Issue (10): 184-194.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1546
收稿日期:
2021-12-14
出版日期:
2022-10-26
发布日期:
2022-11-11
作者简介:
骆鹰,男,博士,副教授,研究方向:植物分子生物学;E-mail:基金资助:
LUO Ying(), TANG Zhi, WANG Fan, LIU Xiao-xia, LUO Xiao-fang, HE Fu-lin()
Received:
2021-12-14
Published:
2022-10-26
Online:
2022-11-11
摘要:
R2R3-MYB转录因子是MYB家族中成员数量较多的亚家族成员之一,在植物生长发育、激素信号传导、次生代谢产物形成及逆境胁迫调控等方面具有重要的作用。以银杏为材料,克隆获得GbR2R3-MYB1基因,并利用生物信息学方法分析GbR2R3-MYB1蛋白理化性质、结构与功能;通过构建pCAMBIA1300- R2R3MYB1-GFP融合表达载体及农杆菌介导烟草浸染实验,观察GbR2R3-MYB1基因亚细胞定位情况;利用RT-qPCR方法检测GbR2R3-MYB1基因在非生物逆境胁迫下的表达水平。结果表明,GbR2R3-MYB1基因编码区全长为819 bp,共编码272个氨基酸;蛋白质理论等电点为6.59,相对分子量大小为30 001.60 Da,此蛋白为不稳定亲水蛋白,其二级结构中含有28.31%的α-螺旋、4.78%的β-转角、61.03%的无规卷曲和5.88%的延伸链;GbR2R3-MYB1蛋白与火炬松、白云杉R2R3-MYB蛋白的氨基酸序列相似性较高,亲缘关系较近,与系统发育树进化分析结果基本相符;亚细胞定位检测发现GbR2R3-MYB1蛋白定位于细胞核。RT-qPCR分析表明,GbR2R3-MYB1基因对盐、干旱、低温及高温胁迫均有响应,其相对表达量在盐和干旱胁迫下出现先上升后下降的波动,而低温和高温胁迫下表现出先下降后上升再下降的趋势。GbR2R3-MYB1基因的克隆及功能分析可为进一步阐述银杏抗逆分子机理及其他植物的品种改良提供资源和依据。
骆鹰, 谭智, 王帆, 刘晓霞, 罗小芳, 何福林. 银杏GbR2R3-MYB1基因的克隆及非生物胁迫应答分析[J]. 生物技术通报, 2022, 38(10): 184-194.
LUO Ying, TANG Zhi, WANG Fan, LIU Xiao-xia, LUO Xiao-fang, HE Fu-lin. Cloning and Response Analysis to Abiotic Stress of GbR2R3-MYB1 Gene from Ginkgo biloba[J]. Biotechnology Bulletin, 2022, 38(10): 184-194.
引物名称Primer name | 引物序列Primer sequence(5'-3') | 用途Purpose |
---|---|---|
GbR2R3MYB1-F | AGAAGCTGCTCCTCGTTACAG | 目的基因扩增引物 |
GbR2R3MYB1-R | GTCCTTGATCAAAATGGGGTA | 目的基因扩增引物 |
pC007-F | TGTAAAACGACGGCCAGT | pClone007载体引物 |
pC007-R | CAGGAA ACAGCTATGACC | pClone007载体引物 |
GFP-F | AGAACACGGGGGACGAGCTCGGTACCATGGGTCGGTCTCCTTGCTG | 亚细胞定位引物 |
GFP-R | CCCTTGCTCACCATGTCGACTCTAGATACCCGCAGTTGCCTGTAAT | 亚细胞定位引物 |
Gb18S-F | CGAAGACGATCAGATACCG | qPCR内参基因 |
Gb18S-R | TCAGCCTTGCGACCATAC | qPCR内参基因 |
q-R2R3MYB1-F | ACGGCAGCTCCAGCTAATTC | qPCR检测引物 |
q-R2R3MYB1-R | GTGGTGGCTCTGCTTATGCT | qPCR检测引物 |
表1 实验所用引物序列信息
Table 1 Primer sequences used in this study
引物名称Primer name | 引物序列Primer sequence(5'-3') | 用途Purpose |
---|---|---|
GbR2R3MYB1-F | AGAAGCTGCTCCTCGTTACAG | 目的基因扩增引物 |
GbR2R3MYB1-R | GTCCTTGATCAAAATGGGGTA | 目的基因扩增引物 |
pC007-F | TGTAAAACGACGGCCAGT | pClone007载体引物 |
pC007-R | CAGGAA ACAGCTATGACC | pClone007载体引物 |
GFP-F | AGAACACGGGGGACGAGCTCGGTACCATGGGTCGGTCTCCTTGCTG | 亚细胞定位引物 |
GFP-R | CCCTTGCTCACCATGTCGACTCTAGATACCCGCAGTTGCCTGTAAT | 亚细胞定位引物 |
Gb18S-F | CGAAGACGATCAGATACCG | qPCR内参基因 |
Gb18S-R | TCAGCCTTGCGACCATAC | qPCR内参基因 |
q-R2R3MYB1-F | ACGGCAGCTCCAGCTAATTC | qPCR检测引物 |
q-R2R3MYB1-R | GTGGTGGCTCTGCTTATGCT | qPCR检测引物 |
图1 GbR2R3-MYB1基因PCR扩增琼脂糖凝胶电泳 A:GbR2R3-MYB1目的片段PCR扩增;B:菌落PCR;M:DL2000 DNA marker;1-3:PCR鉴定的阳性克隆
Fig.1 Agarose gel electrophoresis of PCR amplified prod-ucts of GbR2R3-MYB1 A:PCR amplification of target fragment of GbR2R3-MYB1. B:Bacteria liquid PCR;M:DL2000 DNA marker;1-3:positive clones of colony PCR identification
图7 GbR2R3-MYB1蛋白二级结构预测 蓝色:α-螺旋,绿色:β-转角,紫色:无规卷曲,红色:延伸链
Fig. 7 Prediction of secondary structure for GbR2R3-MYB1 protein Blue:Alpha helix. Green:Beta turn. Purple:Random coil. Red:Extended strand. D:Tertiary structure analysis of GbR2R3-MYB1 protein
图10 GbR2R3-MYB1基因在盐、干旱、低温及高温胁迫下的表达分析 图中柱状图上不同字母表示显著性差异,P < 0.05显著差异,P < 0.01极显著差异;数值为平均值$\bar{x}$±SE
Fig.10 Expression analysis of GbR2R3-MYB1 gene under salt,drought,cold,and heat stresses Each value was calculated as the mean of three samples standard error(SE). The different letters above the bar indicate significant difference(P < 0.05)and very significant difference(P < 0.01)
[1] | Jin JP, Zhang H, Kong L, et al. PlantTFDB 3. 0:a portal for the functional and evolutionary study of plant transcription factors[J]. Nucleic Acids Res, 2014, 42(Database issue):D1182-D1187. |
[2] |
Amoutzias GD, Veron AS, Weiner J 3rd, et al. One billion years of bZIP transcription factor evolution:conservation and change in dimerization and DNA-binding site specificity[J]. Mol Biol Evol, 2007, 24(3):827-835.
doi: 10.1093/molbev/msl211 pmid: 17194801 |
[3] |
Millar AA, Gubler F. The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development[J]. Plant Cell, 2005, 17(3):705-721.
doi: 10.1105/tpc.104.027920 URL |
[4] |
Dubos C, Stracke R, Grotewold E, et al. MYB transcription factors in Arabidopsis[J]. Trends Plant Sci, 2010, 15(10):573-581.
doi: 10.1016/j.tplants.2010.06.005 URL |
[5] |
Nesi N, Jond C, Debeaujon I, et al. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed[J]. Plant Cell, 2001, 13(9):2099-2114.
pmid: 11549766 |
[6] |
Müller D, Schmitz G, Theres K. Blind homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis[J]. Plant Cell, 2006, 18(3):586-597.
pmid: 16461581 |
[7] |
Baldoni E, Genga A, Cominelli E. Plant MYB transcription factors:their role in drought response mechanisms[J]. Int J Mol Sci, 2015, 16(7):15811-15851.
doi: 10.3390/ijms160715811 pmid: 26184177 |
[8] |
Wang Z, Tang J, Hu R, et al. Genome-wide analysis of the R2R3-MYB transcription factor genes in Chinese cabbage(Brassica rapa ssp. pekinensis)reveals their stress and hormone responsive patterns[J]. BMC Genomics, 2015, 16(1):17.
doi: 10.1186/s12864-015-1216-y URL |
[9] |
Agarwal M, Hao YJ, Kapoor A, et al. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance[J]. J Biol Chem, 2006, 281(49):37636-37645.
doi: 10.1074/jbc.M605895200 pmid: 17015446 |
[10] |
Xie YP, Chen PX, Yan Y, et al. An atypical R2R3 MYB transcription factor increases cold hardiness by CBF-dependent and CBF-independent pathways in apple[J]. New Phytol, 2018, 218(1):201-218.
doi: 10.1111/nph.14952 pmid: 29266327 |
[11] |
Lv Y, Yang M, Hu D, et al. The OsMYB30 transcription factor suppresses cold tolerance by interacting with a JAZ protein and suppressing β-amylase expression[J]. Plant Physiol, 2017, 173(2):1475-1491.
doi: 10.1104/pp.16.01725 pmid: 28062835 |
[12] |
Liao CC, Zheng Y, Guo Y. MYB30 transcription factor regulates oxidative and heat stress responses through ANNEXIN-mediated cytosolic calcium signaling in Arabidopsis[J]. New Phytol, 2017, 216(1):163-177.
doi: 10.1111/nph.14679 URL |
[13] |
El-Kereamy A, Bi YM, Ranathunge K, et al. The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism[J]. PLoS One, 2012, 7(12):e52030.
doi: 10.1371/journal.pone.0052030 URL |
[14] |
Casaretto JA, El-Kereamy A, Zeng B, et al. Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance[J]. BMC Genomics, 2016, 17:312.
doi: 10.1186/s12864-016-2659-5 pmid: 27129581 |
[15] |
Liu CY, Xie T, Chen CJ, et al. Genome-wide organization and expression profiling of the R2R3-MYB transcription factor family in pineapple(Ananas comosus)[J]. BMC Genomics, 2017, 18(1):503.
doi: 10.1186/s12864-017-3896-y URL |
[16] | 曹福亮. 中国银杏[M]. 南京: 江苏科学技术出版社, 2002. |
Cao FL. Chinese Ginkgo[M]. Nanjing: Phoenix Science Press, 2002. | |
[17] | 陈学森, 张艳敏, 李健, 等. 叶用银杏资源评价及选优的研究[J]. 园艺学报, 1997, 24(3):215-219. |
Chen XS, Zhang YM, Li J, et al. The evaluation of leaf utilization resources and cultivar selection in Ginkgo biloba[J]. Acta Hortic Sin, 1997, 24(3):215-219. | |
[18] | 骆鹰, 谢旻, 张超, 等. 水稻Cu/Zn-SOD基因的克隆、表达及生物信息学分析[J]. 分子植物育种, 2018, 16(10):3097-3105. |
Luo Y, Xie M, Zhang C, et al. Cloning, expression and bioinformatic analysis of Cu/Zn-SOD gene in rice[J]. Mol Plant Breed, 2018, 16(10):3097-3105. | |
[19] | 谢旻, 骆鹰, 张超, 等. 水稻铜/锌超氧化物歧化酶铜伴侣基因克隆与表达分析[J]. 基因组学与应用生物学, 2017, 36(7):2940-2946. |
Xie M, Luo Y, Zhang C, et al. Gene cloning and expression analysis of copper chaperone for Cu/Zn superoxide dismutase(OsCCS)in rice[J]. Genom Appl Biol, 2017, 36(7):2940-2946. | |
[20] | 刘慧春, 马广莹, 朱开元, 等. 牡丹PsDREB转录因子基因的克隆及亚细胞定位[J]. 分子植物育种, 2015, 13(10):2290-2298. |
Liu HC, Ma GY, Zhu KY, et al. Clonging and subcellular location of a DREB transcription gene of Paeonia suffruticosa[J]. Mol Plant Breed, 2015, 13(10):2290-2298. | |
[21] | 李泽宏, 袁红慧, 程华, 等. 银杏GbERF1转录因子基因的克隆及亚细胞定位分析[J]. 北方园艺, 2018(3):92-100. |
Li ZH, Yuan HH, Cheng H, et al. Cloning and subcellular localization analysis of GbERF1 transcription factor in Ginkgo biloba L[J]. North Hortic, 2018(3):92-100. | |
[22] | 欧阳梦真, 朱磊, 孙治强, 等. 西瓜ClWRKY54基因的克隆、亚细胞定位及表达分析[J]. 中国瓜菜, 2019, 32(12):8-14. |
Ouyang MZ, Zhu L, Sun ZQ, et al. Cloning, subcellular localization and expression analysis of ClWRKY54 in Citrullus lanatus[J]. China Cucurbits Veg, 2019, 32(12):8-14. | |
[23] | 杜恬恬, 李会萍, 王博雅, 等. 梁山慈竹DfMYB3基因克隆及启动子分析[J]. 植物研究, 2021, 41(5):729-737. |
Du TT, Li HP, Wang BY, et al. Cloning and promotor analysis of DfMYB3 from Dendrocalamus farinosus[J]. Bull Bot Res, 2021, 41(5):729-737. | |
[24] | 彭晶晶, 李凯, 杨靖, 等. 丹参转录因子SmMYB52的基因克隆、表达分析和亚细胞定位[J]. 基因组学与应用生物学, 2021, 40(2):802-808. |
Peng JJ, Li K, Yang J, et al. Gene clone, expression analysis and subcellular localization of transcription factor SmMYB52 in Salvia miltiorrhiza[J]. Genom Appl Biol, 2021, 40(2):802-808. | |
[25] | 张顺仓, 冯思念, 顾雯, 等. 丹参中转录因子SmMYB87基因的克隆、亚细胞定位和表达分析[J]. 中草药, 2017, 48(17):3597-3604. |
Zhang SC, Feng SN, Gu W, et al. Cloning, subcellular localization and expression analysis of a transcription factor gene SmMYB87 in Salvia miltiorrhiza[J]. Chin Tradit Herb Drugs, 2017, 48(17):3597-3604. | |
[26] |
Li JL, Han GL, Sun CF, et al. Research advances of MYB transcription factors in plant stress resistance and breeding[J]. Plant Signal Behav, 2019, 14(8):1613131.
doi: 10.1080/15592324.2019.1613131 URL |
[27] |
Zhao YY, Yang ZE, Ding YP, et al. Over-expression of an R2R3 MYB Gene, GhMYB73, increases tolerance to salt stress in transgenic Arabidopsis[J]. Plant Sci, 2019, 286:28-36.
doi: 10.1016/j.plantsci.2019.05.021 URL |
[28] |
Yoo JH, Park CY, Kim JC, et al. Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis[J]. J Biol Chem, 2005, 280(5):3697-3706.
doi: 10.1074/jbc.M408237200 URL |
[29] | Jung C, Seo JS, Han SW, et al. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis[J]. Plant Physiol, 2008, 146(2):623-635. |
[30] |
Zhang X, Chen LC, Shi QH, et al. SlMYB102, an R2R3-type MYB gene, confers salt tolerance in transgenic tomato[J]. Plant Sci, 2020, 291:110356.
doi: 10.1016/j.plantsci.2019.110356 URL |
[31] |
Chen N, Yang QL, Pan LJ, et al. Identification of 30 MYB transcription factor genes and analysis of their expression during abiotic stress in peanut(Arachis hypogaea L.)[J]. Gene, 2014, 533(1):332-345.
doi: 10.1016/j.gene.2013.08.092 pmid: 24013078 |
[32] |
Qin YX, Wang MC, Tian YC, et al. Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis[J]. Mol Biol Rep, 2012, 39(6):7183-7192.
doi: 10.1007/s11033-012-1550-y URL |
[33] |
Zhang LC, Zhao GY, Xia C, et al. Overexpression of a wheat MYB transcription factor gene, TaMYB56-B, enhances tolerances to freezing and salt stresses in transgenic Arabidopsis[J]. Gene, 2012, 505(1):100-107.
doi: 10.1016/j.gene.2012.05.033 URL |
[34] |
He YN, Li W, Lv J, et al. Ectopic expression of a wheat MYB transcription factor gene, TaMYB73, improves salinity stress tolerance in Arabidopsis thaliana[J]. J Exp Bot, 2012, 63(3):1511-1522.
doi: 10.1093/jxb/err389 URL |
[35] | 李春艳, 王曦, 周胜花, 等. 白羊草R2R3-MYB转录因子的挖掘及对干旱胁迫反应的研究[J]. 草地学报, 2020, 28(6):1784-1790. |
Li CY, Wang X, Zhou SH, et al. Excavation of R2R3-MYB transcription factor and its response to drought stress in Bothriochloa ischaemum[J]. Acta Agrestia Sin, 2020, 28(6):1784-1790. | |
[36] |
Du YT, Zhao MJ, Wang CT, et al. Identification and characterization of GmMYB118 responses to drought and salt stress[J]. BMC Plant Biol, 2018, 18(1):320.
doi: 10.1186/s12870-018-1551-7 URL |
[37] |
Xie YP, Chen PX, Yan Y, et al. An atypical R2R3 MYB transcription factor increases cold hardiness by CBF-dependent and CBF-independent pathways in apple[J]. New Phytol, 2018, 218(1):201-218.
doi: 10.1111/nph.14952 pmid: 29266327 |
[38] |
An JP, Li R, Qu FJ, et al. R2R3-MYB transcription factor MdMYB23 is involved in the cold tolerance and proanthocyanidin accumulation in apple[J]. Plant J, 2018, 96(3):562-577.
doi: 10.1111/tpj.14050 URL |
[39] |
Liao Y, Zou HF, Wang HW, et al. Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants[J]. Cell Res, 2008, 18(10):1047-1060.
doi: 10.1038/cr.2008.280 URL |
[40] |
Jacob P, Brisou G, Dalmais M, et al. The seed development factors TT2 and MYB5 regulate heat stress response in Arabidopsis[J]. Genes, 2021, 12(5):746.
doi: 10.3390/genes12050746 URL |
[41] |
Zhao Y, Tian XJ, Wang F, et al. Characterization of wheat MYB genes responsive to high temperatures[J]. BMC Plant Biol, 2017, 17(1):208.
doi: 10.1186/s12870-017-1158-4 pmid: 29157199 |
[42] |
Zhang CY, Liu HC, Zhang XS, et al. VcMYB4a, an R2R3-MYB transcription factor from Vaccinium corymbosum, negatively regulates salt, drought, and temperature stress[J]. Gene, 2020, 757:144935.
doi: 10.1016/j.gene.2020.144935 URL |
[1] | 吕秋谕, 孙培媛, 冉彬, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子基因FtbHLH3的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 194-203. |
[2] | 王佳蕊, 孙培媛, 柯瑾, 冉彬, 李洪有. 苦荞糖基转移酶基因FtUGT143的克隆及表达分析[J]. 生物技术通报, 2023, 39(8): 204-212. |
[3] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[4] | 孙明慧, 吴琼, 刘丹丹, 焦小雨, 王文杰. 茶树CsTMFs的克隆与表达分析[J]. 生物技术通报, 2023, 39(7): 151-159. |
[5] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[6] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[7] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[8] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[9] | 翟莹, 李铭杨, 张军, 赵旭, 于海伟, 李珊珊, 赵艳, 张梅娟, 孙天国. 异源表达大豆转录因子GmNF-YA19提高转基因烟草抗旱性[J]. 生物技术通报, 2023, 39(5): 224-232. |
[10] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[11] | 郭三保, 宋美玲, 李灵心, 尧子钊, 桂明明, 黄胜和. 斑地锦查尔酮合酶基因及启动子的克隆与分析[J]. 生物技术通报, 2023, 39(4): 148-156. |
[12] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
[13] | 杨俊钊, 张新蕊, 赵国柱, 郑菲. 新型GH5家族多结构域纤维素酶的结构与功能研究[J]. 生物技术通报, 2023, 39(4): 71-80. |
[14] | 杨春洪, 董璐, 陈林, 宋丽. 大豆VAS1基因家族的鉴定及参与侧根发育的研究[J]. 生物技术通报, 2023, 39(3): 133-142. |
[15] | 刘思佳, 王浩楠, 付宇辰, 闫文欣, 胡增辉, 冷平生. ‘西伯利亚’百合LiCMK基因克隆及功能分析[J]. 生物技术通报, 2023, 39(3): 196-205. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||