生物技术通报 ›› 2020, Vol. 36 ›› Issue (1): 126-134.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0738
高国应1,2, 伍小方1,2, 张大为1, 周定港1, 张凯旋2, 严明理1
收稿日期:
2019-08-19
出版日期:
2020-01-26
发布日期:
2020-01-08
作者简介:
高国应,女,硕士研究生,研究方向:植物遗传与分子生物学;E-mail:1019982091@qq.com
基金资助:
GAO Guo-ying1,2, WU Xiao-fang1,2, ZHANG Da-wei1, ZHOU Ding-gang1, ZHANG Kai-xuan1,2, YAN Ming-li1
Received:
2019-08-19
Published:
2020-01-26
Online:
2020-01-08
摘要: 花青素是植物呈色的一种关键物质,它既能赋予植物丰富的色彩,又具有广泛的生物学功能,如抗氧化、抗紫外线、抗病虫害等。植物花青素生物合成途径由一系列结构基因和调节基因协同完成。结构基因表达受MYB、bHLH和WD40类转录因子以其组成的MBW复合体调控。综述了近年来MYB、bHLH和WD40类转录因子及MBW复合物在植物花青素合成中的功能研究进展,总结了花青素合成的各种生物过程和调控网络。
高国应, 伍小方, 张大为, 周定港, 张凯旋, 严明理. MBW复合体在植物花青素合成途径中的研究进展[J]. 生物技术通报, 2020, 36(1): 126-134.
GAO Guo-ying, WU Xiao-fang, ZHANG Da-wei, ZHOU Ding-gang, ZHANG Kai-xuan, YAN Ming-li. Research Progress on the MBW Complexes in Plant Anthocyanin Biosynthesis Pathway[J]. Biotechnology Bulletin, 2020, 36(1): 126-134.
[1] Wei Q, Zhang F, Sun F, et al.A wheat MYB transcriptional repressor TaMyb1D regulates phenylpropanoid metabolism and enhances tolerance to drought and oxidative stresses in transgenic tobacco plants[J]. Plant Sci, 2017, 265:112-123. [2] Wang N, Qu C, Jiang S, et al.The proanthocyanidin-specific transcription factor MdMYBPA1 initiates anthocyanin synthesis under low temperature conditions in red-fleshed apple[J]. Plant J, 2018, 96:39-55. [3] Kim J, Lee WJ, Vu TT, et al.High accumulation of anthocyanins via the ectopic expression of AtDFR confers significant salt stress tolerance in Brassica napus L.[J]. Plant Cell Rep, 2017, 6:1-10. [4] Bai S, Tao R, Tang Y, et al.BBX16, a B-box protein, positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear[J]. Plant Biotechnol J, 2019, 17(10):1985-1997. [5] Nguyen CT, Lim S, Lee JG, et al.VcBBx, VcMYB21, and VcR2R3MYB transcription factors are involved in UV-B-induced anthocyanin biosynthesis in the peel of harvested blueberry fruit[J]. J Agric Food Chem, 2017, 65(10):2066-2073. [6] Qi T, Song S, Ren Q, et al.The jasmonate-ZIM-domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana[J]. Plant Cell, 2011, 23(5):1795-1814. [7] Xu W, Dubos C, Lepiniec L.Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes[J]. Trends Plant Sci, 2015, 20(3):176-185. [8] Li P, Li YJ, Zhang FJ, et al.The Arabidopsis UDP-glycosyltransfe-rases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation[J]. The Plant Journal, 2016, 89:85-103. [9] Zohar BS, Sylvie J, Taly T,et al. A “white” anthocyanin-less pomegranate(Punica granatum L.)caused by an insertion in the coding region of the leucoanthocyanidin dioxygenase(LDOX;ANS)gene[J]. PLoS One,2015, 10(11):e0142777-. [10] Tan L, Wang M, Kang Y, et al.Biochemical and functional characterization of anthocyanidin reductase(ANR)from Mangifera indica L.[J]. Molecules, 2018, 23(11):2876. [11] Wang Y, Dou Y, et al.Molecular characterization and functional analysis of chalcone synthase from Syringa oblata Lindl. in the fla-vonoid biosynthetic pathway[J]. Gene, 2017, 635(7):16-23. [12] Feng K, Xu ZS, Que F, et al.An R2R3-MYB transcription factor, OjMYB1, functions in anthocyanin biosynthesis in Oenanthe javanica[J]. Planta, 2017, 247:301-315. [13] Wang H, Wang X, Song W, et al.PdMYB118, isolated from a red leaf mutant of Populus deltoids, is a new transcription factor regulating anthocyanin biosynthesis in poplar[J]. Plant Cell Rep, 2019, 38:927-936. [14] Li P, Chen B, et al.Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8[J]. New Phytol, 2016, 210(3):905-921. [15] Gonzalez A, Zhao M, Leavitt JM, et al.Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings[J]. Plant J, 2008, 53(5):814-827. [16] Dubos C, Stracke R, Grotewold E, et al.MYB transcription factors in Arabidopsis[J]. Trends Plant Sci, 2010, 15(10):573-581. [17] Liu J, Osbourn A, Ma P.MYB transcription factors as regulators of phenylpropanoid metabolism in plants[J]. Molecular Plant, 2015, 8(5):689-708. [18] Seo MS, Kim JS.Understanding of MYB transcription factors involved in glucosinolate biosynthesis in Brassicaceae[J]. Molecules, 2017, 22(9):1549. [19] Gao F, Zhou J, Deng RY, et al.Overexpression of a tartary buckwheat R2R3-MYB transcription factor gene, FtMYB9, enhances tolerance to drought and salt stresses in transgenic Arabidopsis[J]. J Plant Physiol, 2017, 214:81-90. [20] Paz-Ares J, Ghosal D, Wienand U, et al.The regulatory c1 locus of Zea mays encodes a protein with homology to MYB proto-oncogene products and with structural similarities to transcriptional activators[J]. EMBO J, 1987, 6(12):3553-3558. [21] Hernandez JM, Heine GF, Irani NG, et al.Different mechanisms participate in the R-dependent activity of the R2R3 MYB transcription factor C1[J]. J Biol Chem, 2004, 279(46):48205-48213. [22] Nesi N, Jond C, Debeaujon I, et al.The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed[J]. Plant Cell, 2001, 13(9):2099-2114. [23] Mehrtens F, Kranz H, et al.The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis[J]. Plant Physiol, 2005, 138(2):1083-1096. [24] Bai YC, Li CL, et al.Characterization of two tartary buckwheat R2R3-MYB transcription factors and their regulation of proanthocyanidin biosynthesis[J]. Physiol Plant, 2014, 152(3):431-440. [25] Luo X, Zhao H, Yao P, et al.An R2R3-MYB transcription factor FtMYB15 involved in the synthesis of anthocyanin and proanthocyanidins from tartary buckwheat[J]. J Plant Growth Regul, 2017, 37(1):1-9. [26] Gesell A, Yoshida K, Tran LT, et al.Characterization of an apple TT2-type R2R3 MYB transcription factor functionally similar to the poplar proanthocyanidin regulator PtMYB134[J]. Planta, 2014, 240(3):497-511. [27] Wang N, Xu H, Jiang S, et al.MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple(Malus sieversii f. niedzwetzkyana)[J]. Plant J, 2017, 90(2):276-292. [28] Matus JT, Cavallini E, Loyola R, et al.A group of grapevine MYBA transcription factors located in chromosome 14 control anthocyanin synthesis in vegetative organs with different specificities compared to the berry color locus[J]. Plant J, 2017, 91:220-236. [29] Xu ZS, Feng K, Que F, et al.A MYB transcription factor, DcMYB6, is involved in regulating anthocyanin biosynthesis in purple carrot taproots[J]. Sci Rep, 2017, 7:45324. [30] Xu ZS, Yang QQ, Feng K, et al. Changing carrot color:insertions in DcMYB7 alter the regulation of anthocyanin biosynthesis and modification[J]. Plant Physiol, 2019, http://www.plantphysiol. org/content/early/2019/06/18/pp. 19. 00523. [31] Shin DH, Choi MG, Kang CS, et al.A wheat R2R3-MYB protein PURPLE PLANT1(TaPL1)functions as a positive regulator of anthocyanin biosynthesis[J]. Biochem Biophys Res Commun, 2016, 469(3):686-691. [32] Ma D, Reichelt M, Yoshida K, et al.Two R2R3-MYB proteins are broad repressors of flavonoid and phenylpropanoid metabolism in poplar[J]. Plant J, 2018, 96:949-965. [33] Zhou H, Wang KL, Wang F, et al.Activator-type R2R3-MYB genes induce a repressor-type R2R3-MYB gene to balance anthocyanin and proanthocyanidin accumulation[J]. New Phytol, 2019, 221:1919-1934. [34] Feller A, Yuan L, Grotewold E.The BIF domain in plant bHLH proteins is an ACT-Like domain[J]. Plant Cell, 2017, 8(29):1800-1802. [35] Chandler VL, Radicella JP, Robbins TP, et al.Two regulatory genes of the maize anthocyanin pathway are homologous:isolation of B utilizing R genomic sequences[J]. Plant Cell, 1989, 1(12):1175-1183. [36] Zhou LL, Shi MZ, Xie DY.Regulation of anthocyanin biosynthesis by nitrogen in TTG1-GL3/TT8-PAP1-programmed red cells of Arabidopsis thaliana[J]. Planta, 2012, 236(3):825-837. [37] Xu W, Grain D, Gourrierec JL, et al.Regulation of flavonoid biosynthesis involves an unexpected complex transcriptional regulation of TT8 expression, in Arabidopsis[J]. New Phytol, 2013, 198(1):59-70. [38] Gao C, Guo Y, Wang J, et al.Brassica napus GLABRA3-1 promotes anthocyanin biosynthesis and trichome formation in true leaves when expressed in Arabidopsis thaliana[J]. Plant Biol, 2018, 20(1):3-9. [39] Li J, Ren L, Gao Z, et al.Combined transcriptomic and proteomic analysis constructs a new model for light-induced anthocyanin biosynthesis in eggplant(Solanum melongena L.)[J]. Plant Cell Environ, 2017, 40:3069-3087. [40] Qiu Z, Wang X, Gao J, et al.The tomato Hoffman’s anthocyaninless gene encodes a bHLH transcription factor involved in anthocyanin biosynthesis that is developmentally regulated and induced by low temperatures[J]. PLoS One, 2016, 11(3):e0151067. [41] Wang L, Tang W, Hu Y, et al.A MYB/bHLH complex regulates tissue-specific anthocyanin biosynthesis in the inner pericarp of red-centered kiwifruit Actinidia chinensis cv. Hongyang[J]. Plant J, 2019, 99:359-378. [42] Li C, Qiu J, Ding L, et al.Anthocyanin biosynthesis regulation of DhMYB2 and DhbHLH1 in Dendrobium hybrids petals[J]. Plant Physiol Biochem, 2017, 112:335-345. [43] An JP, Li HH, Song LQ, et al.The molecular cloning and functional characterization of MdMYC2, a bHLH transcription factor in apple[J]. Plant Physiol Biochem, 2016, 108:24-31. [44] Smith TF, et al.The WD repeat:a common architecture for diverse functions[J]. Trends Biochem Sci, 1999, 24(5):181-185. [45] Vetten N, et al.The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, pla-nts, and animals[J]. Genes Dev, 1997, 11(11):1422-1434. [46] Walker AR, Davison PA, et al.The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein[J]. Plant Cell, 1999, 11(7):1337-1350. [47] Humphries JA, Walker AR, Timmis JN, et al.Two WD-repeat genes from cotton are functional homologues of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1(TTG1)gene[J]. Plant Mol Biol, 2005, 57(1):67-81. [48] Li W, Wang B, Wang M, et al.Cloning and characterization of a potato StAN11 gene involved in anthocyanin biosynthesis regulation[J]. J Integr Plant Biol, 2014, 56(4):364-372. [49] An XH, Tian Y, Chen KQ, et al.The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation[J]. J Plant Physiol, 2012, 169(7):710-717. [50] Liu X, Feng C, Zhang M, et al.The MrWD40-1 gene of Chinese bayberry(Myrica rubra)interacts with MYB and bHLH to enhance anthocyanin accumulation[J]. Plant Molecular Biology Reporter, 2013, 31(6):1474-1484. [51] Zhao M, Li J, Zhu L, et al.Identification and characterization of MYB-bHLH-WD40 regulatory complex members controlling anthocyanidin biosynthesis in blueberry fruits development[J]. Genes, 2019, 10:E496. [52] Lloyd A, Brockman A, Aguirre L, et al.Advances in the MYB-bHLH-WD repeat(MBW)pigment regulatory model:addition of a WRKY factor and co-option of an anthocyanin MYB for betalain regulation[J]. Plant Cell Physiol, 2017, 58(9):1431-1441. [53] Xu W, et al.Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB-bHLH-WDR complexes and their targets in Arabidopsis seed[J]. New Phytol, 2014, 202(1):132-144. [54] Carey CC, Strahle JT, Selinger DA, et al.Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana[J]. Plant Cell, 2004, 16:450-464. [55] Falcone, et al. Cloning and characterization of a UV-B-inducible maize flavonol synthase[J]. Plant J, 2010, 62(1):77-91. [56] Strygina KV, Börner A, et al.Identification and characterization of regulatory network components for anthocyanin synthesis in barley aleurone[J]. BMC Plant Biol, 2017, 17(S1):184. [57] Spelt C, et al.Anthocyanin1 of petunia encodes a basic Helix-Loop-Helix protein that directly activates transcription of structural anthocyanin genes[J]. Plant Cell, 2000, 12(9):1619-1632. [58] Albert NW, Davies KM, et al.A conserved network of transcrip-tional activators and repressors regulates anthocyanin pigmentation in eudicots[J]. Plant Cell, 2014, 26(9):962-980. [59] Schaart JG, Dubos C, Fuente IRDL, et al.Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry(fragaria× ananassa)fruits[J]. New Phytol, 2013, 197(2):454-467. [60] Ben-Simhon Z, Judeinstein S, Nadler-Hassar T, et al.A pomegranate(Punica granatum L.)WD40-repeat gene is a functional homologue of Arabidopsis TTG1 and is involved in the regulation of anthocyanin biosynthesis during pomegranate fruit development[J]. Planta, 2011, 234(5):865-881. [61] Lim SH, Kim DH, Kim JK, et al.A radish basic Helix-Loop-Helix transcription factor, RsTT8 acts a positive regulator for anthocyanin biosynthesis[J]. Front Plant Sci, 2017, 8:1917. [62] Liu XF, Yin XR, Allan AC, et al.The role of MrbHLH1 and MrMYB1 in regulating anthocyanin biosynthetic genes in tobacco and Chinese bayberry(Myrica rubra)during anthocyanin biosynthesis[J]. Plant Cell Tiss Org, 2013, 115(3):285-298. [63] Lai B, Du LN, Liu R, et al.Two LcbHLH transcription factors interacting with LcMYB1 in regulating late structural genes of anthocyanin biosynthesis in Nicotiana and Litchi chinensis during anthocyanin accumulation[J]. Front Plant Sci, 2016, 7:166. |
[1] | 林红妍, 郭晓蕊, 刘迪, 李慧, 陆海. 转录组分析转录因子AtbHLH68调控细胞壁发育的分子机制[J]. 生物技术通报, 2023, 39(9): 105-116. |
[2] | 吕秋谕, 孙培媛, 冉彬, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子基因FtbHLH3的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 194-203. |
[3] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[4] | 李宇, 李素贞, 陈茹梅, 卢海强. 植物bHLH转录因子调控铁稳态的研究进展[J]. 生物技术通报, 2023, 39(7): 26-36. |
[5] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[6] | 胡明月, 杨宇, 郭仰东, 张喜春. 低温胁迫下番茄SlMYB96的功能分析[J]. 生物技术通报, 2023, 39(4): 236-245. |
[7] | 平怀磊, 郭雪, 余潇, 宋静, 杜春, 王娟, 张怀璧. 滇牡丹PdANS的克隆、表达及与花青素含量的相关性[J]. 生物技术通报, 2023, 39(3): 206-217. |
[8] | 鄢梦雨, 韦晓薇, 曹婧, 兰海燕. 异子蓬SabHLH169基因的克隆及抗旱功能分析[J]. 生物技术通报, 2023, 39(11): 328-339. |
[9] | 安昌, 陆琳, 沈梦千, 陈盛圳, 叶康卓, 秦源, 郑平. 植物bHLH基因家族研究进展及在药用植物中的应用前景[J]. 生物技术通报, 2023, 39(10): 1-16. |
[10] | 杨小峰, 秦小伟, 郭泽媛, 吕丽华. 原花青素对体外培养绵羊卵泡颗粒细胞增殖的影响[J]. 生物技术通报, 2022, 38(9): 258-263. |
[11] | 位欣欣, 兰海燕. 植物MYB转录因子调控次生代谢及逆境响应的研究进展[J]. 生物技术通报, 2022, 38(8): 12-23. |
[12] | 段玥彤, 王鹏年, 张春宝, 林春晶. 植物黄烷酮-3-羟化酶基因研究进展[J]. 生物技术通报, 2022, 38(6): 27-33. |
[13] | 冯建英, 李立芹, 鲁黎明. 马铃薯bHLH转录因子家族全基因组鉴定与表达分析[J]. 生物技术通报, 2022, 38(2): 21-33. |
[14] | 邹良平, 郭鑫, 起登凤, 翟敏, 李壮, 赵平娟, 彭明, 牛兴奎. 低氮胁迫诱导木薯幼苗花青素积累及其基因表达[J]. 生物技术通报, 2022, 38(2): 75-82. |
[15] | 赖恭梯, 阙秋霞, 潘若, 刘雨轩, 王琦, 赖谱富, 高慧颖, 赖呈纯. 刺葡萄查尔酮合成酶基因CHS对不同光质的响应及转录因子调控分析[J]. 生物技术通报, 2022, 38(11): 129-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||