生物技术通报 ›› 2022, Vol. 38 ›› Issue (10): 29-33.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1475
收稿日期:
2021-11-25
出版日期:
2022-10-26
发布日期:
2022-11-11
作者简介:
钱静洁,女,硕士研究生,研究方向:植物逆境适应和分子调控网络;E-mail:基金资助:
QIAN Jing-jie(), LIN Su-meng, ZHANG Dong-ping, GAO Yong()
Received:
2021-11-25
Published:
2022-10-26
Online:
2022-11-11
摘要:
光敏色素互作因子(PIFs)属于碱性螺旋-环-螺旋(bHLH)转录因子家族,能在细胞核内与活性形式的光敏色素(PHYS)相互作用并被降解。PIFs参与多种信号转导途径,调控植物的生长发育,如抑制种子萌发、促进幼苗的暗形态建成和植物开花等。作为胞内信号调控的重要组分,PIFs广泛参与植物外部环境因素(如高温、光),以及内部激素(如生长素、细胞分裂素和油菜素内酯等)介导的信号网络。当光信号和温度变化时,PIFs会通过影响生长素合成、运输和信号转导,参与生长素路径,调控植物生长发育。论文就PIFs参与生长素调控的植物生长发育研究进展进行综述,并对未来研究方向加以展望。
钱静洁, 林苏梦, 张冬平, 高勇. 光敏色素互作因子参与生长素调控的植物生长发育[J]. 生物技术通报, 2022, 38(10): 29-33.
QIAN Jing-jie, LIN Su-meng, ZHANG Dong-ping, GAO Yong. Phytochrome Interacting Factors Involving in Auxin-regulated Plant Growth and Development[J]. Biotechnology Bulletin, 2022, 38(10): 29-33.
图1 光敏色素互作因子参与生长素的合成、运输和信号转导调控植物生长发育 A:低比例红光/远红光促进PIFs积累,PIFs促进TAA1、YUC及CYPT9B2的表达,抑制UGT76F1的表达,调控生长素的合成;B:紫外光抑制PIFs表达,影响生长素合成,调控下胚轴伸长;C:低比例红光/远红光下,PIFs参与生长素运输和信号转导,调控植物生长发育;D:蓝光抑制PIFs表达,影响生长素信号通路;E:高温促进PIF4积累,调控生长素合成、运输以及信号转导;F:自然光抑制PIFs表达,调控植物不同部位lirSAUR的表达,影响植物生长发育
Fig.1 PIFs participate in auxin synthesis,transport and signaling to regulate plant growth and development A:Low red/far-red ratios promote PIFs accumulation. PIFs regulate the auxin synthesis by promoting the expressions of TAA1,YUC,and CYPT9B2 and inhibiting the expression of UGT76F1. B:UV-B inhibits PIFs expression. PIFs regulate the auxin synthesis to influence hypocotyl elongation. C:Under low red/far-red ratios,PIFs involve in auxin transport and signaling to regulate plant growth and development. D:Blue light inhibits PIFs expression to regulate the auxin signaling pathway. E:High temperature promotes PIF4 accumulation to regulate auxin synthesis,transport and signaling transduction. F:Natural light inhibits the expressions of PIFs. PIFs regulate the expression of lirSAUR gene in different organs of plants to affect plant growth and development
[1] |
Wang YH, Maruhnich SA, Mageroy MH, et al. Phototropin 1 and cryptochrome action in response to green light in combination with other wavelengths[J]. Planta, 2013, 237(1):225-237.
doi: 10.1007/s00425-012-1767-y pmid: 23007554 |
[2] |
Jeong J, Choi G. Phytochrome-interacting factors have both shared and distinct biological roles[J]. Mol Cells, 2013, 35(5):371-380.
doi: 10.1007/s10059-013-0135-5 pmid: 23708772 |
[3] |
Pham VN, et al. Phytochromes and phytochrome interacting factors[J]. Plant Physiol, 2018, 176(2):1025-1038.
doi: 10.1104/pp.17.01384 pmid: 29138351 |
[4] |
Lau OS, Deng XW. Plant hormone signaling lightens up:integrators of light and hormones[J]. Curr Opin Plant Biol, 2010, 13(5):571-577.
doi: 10.1016/j.pbi.2010.07.001 URL |
[5] |
Jing YJ, Lin RC. Transcriptional regulatory network of the light signaling pathways[J]. New Phytol, 2020, 227(3):683-697.
doi: 10.1111/nph.16602 pmid: 32289880 |
[6] |
Brumos J, et al. Genetic aspects of auxin biosynthesis and its regulation[J]. Physiol Plant, 2014, 151(1):3-12.
doi: 10.1111/ppl.12098 pmid: 24007561 |
[7] |
Korasick DA, Enders TA, Strader LC. Auxin biosynthesis and storage forms[J]. J Exp Bot, 2013, 64(9):2541-2555.
doi: 10.1093/jxb/ert080 pmid: 23580748 |
[8] |
Kasahara H. Current aspects of auxin biosynthesis in plants[J]. Biosci Biotechnol Biochem, 2016, 80(1):34-42.
doi: 10.1080/09168451.2015.1086259 URL |
[9] |
Stepanova AN, Robertson-Hoyt J, Yun J, et al. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development[J]. Cell, 2008, 133(1):177-191.
doi: 10.1016/j.cell.2008.01.047 pmid: 18394997 |
[10] |
Tao Y, Ferrer JL, Ljung K, et al. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants[J]. Cell, 2008, 133(1):164-176.
doi: 10.1016/j.cell.2008.01.049 pmid: 18394996 |
[11] |
Mashiguchi K, Tanaka K, Sakai T, et al. The main auxin biosynthesis pathway in Arabidopsis[J]. Proc Natl Acad Sci USA, 2011, 108(45):18512-18517.
doi: 10.1073/pnas.1108434108 URL |
[12] |
Won C, Shen XL, Mashiguchi K, et al. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis[J]. Proc Natl Acad Sci USA, 2011, 108(45):18518-18523.
doi: 10.1073/pnas.1108436108 URL |
[13] |
Franklin KA, Lee SH, Patel D, et al. Phytochrome-interacting factor 4(PIF4)regulates auxin biosynthesis at high temperature[J]. Proc Natl Acad Sci USA, 2011, 108(50):20231-20235.
doi: 10.1073/pnas.1110682108 URL |
[14] |
Sun JQ, et al. PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidop-sis hypocotyl growth[J]. PLoS Genet, 2012, 8(3):e1002594.
doi: 10.1371/journal.pgen.1002594 URL |
[15] |
Fiorucci AS, Galvão VC, Ince YÇ, et al. PHYTOCHROME INTERACTING FACTOR 7 is important for early responses to elevated temperature in Arabidopsis seedlings[J]. New Phytol, 2020, 226(1):50-58.
doi: 10.1111/nph.16316 URL |
[16] |
Chen L, Huang XX, Zhao SM, et al. IPyA glucosylation mediates light and temperature signaling to regulate auxin-dependent hypocotyl elongation in Arabidopsis[J]. Proc Natl Acad Sci USA, 2020, 117(12):6910-6917.
doi: 10.1073/pnas.2000172117 URL |
[17] |
Chen L, Huang XX, Li YJ, et al. Glycosyltransferase UGT76F1 is involved in the temperature-mediated petiole elongation and the BR-mediated hypocotyl growth in Arabidopsis[J]. Plant Signal Behav, 2020, 15(8):1777377.
doi: 10.1080/15592324.2020.1777377 URL |
[18] |
Hayes S, et al. UV-B detected by the UVR8 photoreceptor antagonizes auxin signaling and plant shade avoidance[J]. Proc Natl Acad Sci USA, 2014, 111(32):11894-11899.
doi: 10.1073/pnas.1403052111 URL |
[19] |
Tavridou E, Schmid-Siegert E, Fankhauser C, et al. UVR8-mediated inhibition of shade avoidance involves HFR1 stabilization in Arabidopsis[J]. PLoS Genet, 2020, 16(5):e1008797.
doi: 10.1371/journal.pgen.1008797 URL |
[20] |
Adamowski M, Friml J. PIN-dependent auxin transport:action, regulation, and evolution[J]. Plant Cell, 2015, 27(1):20-32.
doi: 10.1105/tpc.114.134874 URL |
[21] |
Péret B, Swarup K, et al. AUX/LAX genes encode a family of auxin influx transporters that perform distinct functions during Arabidop-sis development[J]. Plant Cell, 2012, 24(7):2874-2885.
doi: 10.1105/tpc.112.097766 URL |
[22] |
Petrásek J, Mravec J, Bouchard R, et al. PIN proteins perform a rate-limiting function in cellular auxin efflux[J]. Science, 2006, 312(5775):914-918.
pmid: 16601150 |
[23] |
Dharmasiri S, Swarup R, Mockaitis K, et al. AXR4 is required for localization of the auxin influx facilitator AUX1[J]. Science, 2006, 312(5777):1218-1220.
doi: 10.1126/science.1122847 pmid: 16690816 |
[24] |
de Wit M, Ljung K, Fankhauser C. Contrasting growth responses in Lamina and petiole during neighbor detection depend on differential auxin responsiveness rather than different auxin levels[J]. New Phytol, 2015, 208(1):198-209.
doi: 10.1111/nph.13449 URL |
[25] |
Park YJ, et al. Developmental programming of thermonastic leaf movement[J]. Plant Physiol, 2019, 180(2):1185-1197.
doi: 10.1104/pp.19.00139 URL |
[26] |
Szemenyei H, Hannon M, Long JA. TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis[J]. Science, 2008, 319(5868):1384-1386.
doi: 10.1126/science.1151461 pmid: 18258861 |
[27] |
Pucciariello O, Legris M, Costigliolo Rojas C, et al. Rewiring of auxin signaling under persistent shade[J]. Proc Natl Acad Sci USA, 2018, 115(21):5612-5617.
doi: 10.1073/pnas.1721110115 URL |
[28] |
Jia YB, Kong XP, Hu KQ, et al. PIFs coordinate shade avoidance by inhibiting auxin repressor ARF18 and metabolic regulator QQS[J]. New Phytol, 2020, 228(2):609-621.
doi: 10.1111/nph.16732 URL |
[29] |
Xi YL, Yang Y, Yang J, et al. IAA3-mediated repression of PIF proteins coordinates light and auxin signaling in Arabidopsis[J]. PLoS Genet, 2021, 17(2):e1009384.
doi: 10.1371/journal.pgen.1009384 URL |
[30] |
Buti S, Hayes S, Pierik R. The bHLH network underlying plant shade-avoidance[J]. Physiol Plant, 2020, 169(3):312-324.
doi: 10.1111/ppl.13074 pmid: 32053251 |
[31] |
Sun N, Wang JJ, et al. Arabidopsis SAURs are critical for differential light regulation of the development of various organs[J]. Proc Natl Acad Sci USA, 2016, 113(21):6071-6076.
doi: 10.1073/pnas.1604782113 URL |
[32] |
de Wit M, Keuskamp DH, et al. Integration of phytochrome and cryptochrome signals determines plant growth during competition for light[J]. Curr Biol, 2016, 26(24):3320-3326.
doi: S0960-9822(16)31257-X pmid: 27889265 |
[33] |
Ma DB, et al. Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light[J]. Proc Natl Acad Sci USA, 2016, 113(1):224-229.
doi: 10.1073/pnas.1511437113 URL |
[34] |
Bou-Torrent J, Galstyan A, Gallemí M, et al. Plant proximity perception dynamically modulates hormone levels and sensitivity in Arabidopsis[J]. J Exp Bot, 2014, 65(11):2937-2947.
doi: 10.1093/jxb/eru083 pmid: 24609653 |
[35] |
Hisamatsu T, King RW, et al. The involvement of gibberellin 20-oxidase genes in phytochrome-regulated petiole elongation of Arabidopsis[J]. Plant Physiol, 2005, 138(2):1106-1116.
pmid: 15923331 |
[36] |
Gommers CMM, Keuskamp DH, Buti S, et al. Molecular profiles of contrasting shade response strategies in wild plants:differential control of immunity and shoot elongation[J]. Plant Cell, 2017, 29(2):331-344.
doi: 10.1105/tpc.16.00790 URL |
[37] |
Bai MY, Shang JX, Oh E, et al. Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis[J]. Nat Cell Biol, 2012, 14(8):810-817.
doi: 10.1038/ncb2546 URL |
[38] |
Feng SH, Martinez C, Gusmaroli G, et al. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins[J]. Nature, 2008, 451(7177):475-479.
doi: 10.1038/nature06448 URL |
[39] |
de Lucas M, Davière JM, Rodríguez-Falcón M, et al. A molecular framework for light and gibberellin control of cell elongation[J]. Nature, 2008, 451(7177):480-484.
doi: 10.1038/nature06520 URL |
[40] |
Oh E, Zhu JY, Bai MY, et al. Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl[J]. eLife, 2014, 3:e03031.
doi: 10.7554/eLife.03031 URL |
[41] |
Oh E, Zhu JY, Wang ZY. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses[J]. Nat Cell Biol, 2012, 14(8):802-809.
doi: 10.1038/ncb2545 pmid: 22820378 |
[1] | 胡海琳, 徐黎, 李晓旭, 王晨璨, 梅曼, 丁文静, 赵媛媛. 小肽激素调控植物生长发育及逆境生理研究进展[J]. 生物技术通报, 2023, 39(7): 13-25. |
[2] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[3] | 刘辉, 卢扬, 叶夕苗, 周帅, 李俊, 唐健波, 陈恩发. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析[J]. 生物技术通报, 2023, 39(5): 177-191. |
[4] | 薛皦, 朱庆锋, 冯彦钊, 陈沛, 刘文华, 张爱霞, 刘勤坚, 张琪, 于洋. 植物基因上游开放阅读框的研究进展[J]. 生物技术通报, 2023, 39(4): 157-165. |
[5] | 魏明, 王欣玉, 伍国强, 赵萌. NAD依赖型去乙酰化酶SRT在植物表观遗传调控中的作用[J]. 生物技术通报, 2023, 39(4): 59-70. |
[6] | 桑田, 王鹏程. 植物SUMO化修饰研究进展[J]. 生物技术通报, 2023, 39(3): 1-12. |
[7] | 杨春洪, 董璐, 陈林, 宋丽. 大豆VAS1基因家族的鉴定及参与侧根发育的研究[J]. 生物技术通报, 2023, 39(3): 133-142. |
[8] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[9] | 安昌, 陆琳, 沈梦千, 陈盛圳, 叶康卓, 秦源, 郑平. 植物bHLH基因家族研究进展及在药用植物中的应用前景[J]. 生物技术通报, 2023, 39(10): 1-16. |
[10] | 张婵, 吴友根, 于靖, 杨东梅, 姚广龙, 杨华庚, 张军锋, 陈萍. 光与茉莉酸信号介导的萜类化合物合成分子机制[J]. 生物技术通报, 2022, 38(8): 32-40. |
[11] | 汤茜茜, 林楚宇, 陶增. 植物组蛋白去甲基化酶研究进展[J]. 生物技术通报, 2022, 38(7): 13-22. |
[12] | 李萍, 郭发平, 田敏, 税阳, 徐娜娜, 白大嵩, 余德金, 张杰, 胡运高, 彭友林. 甾醇在调节植物生长发育中的研究进展[J]. 生物技术通报, 2022, 38(7): 90-98. |
[13] | 古盼, 齐学影, 李莉, 张曦, 单晓昳. AtRGS1胞吞动态调控G蛋白参与拟南芥生长发育和抗性反应[J]. 生物技术通报, 2022, 38(6): 34-42. |
[14] | 悦曼芳, 张春, 吴忠义. 植物转录因子AP2/ERF家族蛋白结构和功能的研究进展[J]. 生物技术通报, 2022, 38(12): 11-26. |
[15] | 胡琪, 侯玉翔, 李璿, 李梅兰. 普通白菜CYP79B2同源基因的克隆与表达[J]. 生物技术通报, 2022, 38(12): 168-174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||