生物技术通报 ›› 2022, Vol. 38 ›› Issue (12): 73-87.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1296
严聪文1(), 苏代发1, 代庆忠1, 张振荣2, 田云霞2, 董琼娥2, 周文星2, 陈杉艳2, 童江云2(), 崔晓龙1()
收稿日期:
2021-10-12
出版日期:
2022-12-26
发布日期:
2022-12-29
作者简介:
严聪文,男,硕士,研究方向:植物病原微生物;E-mail:基金资助:
YAN Cong-wen1(), SU Dai-fa1, DAI Qing-zhong1, ZHANG Zhen-rong2, TIAN Yun-xia2, DONG Qiong-e2, ZHOU Wen-xing2, CHEN Shan-yan2, TONG Jiang-yun2(), CUI Xiao-long1()
Received:
2021-10-12
Published:
2022-12-26
Online:
2022-12-29
摘要:
草莓是一种重要的经济作物,但各类病害导致草莓产业遭受大量损失。生物防治是防治草莓病害的重要手段之一,受到相关产业人员重视。本文总结了与草莓病害生物防治和研究相关的微生物来源,并对包括抗生作用、竞争作用、真菌重寄生、促生作用和诱导抗性系统等草莓病害生物防治的相关机制进行了综述。结合近年来草莓生物防治的研究进展,提出调节微生物群落结构是一类重要的生物防治策略,即改变草莓相关微生物群落结构和微生态环境,增加有益菌丰度和减少病原菌数量,间接抑制草莓病害发生。近年来,生防噬菌体和人工构建微生物组为植物病害的生物防治提供了新的方向,分析了其用于草莓病害生物防治的可能性,旨在为研究人员提供较为全面的草莓病害生物防治方法及其机制分析,为草莓产业可持续发展提供理论参考。
严聪文, 苏代发, 代庆忠, 张振荣, 田云霞, 董琼娥, 周文星, 陈杉艳, 童江云, 崔晓龙. 草莓病害的生物防治研究进展[J]. 生物技术通报, 2022, 38(12): 73-87.
YAN Cong-wen, SU Dai-fa, DAI Qing-zhong, ZHANG Zhen-rong, TIAN Yun-xia, DONG Qiong-e, ZHOU Wen-xing, CHEN Shan-yan, TONG Jiang-yun, CUI Xiao-long. Advances in Biological Control of Strawberry Diseases[J]. Biotechnology Bulletin, 2022, 38(12): 73-87.
门Phylum | 属Genus | 种Species | 病原菌Pathogens | 作用机制Mechanisms |
---|---|---|---|---|
Firmicutes | Bacillus | B. velezensis | Neopestalotiopsis clavispora | 促生作用[ |
Colletotrichum gloeosporioides | 抗生作用[ | |||
B. megaterium | Colletotrichum thebromicoia | 未说明[ | ||
B. licheniformis | Fusarium oxysporum f. sp. fragariae | 抗生作用[ | ||
Ramularia tulasnei | 促生作用、诱导系统抗性[ | |||
B. methylotrophicus | R. tulasnei | 促生作用、诱导系统抗性[ | ||
B. amyloliquefaciens | F. oxysporum | 调节微生物群落结构[ | ||
C. gloeosporioides | 未说明[ | |||
Botrytis cinerea | 未说明[ | |||
N. clavispora | 促生作用[ | |||
R. tulasnei | 促生作用、诱导系统抗性[ | |||
B. subtilis | Colletotrichum fragariae | 未说明[ | ||
Rhizopus stolonifer | 未说明[ | |||
C. gloeosporioides | 抗生作用[ | |||
N. clavispora | 促生作用[ | |||
Podosphaera aphanis | 促生作用[ | |||
R. tulasnei | 促生作用、诱导系统抗性[ | |||
Lactobacillus | L. plantarum | B. cinerea | 竞争作用[ | |
Xanthomonas fragariae | 未说明[ | |||
Staphylococcus | S. sciuri | C. nymphaeae | 促生作用[ | |
Paenibacillus | P. polymyxa | F. oxysporum f. sp. fragariae | 促生作用[ | |
Proteobacteria | Pseudomonas | P. fluorescens | B. cinerea, C. gloeosporioides, Phytophthora cactorum, R. stolonifer | 抗生作用[ |
P. putida | X. fragariae | 竞争作用[ | ||
Stenotrophomonas | S. maltophilia | Colletotrichum nymphaeae | 促生作用[ | |
Burkholderia | B. contaminans | B. cinerea | 未说明[ | |
Actinobacteria | Streptomyces | S. thermocarboxydus | Glomerella cingulata | 未说明[ |
S. hygroscopicus | F. oxysporum | 抗生作用[ | ||
S. albospinus | F. oxysporum | 促生作用[ | ||
S. cerevisiae | B. cinerea | 抗生作用[ | ||
Ascomycota | Trichoderma | T. asperellum | C. fragariae | 竞争作用、抗生作用、真菌重寄生[ |
T. harzianum | B. cinerea | 诱导系统抗性[ | ||
T. guizhouense | F. oxysporum | 调节微生物群落结构[ | ||
Metschnikowia | M. pulcherrima | Alternaria,Botrytis | 抗生作用[ | |
M. sinensis | Fusarium,Rhizopus | |||
M. andauensis | Verticillium | |||
Hanseniaspora | H. uvarum | B. cinerea | 抗生作用[ | |
Wickerhamomyces | W. anomalus | B. cinerea | 抗生作用[ | |
Purpureocillium | P. lilacinum | C. gloeosporioides, B. cinerea, P. aphanis | 促生作用[ | |
Clonostachys | C. rosea | |||
Cladophialophora | C. chaetospira | F. oxysporum f. sp. fragariae | 抗生作用、促生作用[ | |
Candida | C. intermedia | B. cinerea | 促生作用[ | |
Cladophialophora | C. chaetospira | F. oxysporum f. sp. fragariae | 抗生作用、促生作用[ | |
Mucoromycota | Funneliformis | F. mosseae | P. aphanis | 促生作用[ |
Rhizophagus | R. intraradices |
表1 草莓生防菌及其防治病原菌
Table 1 Biological control microorganisms for strawberry and their control pathogens
门Phylum | 属Genus | 种Species | 病原菌Pathogens | 作用机制Mechanisms |
---|---|---|---|---|
Firmicutes | Bacillus | B. velezensis | Neopestalotiopsis clavispora | 促生作用[ |
Colletotrichum gloeosporioides | 抗生作用[ | |||
B. megaterium | Colletotrichum thebromicoia | 未说明[ | ||
B. licheniformis | Fusarium oxysporum f. sp. fragariae | 抗生作用[ | ||
Ramularia tulasnei | 促生作用、诱导系统抗性[ | |||
B. methylotrophicus | R. tulasnei | 促生作用、诱导系统抗性[ | ||
B. amyloliquefaciens | F. oxysporum | 调节微生物群落结构[ | ||
C. gloeosporioides | 未说明[ | |||
Botrytis cinerea | 未说明[ | |||
N. clavispora | 促生作用[ | |||
R. tulasnei | 促生作用、诱导系统抗性[ | |||
B. subtilis | Colletotrichum fragariae | 未说明[ | ||
Rhizopus stolonifer | 未说明[ | |||
C. gloeosporioides | 抗生作用[ | |||
N. clavispora | 促生作用[ | |||
Podosphaera aphanis | 促生作用[ | |||
R. tulasnei | 促生作用、诱导系统抗性[ | |||
Lactobacillus | L. plantarum | B. cinerea | 竞争作用[ | |
Xanthomonas fragariae | 未说明[ | |||
Staphylococcus | S. sciuri | C. nymphaeae | 促生作用[ | |
Paenibacillus | P. polymyxa | F. oxysporum f. sp. fragariae | 促生作用[ | |
Proteobacteria | Pseudomonas | P. fluorescens | B. cinerea, C. gloeosporioides, Phytophthora cactorum, R. stolonifer | 抗生作用[ |
P. putida | X. fragariae | 竞争作用[ | ||
Stenotrophomonas | S. maltophilia | Colletotrichum nymphaeae | 促生作用[ | |
Burkholderia | B. contaminans | B. cinerea | 未说明[ | |
Actinobacteria | Streptomyces | S. thermocarboxydus | Glomerella cingulata | 未说明[ |
S. hygroscopicus | F. oxysporum | 抗生作用[ | ||
S. albospinus | F. oxysporum | 促生作用[ | ||
S. cerevisiae | B. cinerea | 抗生作用[ | ||
Ascomycota | Trichoderma | T. asperellum | C. fragariae | 竞争作用、抗生作用、真菌重寄生[ |
T. harzianum | B. cinerea | 诱导系统抗性[ | ||
T. guizhouense | F. oxysporum | 调节微生物群落结构[ | ||
Metschnikowia | M. pulcherrima | Alternaria,Botrytis | 抗生作用[ | |
M. sinensis | Fusarium,Rhizopus | |||
M. andauensis | Verticillium | |||
Hanseniaspora | H. uvarum | B. cinerea | 抗生作用[ | |
Wickerhamomyces | W. anomalus | B. cinerea | 抗生作用[ | |
Purpureocillium | P. lilacinum | C. gloeosporioides, B. cinerea, P. aphanis | 促生作用[ | |
Clonostachys | C. rosea | |||
Cladophialophora | C. chaetospira | F. oxysporum f. sp. fragariae | 抗生作用、促生作用[ | |
Candida | C. intermedia | B. cinerea | 促生作用[ | |
Cladophialophora | C. chaetospira | F. oxysporum f. sp. fragariae | 抗生作用、促生作用[ | |
Mucoromycota | Funneliformis | F. mosseae | P. aphanis | 促生作用[ |
Rhizophagus | R. intraradices |
图1 草莓病害的生物防治机制与策略 SA:Salicylic acid,水杨酸;JA:jasmonic acid,茉莉酸;PRs:pathogenesis-related proteins,病程相关蛋白
Fig. 1 Biological control mechanisms and strategies of diseases to strawberries
[1] | 雷家军, 薛莉, 代汉萍, 等. 草莓研究进展(IV)[C]. 北京: 中国园艺学会, 2015. |
Lei JJ, Xue L, Dai HP, et al. Advances in Strawberry Research IV[C]. Beijing: Chinese Society for Horticultural Science, 2015. | |
[2] |
Giampieri F, Tulipani S, Alvarez-Suarez JM, et al. The strawberry:composition, nutritional quality, and impact on human health[J]. Nutrition, 2012, 28(1):9-19.
doi: 10.1016/j.nut.2011.08.009 URL |
[3] |
Jetti RR, Yang E, Kurnianta A, et al. Quantification of selected aroma-active compounds in strawberries by headspace solid-phase microextraction gas chromatography and correlation with sensory descriptive analysis[J]. J Food Sci, 2007, 72(7):S487-S496.
doi: 10.1111/j.1750-3841.2007.00445.x pmid: 17995662 |
[4] |
王梦园, 杜延全, 蔡威威, 等. 复合菌剂防治草莓根腐病的效果研究[J]. 中国农业科技导报, 2020, 22(6):100-110.
doi: 10.13304/j.nykjdb.2019.0952 |
Wang MY, Du YQ, Cai WW, et al. Effect of complex antagonistic bacteria on controlling strawberry root rot[J]. J Agric Sci Technol, 2020, 22(6):100-110. | |
[5] | 张晓慧. 草莓病害研究进展[J]. 安徽农学通报, 2018, 24(18):52-57. |
Zhang XH. Research progress of strawberry diseases[J]. Anhui Agric Sci Bull, 2018, 24(18):52-57. | |
[6] | 汪泉, 史芳芳. 草莓疫霉病病原菌鉴定[J]. 中国蔬菜, 2016(11):46-50. |
Wang Q, Shi FF. Identification of pathogen causing strawberry brown Phytophthora[J]. China Veg, 2016(11):46-50. | |
[7] | 赵景楠, 马喆, 耿文龙, 等. 新病害草莓褐色叶斑病病原菌细胞壁降解酶研究[J]. 中国农学通报, 2014, 30(31):261-266. |
Zhao JN, Ma Z, Geng WL, et al. Cell wall degrading enzymes from A new Pilidium concavum tan-brown leaf spot of strawberry[J]. Chin Agric Sci Bull, 2014, 30(31):261-266. | |
[8] | 温浩, 张桂军, 毕扬, 等. 草莓棒孢叶斑病的病原菌鉴定及其对9种杀菌剂的敏感性[J]. 农药学学报, 2019, 21(3):279-284. |
Wen H, Zhang GJ, Bi Y, et al. Pathogen identification of Corynespora leaf spot on strawberry and its sensitivity to nine fungicides[J]. Chin J Pestic Sci, 2019, 21(3):279-284. | |
[9] | 赵景楠, 马喆, 刘正坪, 等. 草莓拟盘多毛孢叶斑病的病原菌[J]. 菌物学报, 2016, 35(1):114-120. |
Zhao JN, Ma Z, Liu ZP, et al. Pestalotiopsis clavispora causing leaf spot on strawberry[J]. Mycosystema, 2016, 35(1):114-120. | |
[10] |
Kim DR, Gang GH, Jeon CW, et al. Epidemiology and control of strawberry bacterial angular leaf spot disease caused by Xanthomonas fragariae[J]. Plant Pathol J, 2016, 32(4):290-299.
doi: 10.5423/PPJ.OA.01.2016.0007 URL |
[11] | 苏代发, 童江云, 杨俊誉, 等. 草莓病毒病及其研究进展[J]. 云南大学学报:自然科学版, 2019, 41(6):1221-1237. |
Su DF, Tong JY, Yang JY, et al. Strawberry viruses diseases and its research advances[J]. J Yunnan Univ Nat Sci Ed, 2019, 41(6):1221-1237. | |
[12] | 张国珍, 钟珊. 草莓灰霉病研究进展[J]. 植物保护, 2018, 44(2):1-10. |
Zhang GZ, Zhong S. Advances in strawberry gray mold[J]. Plant Prot, 2018, 44(2):1-10. | |
[13] | 刘丹丹, 李敏, 刘润进. 我国植物根围促生细菌研究进展[J]. 生态学杂志, 2016, 35(3):815-824. |
Liu DD, Li M, Liu RJ. Recent advances in the study of plant growth-promoting rhizobacteria in China[J]. Chin J Ecol, 2016, 35(3):815-824. | |
[14] |
Syed Ab Rahman SF, Singh E, Pieterse CMJ, et al. Emerging microbial biocontrol strategies for plant pathogens[J]. Plant Sci, 2018, 267:102-111.
doi: S0168-9452(17)30540-X pmid: 29362088 |
[15] | Smith SE, Read D. Mineral nutrition, toxic element accumulation and water relations of arbuscular mycorrhizal plants[M]//Mycorrhizal Symbiosis. Amsterdam:Elsevier, 2008:145-VI. |
[16] |
Estrada B, Aroca R, Barea JM, et al. Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity[J]. Plant Sci, 2013, 201/202:42-51.
doi: 10.1016/j.plantsci.2012.11.009 URL |
[17] | Glick BR. Plant growth-promoting bacteria:mechanisms and applications[J]. Scientifica, 2012, 2012:963401. |
[18] | 黄京华, 骆世明, 曾任森. 丛枝菌根菌诱导植物抗病的内在机制[J]. 应用生态学报, 2003, 14(5):819-822. |
Huang JH, Luo SM, Zeng RS. Mechanisms of plant disease resistance induced by arbuscular mycorrhizal fungi[J]. Chin J Appl Ecol, 2003, 14(5):819-822. | |
[19] |
Morelli M, Bahar O, Papadopoulou KK, et al. Editorial:role of endophytes in plant health and defense against pathogens[J]. Front Plant Sci, 2020, 11:1312.
doi: 10.3389/fpls.2020.01312 URL |
[20] | Chakraborty S, Debnath D, Mahapatra S, et al. Role of endophytes in plant disease management[M]// Emerging trends in plant pathology. Singapore: Springer, 2021: 399-424. |
[21] |
冯江鹏, 邱莉萍, 梁秀燕, 等. 草莓胶孢炭疽菌拮抗细菌贝莱斯芽孢杆菌JK3的鉴定及其抗菌活性[J]. 浙江农业学报, 2020, 32(5):831-839.
doi: 10.3969/j.issn.1004-1524.2020.05.11 |
Feng JP, Qiu LP, Liang XY, et al. Identification of antagonistic bacteria Bacillus velezensis JK3 against anthracnose of strawberry and its antipathogenic activity[J]. Acta Agric Zhejiangensis, 2020, 32(5):831-839. | |
[22] | 陈哲, 黄静, 赵佳, 等. 防治草莓炭疽病的芽胞杆菌组合的筛选[J]. 中国生物防治学报, 2018, 34(4):582-588. |
Chen Z, Huang J, Zhao J, et al. Screening of the combinations of Bacillus strains against strawberry anthracnose[J]. Chin J Biol Control, 2018, 34(4):582-588. | |
[23] |
Chen Y, Xu YP, Zhou T, et al. Biocontrol of Fusarium wilt disease in strawberries using bioorganic fertilizer fortified with Bacillus licheniformis X-1 and Bacillus methylotrophicus Z-1[J]. 3 Biotech, 2020, 10(2):80.
doi: 10.1007/s13205-020-2060-6 pmid: 32099731 |
[24] | Belyaev AA, Pospelova NP, Lelyak AA, et al. The use of Bacillus spp. Strains for biocontrol of Ramularia leaf spot on strawberry and improving plant health in Western Siberia[J]. Research Journal of Pharmaceutical Biological and Chemical Sciences:, 2016, 7(1):1594-1607. |
[25] |
Xiong W, Guo S, Jousset A, et al. Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome[J]. Soil Biol Biochem, 2017, 114:238-247.
doi: 10.1016/j.soilbio.2017.07.016 URL |
[26] |
陈哲, 黄静, 赵佳, 等. 草莓根腐病的病原菌分离鉴定及拮抗菌CM3的抑制作用研究[J]. 生物技术通报, 2018, 34(2):135-141.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0974 URL |
Chen Z, Huang J, Zhao J, et al. Isolation and identification of pathogenic fungi of strawberry root rot and the inhibition of antagonistic bacteria CM3 on these fungi[J]. Biotechnol Bull, 2018, 34(2):135-141.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0974 URL |
|
[27] | 雷白时, 王笑颖, 姜军坡, 等. 草莓根腐病生防芽孢杆菌的筛选鉴定与盆栽防效试验[J]. 河北农业大学学报, 2016, 39(3):19-22. |
Lei BS, Wang XY, Jiang JP, et al. Screening, identification and pot experiment of biocontrol Bacillus against strawberry root rot[J]. J Agric Univ Hebei, 2016, 39(3):19-22. | |
[28] | 谷春艳, 苏贤岩, 杨雪, 等. 解淀粉芽胞杆菌WH1G与咪鲜胺协同防治草莓炭疽病[J]. 植物保护, 2018, 44(2):184-189, 226. |
Gu CY, Su XY, Yang X, et al. Synergistic effect of antagonistic bacteria WH1G and prochloraz against strawberry anthracnose[J]. Plant Prot, 2018, 44(2):184-189, 226. | |
[29] | 谷春艳, 王学峰, 苏贤岩, 等. 解淀粉芽孢杆菌WH1G与氟啶胺协同防治草莓灰霉病[J]. 农药, 2017, 56(12):932-936. |
Gu CY, Wang XF, Su XY, et al. Synergistic effect of antagonistic bacteria WH1G and fluazinam against strawberry gray mould[J]. Agrochemicals, 2017, 56(12):932-936. | |
[30] | 姚克兵, 张玉军, 王劲根, 等. 枯草芽胞杆菌和吡唑醚菌酯协同防治草莓病害[J]. 西南农业学报, 2016, 29(10):2397-2401. |
Yao KB, Zhang YJ, Wang JG, et al. Integrated control of strawberry disease using biocontrol agent Bacillus subtilis strain DJ-6 and pyraclostrobin[J]. Southwest China J Agric Sci, 2016, 29(10):2397-2401. | |
[31] |
Oregel-Zamudio E, Angoa-Pérez MV, Oyoque-Salcedo G, et al. Effect of candelilla wax edible coatings combined with biocontrol bacteria on strawberry quality during the shelf-life[J]. Sci Hortic, 2017, 214:273-279.
doi: 10.1016/j.scienta.2016.11.038 URL |
[32] | 汪雪静, 卜春亚, 靳永胜, 等. 草莓根腐病菌拮抗细菌的分离与鉴定[J]. 园艺学报, 2011, 38(9):1657-1666. |
Wang XJ, Bu CY, Jin YS, et al. Identification and inhibitory effects of antagonistic bacteria against strawberry root rot(Fusarium oxysporum)[J]. Acta Hortic Sin, 2011, 38(9):1657-1666. | |
[33] | 赵玳琳, 陶刚, 卯婷婷, 等. 微生物制剂对草莓重要真菌病害的作用研究[J]. 中国生物防治学报, 2019, 35(3):456-462. |
Zhao DL, Tao G, Mao TT, et al. Effects of microbial biocontrol agents on several important fungal diseases of strawberry[J]. Chin J Biol Control, 2019, 35(3):456-462. | |
[34] |
Chen C, Cao Z, Li J, et al. A novel endophytic strain of Lactobacillus plantarum CM-3 with antagonistic activity against Botrytis cinerea on strawberry fruit[J]. Biol Control, 2020, 148:104306.
doi: 10.1016/j.biocontrol.2020.104306 URL |
[35] |
Daranas N, Roselló G, Cabrefiga J, et al. Biological control of bacterial plant diseases with Lactobacillus plantarum strains selected for their broad-spectrum activity[J]. Ann Appl Biol, 2019, 174(1):92-105.
doi: 10.1111/aab.12476 pmid: 30686827 |
[36] |
Alijani Z, Amini J, Ashengroph M, et al. Volatile compounds mediated effects of Stenotrophomonas maltophilia strain UN1512 in plant growth promotion and its potential for the biocontrol of Colletotrichum nymphaeae[J]. Physiol Mol Plant Pathol, 2020, 112:101555.
doi: 10.1016/j.pmpp.2020.101555 URL |
[37] | 吉沐祥, 王晓琳, 黄洁雪, 等. 草莓枯萎病菌拮抗细菌JX-13的鉴定及生防效果评价[J]. 江苏农业学报, 2019, 35(3):586-593. |
Ji MX, Wang XL, Huang JX, et al. Identification and biocontrol effects of antagonistic bacterium JX-13 strain against strawberry Fusarium wilt[J]. Jiangsu J Agric Sci, 2019, 35(3):586-593. | |
[38] |
Hautsalo J, Vestberg M, Parikka P, et al. Biological control of strawberry crown rot is substrate dependent phenomenon[J]. J Berry Res, 2016, 6(1):65-79.
doi: 10.3233/JBR-150110 URL |
[39] |
Cloutier A, Tran S, Avis TJ. Suppressive effect of compost bacteria against grey mould and Rhizopus rot on strawberry fruit[J]. Biocontrol Sci Technol, 2020, 30(2):143-159.
doi: 10.1080/09583157.2019.1695745 URL |
[40] | Henry PM, Gebben SJ, Tech JJ, et al. Inhibition of Xanthomonas fragariae, causative agent of angular leaf spot of strawberry, through iron deprivation[J]. Front Microbiol, 2016, 7:1589. |
[41] | 范三红, 张婧婷, 施俊凤. 生防菌株洋葱伯克氏菌对草莓果实采后病害控制及安全性评价[J]. 食品工业科技, 2018, 39(1):96-101, 106. |
Fan SH, Zhang JT, Shi JF. Control of strawberry fruit postharvest decay by antagonistic bacterium Burkholderia contaminans and its safety evaluation[J]. Sci Technol Food Ind, 2018, 39(1):96-101, 106. | |
[42] |
Marian M, Ohno T, Suzuki H, et al. A novel strain of endophytic Streptomyces for the biocontrol of strawberry anthracnose caused by Glomerella cingulata[J]. Microbiol Res, 2020, 234:126428.
doi: 10.1016/j.micres.2020.126428 URL |
[43] |
Shen T, Wang C, Yang H, et al. Identification, solid-state fermentation and biocontrol effects of Streptomyces hygroscopicus B04 on strawberry root rot[J]. Appl Soil Ecol, 2016, 103:36-43.
doi: 10.1016/j.apsoil.2016.02.016 URL |
[44] | 沈婷, 张园园, 王辰, 等. 白刺链霉菌(Streptomyces albospinus)CT205菌株固体发酵及防控草莓根腐病的研究[J]. 南京农业大学学报, 2015, 38(4):596-601. |
Shen T, Zhang YY, Wang C, et al. Study on solid fermentation of Streptomyces albospinus CT205 and biocontrol effect against strawberry root rot[J]. J Nanjing Agric Univ, 2015, 38(4):596-601. | |
[45] |
Oro L, Feliziani E, Ciani M, et al. Volatile organic compounds from Wickerhamomyces anomalus, Metschnikowia pulcherrima and Saccharomyces cerevisiae inhibit growth of decay causing fungi and control postharvest diseases of strawberries[J]. Int J Food Microbiol, 2018, 265:18-22.
doi: S0168-1605(17)30468-3 pmid: 29107842 |
[46] | 赵玳琳, 何海永, 吴石平, 等. 棘孢木霉GYSW-6m1对草莓炭疽病的生防机制及其防病促生作用研究[J]. 中国生物防治学报, 2020, 36(4):587-595. |
Zhao DL, He HY, Wu SP, et al. Biocontrol mechanisms and control effects of Trichoderma asperellum GYSW-6m1 on strawberry anthracnose and growth-promoting effects on strawberry[J]. Chin J Biol Control, 2020, 36(4):587-595. | |
[47] |
Debode J, de Tender C, Cremelie P, et al. Trichoderma-inoculated miscanthus straw can replace peat in strawberry cultivation, with beneficial effects on disease control[J]. Front Plant Sci, 2018, 9:213.
doi: 10.3389/fpls.2018.00213 pmid: 29515613 |
[48] |
Pawlikowska E, James SA, Breierova E, et al. Biocontrol capability of local Metschnikowia sp. isolates[J]. Antonie Van Leeuwenhoek, 2019, 112(10):1425-1445.
doi: 10.1007/s10482-019-01272-w pmid: 31111331 |
[49] | 郭虹娜, 刘佳, 奚裕婷, 等. 拮抗酵母挥发性单体桂皮醛对草莓采后灰霉病的防治[J]. 食品科学, 2020, 41(13):212-220. |
Guo HN, Liu J, Xi YT, et al. Biocontrol effect of volatile monomer trans-cinnamaldehyde with antagonistic capacity to yeast on gray mold disease of postharvest strawberry fruit[J]. Food Sci, 2020, 41(13):212-220. | |
[50] | 余伟, 宋玥, 佘仲露, 等. 拮抗酵母菌挥发物单体对草莓灰霉病的防治效果[J]. 食品科学, 2018, 39(21):230-236. |
Yu W, Song Y, She ZL, et al. Effect of volatile monomers from Hanseniaspora uvarum on controlling postharvest gray mold of strawberry[J]. Food Sci, 2018, 39(21):230-236.
doi: 10.1111/j.1365-2621.1974.tb02863.x URL |
|
[51] |
Ruiz-Moyano S, Hernández A, Galvan AI, et al. Selection and application of antifungal VOCs-producing yeasts as biocontrol agents of grey mould in fruits[J]. Food Microbiol, 2020, 92:103556.
doi: 10.1016/j.fm.2020.103556 URL |
[52] | 窦国霞, 蒋春号, 郭虹娜, 等. 葡萄汁有孢汉逊酵母对采后草莓灰霉病抗性诱导机理研究[J]. 园艺学报, 2019, 46(7):1290-1302. |
Dou GX, Jiang CH, Guo HN, et al. Studies on the resistance induction of Hanseniaspora uvarum to postharvest gray mold in strawberry[J]. Acta Hortic Sin, 2019, 46(7):1290-1302. | |
[53] |
Harsonowati W, Marian M, Surono, et al. The effectiveness of a dark septate endophytic fungus, Cladophialophora chaetospira SK51, to mitigate strawberry Fusarium wilt disease and with growth promotion activities[J]. Front Microbiol, 2020, 11:585.
doi: 10.3389/fmicb.2020.00585 pmid: 32351466 |
[54] | 徐丽娟, 尹永楠, 张运涛, 等. 丛枝菌根真菌和促生细菌对草莓生长、产量和白粉病的影响[J]. 北方园艺, 2019(11):33-39. |
Xu LJ, Yin YN, Zhang YT, et al. Effects of arbuscular mycorrhizal fungi and plant growth-promoting rhizosphere bacteria on strawberry growth[J]. North Hortic, 2019(11):33-39. | |
[55] |
Freimoser FM, Rueda-Mejia MP, Tilocca B, et al. Biocontrol yeasts:mechanisms and applications[J]. World J Microbiol Biotechnol, 2019, 35(10):154.
doi: 10.1007/s11274-019-2728-4 URL |
[56] |
Compant S, Samad A, Faist H, et al. A review on the plant microbiome:Ecology, functions, and emerging trends in microbial application[J]. J Adv Res, 2019, 19:29-37.
doi: 10.1016/j.jare.2019.03.004 URL |
[57] |
Lazcano C, Boyd E, Holmes G, et al. The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under field conditions[J]. Sci Rep, 2021, 11(1):3188.
doi: 10.1038/s41598-021-82768-2 pmid: 33542451 |
[58] | 周通. 草莓枯萎病生防菌的筛选及其生物有机肥研究[D]. 大连: 大连理工大学, 2018. |
Zhou T. The isolation of antagonistic microbe for controlling Fusarium wilt of strawberry and study on its fortified bio-organic fertilizer[D]. Dalian: Dalian University of Technology, 2018. | |
[59] | 陶宗. 青钱柳叶黑枯病菌拮抗微生物筛选、鉴定及抗生机理初步研究[D]. 湘潭: 湖南科技大学, 2019. |
Tao Z. Screening, identification and antibacterial mechanism of antagonistic microorganisms against the leaf black blight pathogen of Cyclocarya paliurus[D]. Xiangtan: Hunan University of Science and Technology, 2019. | |
[60] |
Karasuda S, Tanaka S, Kajihara H, et al. Plant chitinase as a possible biocontrol agent for use instead of chemical fungicides[J]. Biosci Biotechnol Biochem, 2003, 67(1):221-224.
doi: 10.1271/bbb.67.221 URL |
[61] |
Morath SU, Hung R, Bennett JW. Fungal volatile organic compounds:a review with emphasis on their biotechnological potential[J]. Fungal Biol Rev, 2012, 26(2/3):73-83.
doi: 10.1016/j.fbr.2012.07.001 URL |
[62] |
Huang R, Li GQ, Zhang J, et al. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia[J]. Phytopathology, 2011, 101(7):859-869.
doi: 10.1094/PHYTO-09-10-0255 pmid: 21323467 |
[63] |
Contarino R, Brighina S, Fallico B, et al. Volatile organic compounds(VOCs)produced by biocontrol yeasts[J]. Food Microbiol, 2019, 82:70-74.
doi: S0740-0020(17)31037-7 pmid: 31027821 |
[64] | Arras G, Arru S. Mechanism of action of some microbial antagonists against fungal pathogens[J]. Ann Di Microbiol Ed Enzimologia, 1997, 47(1):97-120. |
[65] |
de Silva DD, Crous PW, Ades PK, et al. Life styles of Colletotrichum species and implications for plant biosecurity[J]. Fungal Biol Rev, 2017, 31(3):155-168.
doi: 10.1016/j.fbr.2017.05.001 URL |
[66] |
Jeger MJ, Jeffries P, Elad Y, et al. A generic theoretical model for biological control of foliar plant diseases[J]. J Theor Biol, 2009, 256(2):201-214.
doi: 10.1016/j.jtbi.2008.09.036 pmid: 18983855 |
[67] |
Hjeljord LG, Tronsmo A. Effect of germination initiation on competitive capacity of Trichoderma atroviride P1 conidia[J]. Phytopathology, 2003, 93(12):1593-1598.
doi: 10.1094/PHYTO.2003.93.12.1593 pmid: 18943625 |
[68] |
Sutton J, Peng G. Biocontrol of Botrytis cinerea in strawberry leaves[J]. Phytopathology, 1993, 83:615-621.
doi: 10.1094/Phyto-83-615 URL |
[69] |
Kamaruzzaman M, Lyu A, Zhang J, et al. Competitive saprophytic ability of the hypovirulent isolate QT5-19 of Botrytis cinerea and its importance in biocontrol of necrotrophic fungal pathogens[J]. Biol Control, 2020, 142:104182.
doi: 10.1016/j.biocontrol.2019.104182 URL |
[70] |
Neilands JB. Siderophores:structure and function of microbial iron transport compounds[J]. J Biol Chem, 1995, 270(45):26723-26726.
doi: 10.1074/jbc.270.45.26723 pmid: 7592901 |
[71] |
Leong J. Siderophores:their biochemistry and possible role in the biocontrol of plant pathogens[J]. Annu Rev Phytopathol, 1986, 24:187-209.
doi: 10.1146/annurev.py.24.090186.001155 URL |
[72] |
Ahmad F, Ahmad I, Khan MS. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities[J]. Microbiol Res, 2008, 163(2):173-181.
pmid: 16735107 |
[73] |
Steyaert JM, Ridgway HJ, Elad Y, et al. Genetic basis of mycoparasitism:a mechanism of biological control by species of Trichoderma[J]. N Z J Crop Hortic Sci, 2003, 31(4):281-291.
doi: 10.1080/01140671.2003.9514263 URL |
[74] |
Viterbo A, Haran S, Friesem D, et al. Antifungal activity of a novel endochitinase gene(chit36)from Trichoderma harzianum Rifai TM[J]. FEMS Microbiol Lett, 2001, 200(2):169-174.
pmid: 11425470 |
[75] |
Kiss L, Russell JC, Szentiványi O, et al. Biology and biocontrol potential of Ampelomyces mycoparasites, natural antagonists of powdery mildew fungi[J]. Biocontrol Sci Technol, 2004, 14(7):635-651.
doi: 10.1080/09583150410001683600 URL |
[76] |
Belanger R, Dufour N, Caron J, et al. Chronological events associated with the antagonistic properties of Trichoderma harzianum against Botrytis cinerea:indirect evidence for sequential role of antibiosis and parasitism[J]. Biocontrol Sci Technol, 1995, 5:41-54.
doi: 10.1080/09583159550040006 URL |
[77] |
Gafni A, Calderon CE, Harris R, et al. Biological control of the cucurbit powdery mildew pathogen Podosphaera xanthii by means of the epiphytic fungus Pseudozyma aphidis and parasitism as a mode of action[J]. Front Plant Sci, 2015, 6:132.
doi: 10.3389/fpls.2015.00132 pmid: 25814995 |
[78] |
Calderón CE, Rotem N, Harris R, et al. Pseudozyma aphidis activates reactive oxygen species production, programmed cell death and morphological alterations in the necrotrophic fungus Botrytis cinerea[J]. Mol Plant Pathol, 2019, 20(4):562-574.
doi: 10.1111/mpp.12775 pmid: 30537338 |
[79] |
Navarro L, Dunoyer P, Jay F, et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling[J]. Science, 2006, 312(5772):436-439.
pmid: 16627744 |
[80] |
Ahemad M, Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria:current perspective[J]. J King Saud Univ Sci, 2014, 26(1):1-20.
doi: 10.1016/j.jksus.2013.05.001 URL |
[81] |
Ma Y, Rajkumar M, Zhang C, et al. Beneficial role of bacterial endophytes in heavy metal phytoremediation[J]. J Environ Manage, 2016, 174:14-25.
doi: 10.1016/j.jenvman.2016.02.047 pmid: 26989941 |
[82] |
Glick BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world[J]. Microbiol Res, 2014, 169(1):30-39.
doi: 10.1016/j.micres.2013.09.009 pmid: 24095256 |
[83] |
van Loon LC, Bakker PA, Pieterse CM. Systemic resistance induced by rhizosphere bacteria[J]. Annu Rev Phytopathol, 1998, 36:453-483.
pmid: 15012509 |
[84] |
Vallad GE, Goodman RM. Systemic acquired resistance and induced systemic resistance in conventional agriculture[J]. Crop Sci, 2004, 44(6):1920-1934.
doi: 10.2135/cropsci2004.1920 URL |
[85] |
Sticher L, Mauch-Mani B, Métraux JP. Systemic acquired resistance[J]. Annu Rev Phytopathol, 1997, 35:235-270.
pmid: 15012523 |
[86] |
Ward ER, Uknes SJ, Williams SC, et al. Coordinate gene activity in response to agents that induce systemic acquired resistance[J]. Plant Cell, 1991, 3(10):1085-1094.
doi: 10.2307/3869297 URL |
[87] |
Uknes S, Mauch-Mani B, Moyer M, et al. Acquired resistance in Arabidopsis[J]. Plant Cell, 1992, 4(6):645-656.
pmid: 1392589 |
[88] |
Cameron RK, Dixon RA, Lamb CJ. Biologically induced systemic acquired resistance in Arabidopsis thaliana[J]. Plant J, 1994, 5(5):715-725.
doi: 10.1111/j.1365-313X.1994.00715.x URL |
[89] | Pieterse C, Ton J, and Loon L V. Cross-talk between plant defence signalling pathways:boost or burden?[J]. AgBiotechNet, 2001. 3(ABN 068):1-8. |
[90] |
Yan ZN, Reddy MS, Ryu CM, et al. Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria[J]. Phytopathology, 2002, 92(12):1329-1333.
doi: 10.1094/PHYTO.2002.92.12.1329 pmid: 18943888 |
[91] |
Choudhary DK, Prakash A, Johri BN. Induced systemic resistance(ISR)in plants:mechanism of action[J]. Indian J Microbiol, 2007, 47(4):289-297.
doi: 10.1007/s12088-007-0054-2 pmid: 23100680 |
[92] |
Lamb C, Dixon RA. The oxidative burst in plant disease resistance[J]. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48:251-275.
doi: 10.1146/annurev.arplant.48.1.251 URL |
[93] | Mansfield J W. Antimicrobial compounds and resistance the role of Phytoalexins and Phytoanticpins[M]. Springer Netherlands: Kluwer Academic Publishers, 2000:325-326. |
[94] | Kuć J. What’s old and what’s new in concepts of induced systemic resistance in plants, and its application[M]//Tuzun S, Bent E. Multigenic and Induced Systemic Resistance in Plants, Springer:Boston, MA, 2006:9-20. |
[95] |
Nicholson RL, Hammerschmidt R. Phenolic compounds and their role in disease resistance[J]. Annu Rev Phytopathol, 1992, 30:369-389.
doi: 10.1146/annurev.py.30.090192.002101 URL |
[96] |
Anterola AM, Lewis NG. Trends in lignin modification:a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity[J]. Phytochemistry, 2002, 61(3):221-294.
pmid: 12359514 |
[97] |
Yun MH, Torres PS, El Oirdi M, et al. Xanthan induces plant susceptibility by suppressing callose deposition[J]. Plant Physiol, 2006, 141(1):178-187.
pmid: 16531487 |
[98] |
Chalfoun NR, Castagnaro AP, Díaz Ricci JC. Induced resistance activated by a culture filtrate derived from an avirulent pathogen as a mechanism of biological control of anthracnose in strawberry[J]. Biol Control, 2011, 58(3):319-329.
doi: 10.1016/j.biocontrol.2011.05.007 URL |
[99] |
Toral L, Rodríguez M, Béjar V, et al. Crop protection against Botrytis cinerea by rhizhosphere biological control agent Bacillus velezensis XT1[J]. Microorganisms, 2020, 8(7):992.
doi: 10.3390/microorganisms8070992 URL |
[100] |
Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiol Biochem, 2010, 48(12):909-930.
doi: 10.1016/j.plaphy.2010.08.016 URL |
[101] |
Podile AR, Laxmi VDV. Seed bacterization with Bacillus subtilis AF 1 increases phenylalanine ammonia-lyase and reduces the incidence of fusarial wilt in pigeonpea[J]. J Phytopathol, 1998, 146(5/6):255-259.
doi: 10.1111/j.1439-0434.1998.tb04687.x URL |
[102] |
Quiroga M, Guerrero C, Botella MA, et al. A tomato peroxidase involved in the synthesis of lignin and suberin[J]. Plant Physiol, 2000, 122(4):1119-1127.
pmid: 10759507 |
[103] |
Li L, Steffens JC. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance[J]. Planta, 2002, 215(2):239-247.
pmid: 12029473 |
[104] | 冯军. 水杨酸介导的草莓抗白粉病的分子调控机制[D]. 北京: 北京林业大学, 2020. |
Feng J. The molecular regulatory mechanism of salicylic acid-primed strawberry resistance against Podosphaera aphanis[D]. Beijing: Beijing Forestry University, 2020. | |
[105] |
Li XX, Wang XH, Shi XY, et al. Compost tea-mediated induction of resistance in biocontrol of strawberry Verticillium wilt[J]. J Plant Dis Prot, 2020, 127(2):257-268.
doi: 10.1007/s41348-019-00290-0 URL |
[106] | 李欣欣, 王秀红, 史向远, 等. 堆肥提取液诱导草莓对黄萎病抗性及抑菌机理研究[J]. 中国生物防治学报, 2018, 34(2):294-302. |
Li XX, Wang XH, Shi XY, et al. Induced resistance in strawberry against Verticillium wilt by compost tea and its inhibition mechanism[J]. Chin J Biol Control, 2018, 34(2):294-302. | |
[107] |
Bajpai S, Shukla PS, Asiedu S, et al. A biostimulant preparation of brown seaweed Ascophyllum nodosum suppresses powdery mildew of strawberry[J]. Plant Pathol J, 2019, 35(5):406-416.
doi: 10.5423/PPJ.OA.03.2019.0066 pmid: 31632216 |
[108] |
Huang Y, Xiao X, Huang HY, et al. Contrasting beneficial and pathogenic microbial communities across consecutive cropping fields of greenhouse strawberry[J]. Appl Microbiol Biotechnol, 2018, 102(13):5717-5729.
doi: 10.1007/s00253-018-9013-6 pmid: 29704041 |
[109] | 杨俊誉, 魏世杰, 苏代发, 等. 温室中患白粉病与健康草莓植株根际原核生物群落的比较研究[J]. 西南农业学报, 2020, 33(1):85-91. |
Yang JY, Wei SJ, Su DF, et al. Study on prokaryotic communities in rhizospheres of powdery mildew-infected and non-infected strawberry in greenhouse by high-through sequencing technology[J]. Southwest China J Agric Sci, 2020, 33(1):85-91. | |
[110] |
Mendes R, Kruijt M, de Bruijn I, et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria[J]. Science, 2011, 332(6033):1097-1100.
doi: 10.1126/science.1203980 pmid: 21551032 |
[111] |
Li N, Wang C, Li XL, et al. Effects of earthworms and arbuscular mycorrhizal fungi on preventing Fusarium oxysporum infection in the strawberry plant[J]. Plant Soil, 2019, 443(1/2):139-153.
doi: 10.1007/s11104-019-04224-5 URL |
[112] |
Zhimo VY, Kumar A, Biasi A, et al. Compositional shifts in the strawberry fruit microbiome in response to near-harvest application of Metschnikowia fructicola, a yeast biocontrol agent[J]. Postharvest Biol Technol, 2021, 175:111469.
doi: 10.1016/j.postharvbio.2021.111469 URL |
[113] | Hu J, Wei Z, Friman VP, et al. Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression[J]. mBio, 2016, 7(6):e01790-e01716. |
[114] | Berg G, Köberl M, Rybakova D, et al. Plant microbial diversity is suggested as the key to future biocontrol and health trends[J]. FEMS Microbiol Ecol, 2017, 93(5): 2017 May 1;93(5). |
[115] |
Mendes R, Garbeva P, Raaijmakers JM. The rhizosphere microbiome:significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms[J]. FEMS Microbiol Rev, 2013, 37(5):634-663.
doi: 10.1111/1574-6976.12028 URL |
[116] |
Cruz AF, Barka GD, Sylla J, et al. Biocontrol of strawberry fruit infected by Botrytis cinerea:effects on the microbial communities on fruit assessed by next-generation sequencing[J]. J Phytopathol, 2018, 166(6):403-411.
doi: 10.1111/jph.12700 URL |
[117] |
Zhang DQ, Yan DD, Cheng HY, et al. Effects of multi-year biofumigation on soil bacterial and fungal communities and strawberry yield[J]. Environ Pollut, 2020, 256:113415.
doi: 10.1016/j.envpol.2019.113415 URL |
[118] |
Ye XF, Li ZK, Luo X, et al. A predatory myxobacterium controls cucumber Fusarium wilt by regulating the soil microbial community[J]. Microbiome, 2020, 8(1):49.
doi: 10.1186/s40168-020-00824-x pmid: 32252828 |
[119] |
Li ZF, Bai XL, Jiao S, et al. A simplified synthetic community rescues Astragalus mongholicus from root rot disease by activating plant-induced systemic resistance[J]. Microbiome, 2021, 9(1):217.
doi: 10.1186/s40168-021-01169-9 pmid: 34732249 |
[120] |
Kim YS, Song JG, Lee IK, et al. Bacillus sp. BS061 suppresses powdery mildew and gray mold[J]. Mycobiology, 2013, 41(2):108-111.
doi: 10.5941/MYCO.2013.41.2.108 URL |
[121] |
Moye ZD, Woolston J, Sulakvelidze A. Bacteriophage applications for food production and processing[J]. Viruses, 2018, 10(4):205.
doi: 10.3390/v10040205 URL |
[122] | 舒灿伟, 张美玲, 刘忱, 等. 中国植物病理学会2018年学术年会论文集[C]. 北京: 中国植物病理学会, 2018. |
Shu CW, Zhang ML, Liu C, et al. Proceedings of the Annual Meeting of Chinese Society for Plant Pathology(2018)[C]. Beijing: Chinese Society for Plant Pathology, 2018. | |
[123] | 赵曦, 郑德洪. 噬菌体防治植物细菌性病害研究进展[J]. 广西植保, 2020, 33(1):32-36. |
Zhao X, Zheng DH. Advances in phage-based biocontrol of bacterial plant diseases[J]. Guangxi Plant Prot, 2020, 33(1):32-36. | |
[124] |
Kurtböke DI, Palk A, Marker A, et al. Isolation and characterization of Enterobacteriaceae species infesting post-harvest strawberries and their biological control using bacteriophages[J]. Appl Microbiol Biotechnol, 2016, 100(19):8593-8606.
doi: 10.1007/s00253-016-7651-0 pmid: 27357225 |
[125] |
Fischetti VA. Bacteriophage lysins as effective antibacterials[J]. Curr Opin Microbiol, 2008, 11(5):393-400.
doi: 10.1016/j.mib.2008.09.012 pmid: 18824123 |
[126] |
Schmelcher M, Donovan DM, Loessner MJ. Bacteriophage endolysins as novel antimicrobials[J]. Future Microbiol, 2012, 7(10):1147-1171.
doi: 10.2217/fmb.12.97 pmid: 23030422 |
[127] |
Ghabrial SA, Castón JR, Jiang DH, et al. 50-plus years of fungal viruses[J]. Virology, 2015, 479/480:356-368.
doi: 10.1016/j.virol.2015.02.034 URL |
[128] |
Lombardi N, Salzano AM, Troise AD, et al. Effect of Trichoderma bioactive metabolite treatments on the production, quality, and protein profile of strawberry fruits[J]. J Agric Food Chem, 2020, 68(27):7246-7258.
doi: 10.1021/acs.jafc.0c01438 URL |
[129] |
Zhang PA, Jia HF, Gong PJ, et al. Chitosan induces jasmonic acid production leading to resistance of ripened fruit against Botrytis cinerea infection[J]. Food Chem, 2021, 337:127772.
doi: 10.1016/j.foodchem.2020.127772 URL |
[130] |
Viejobueno J, Albornoz PL, Camacho M, et al. Protection of strawberry plants against charcoal rot disease(Macrophomina phaseolina)induced by Azospirillum brasilense[J]. Agronomy, 2021, 11(2):195.
doi: 10.3390/agronomy11020195 URL |
[131] |
Wu YM, Chen X, Wang F, et al. Bacillus amyloliquefaciens strains control strawberry anthracnose through antagonistic activity and plant immune response intensification[J]. Biol Control, 2021, 157:104592.
doi: 10.1016/j.biocontrol.2021.104592 URL |
[132] |
Hardoim PR, van Overbeek LS, Berg G, et al. The hidden world within plants:ecological and evolutionary considerations for defining functioning of microbial endophytes[J]. Microbiol Mol Biol Rev, 2015, 79(3):293-320.
doi: 10.1128/MMBR.00050-14 URL |
[133] | Zgadzaj R, Garrido-Oter R, Jensen DB, et al. Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities[J]. Proc Natl Acad Sci USA, 2016, 113(49):E7996-E8005. |
[134] |
Lemanceau P, Blouin M, Muller D, et al. Let the core microbiota be functional[J]. Trends Plant Sci, 2017, 22(7):583-595.
doi: S1360-1385(17)30088-2 pmid: 28549621 |
[135] |
Grosskopf T, Soyer OS. Synthetic microbial communities[J]. Curr Opin Microbiol, 2014, 18(100):72-77.
doi: 10.1016/j.mib.2014.02.002 URL |
[136] |
Sheth RU, Cabral V, Chen SP, et al. Manipulating bacterial communities by in situ microbiome engineering[J]. Trends Genet, 2016, 32(4):189-200.
doi: S0168-9525(16)00015-9 pmid: 26916078 |
[137] | 尹珺, 马安周, 宋茂勇, 等. 合成微生物体系研究进展[J]. 微生物学通报, 2020, 47(2):583-593. |
Yin J, Ma AZ, Song MY, et al. Research progress in synthetic microbial systems[J]. Microbiol China, 2020, 47(2):583-593. | |
[138] | 陈沫先, 韦中, 田亮, 等. 合成微生物群落的构建与应用[J]. 科学通报, 2021, 66(3):273-283. |
Chen MX, Wei Z, Tian L, et al. Design and application of synthetic microbial communities[J]. Chin Sci Bull, 2021, 66(3):273-283.
doi: 10.1360/TB-2020-0487 URL |
|
[139] |
Wei Z, Yang TJ, Friman VP, et al. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health[J]. Nat Commun, 2015, 6:8413.
doi: 10.1038/ncomms9413 pmid: 26400552 |
[1] | 赵志祥, 王殿东, 周亚林, 王培, 严婉荣, 严蓓, 罗路云, 张卓. 枯草芽孢杆菌Ya-1对辣椒枯萎病的防治及其对根际真菌群落的影响[J]. 生物技术通报, 2023, 39(9): 213-224. |
[2] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[3] | 褚睿, 李昭轩, 张学青, 杨东亚, 曹行行, 张雪艳. 黄瓜枯萎病拮抗芽孢杆菌的筛选、鉴定及其生防潜力[J]. 生物技术通报, 2023, 39(8): 262-271. |
[4] | 王天依, 王荣焕, 王夏青, 张如养, 徐瑞斌, 焦炎炎, 孙轩, 王继东, 宋伟, 赵久然. 玉米矮秆基因与矮秆育种研究[J]. 生物技术通报, 2023, 39(8): 43-51. |
[5] | 张蓓, 任福森, 赵洋, 郭志伟, 孙强, 刘贺娟, 甄俊琦, 王童童, 程相杰. 辣椒响应热胁迫机制的研究进展[J]. 生物技术通报, 2023, 39(7): 37-47. |
[6] | 李典典, 粟元, 李洁, 许文涛, 朱龙佼. 抗菌适配体的筛选与应用进展[J]. 生物技术通报, 2023, 39(6): 126-132. |
[7] | 张和臣, 袁欣, 高杰, 王校晨, 王慧娟, 李艳敏, 王利民, 符真珠, 李保印. 植物花瓣呈色机理及花色分子育种[J]. 生物技术通报, 2023, 39(5): 23-31. |
[8] | 任沛东, 彭健玲, 刘圣航, 姚姿婷, 朱桂宁, 陆光涛, 李瑞芳. 沙福芽孢杆菌GX-H6的分离鉴定及对水稻细菌性条斑病的防病效果[J]. 生物技术通报, 2023, 39(5): 243-253. |
[9] | 章乐乐, 王冠, 柳凤, 胡汉桥, 任磊. 芒果炭疽病拮抗菌分离、鉴定及生防机制研究[J]. 生物技术通报, 2023, 39(4): 277-287. |
[10] | 易希, 廖红东, 郑井元. 植物内生真菌防治根结线虫研究进展[J]. 生物技术通报, 2023, 39(3): 43-51. |
[11] | 王伟宸, 赵进, 黄薇颐, 郭芯竹, 李婉颖, 张卓. 芽胞杆菌代谢产物防治三种常见植物病原真菌的研究进展[J]. 生物技术通报, 2023, 39(3): 59-68. |
[12] | 崔吉洁, 蔡文波, 庄庆辉, 高爱平, 黄建峰, 陈亚辉, 宋志忠. 杧果Fe-S簇装配基因MiISU1的生物学功能[J]. 生物技术通报, 2023, 39(2): 139-146. |
[13] | 杨东亚, 祁瑞雪, 李昭轩, 林薇, 马慧, 张雪艳. 黄瓜茄病镰刀菌拮抗芽孢杆菌的筛选、鉴定及促生效果[J]. 生物技术通报, 2023, 39(2): 211-220. |
[14] | 李凯航, 王浩臣, 程可心, 杨艳, 金一, 何晓青. 全基因组关联分析研究植物与微生物组的互作遗传机制[J]. 生物技术通报, 2023, 39(2): 24-34. |
[15] | 罗宁, 焦阳, 茆振川, 李惠霞, 谢丙炎. 木霉菌对根结线虫和孢囊线虫防治机理研究进展[J]. 生物技术通报, 2023, 39(2): 35-50. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||