生物技术通报 ›› 2023, Vol. 39 ›› Issue (2): 292-302.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0352
王晓梅1(), 杨小薇1, 李辉尚1,2(), 何微1(), 辛竹琳1
收稿日期:
2022-03-24
出版日期:
2023-02-26
发布日期:
2023-03-07
作者简介:
王晓梅,女,博士,助理研究员,研究方向:农业图书情报和战略决策;E-mail: 基金资助:
WANG Xiao-mei1(), YANG Xiao-wei1, LI Hui-shang1,2(), HE Wei1(), XIN Zhu-lin1
Received:
2022-03-24
Published:
2023-02-26
Online:
2023-03-07
摘要:
合成生物学是一门新兴交叉前沿科学,在生命科学、能源科技、医疗健康、材料化工和农业科技等领域具有广阔的应用前景,研究其发展现状对政府部门、科学界和产业界协同推进合成生物学发展具有重要意义。本文对全球合成生物学政策、科研和产业现状进行了系统梳理,结合我国合成生物学发展现状及存在问题,提出我国合成生物学发展的策略建议。研究表明,(1)合成生物学进入了全球共识、合作与竞争的快速发展时期,各国通过自上而下的研发体系助力合成生物学的科学研究和应用创新,产生了许多具有领域特征的新技术和新应用。(2)我国正加速完善合成生物学顶层设计,领域内也取得了系列原始发现和创新成果,但仍存在中长期发展规划滞后、科研创新能力不足、应用研发主体错位和产业应用场景拓展局限等问题。(3)建议从加强宏观政策引领、构建高效研究体系、培育优质产业主体和拓展成果应用场景等层面推动我国合成生物学发展。
王晓梅, 杨小薇, 李辉尚, 何微, 辛竹琳. 全球合成生物学发展现状及对我国的启示[J]. 生物技术通报, 2023, 39(2): 292-302.
WANG Xiao-mei, YANG Xiao-wei, LI Hui-shang, HE Wei, XIN Zhu-lin. Development Status of Synthetic Biology in Globe and Its Enlightenment[J]. Biotechnology Bulletin, 2023, 39(2): 292-302.
[1] |
Cameron DE, Bashor CJ, Collins JJ. A brief history of synthetic biology[J]. Nat Rev Microbiol, 2014, 12(5): 381-390.
doi: 10.1038/nrmicro3239 pmid: 24686414 |
[2] |
French KE. Harnessing synthetic biology for sustainable development[J]. Nat Sustain, 2019, 2(4): 250-252.
doi: 10.1038/s41893-019-0270-x |
[3] | 刘晓, 曾艳, 王力为, 等. 创新政策体系保障合成生物学科技与产业发展[J]. 中国科学院院刊, 2018, 33(11): 1260-1268. |
Liu X, Zeng Y, Wang LW, et al. Innovative policy system to ensure the development of synthetic biology[J]. Bull Chin Acad Sci, 2018, 33(11): 1260-1268. | |
[4] | 科学技术部社会发展科技司, 科学技术部中国生物技术发展中心. 2020中国生命科学与生物技术发展报告[M]. 北京: 科学出版社, 2020. |
Department of social development science and technology, Ministry of science and technology, China Biotechnology Development Center. 2020 China life sciences and biotechnology development report[M]. Beijing: Science Press, 2020. | |
[5] | 中国科学院颠覆性技术创新研究组. 颠覆性技术创新研究-生命科学领域[M]. 北京: 科学出版社, 2020. |
Subversive technology innovation research group, Chinese Academy of Sciences. Research on disruptive technological innovation: Life Sciences[M]. Beijing: Science Press, 2020. | |
[6] | 马悦, 汪哲, 薛淮, 等. 中英美三国合成生物学科技规划和产业发展比较分析[J]. 生命科学, 2021, 33(12): 1560-1566. |
Ma Y, Wang Z, Xue H, et al. Comparative analysis of scientific and technological strategic planning and industrial development of synthetic biology among China, Britain and America[J]. Chin Bull Life Sci, 2021, 33(12): 1560-1566. | |
[7] | Synthetic biology: scope, applications and implications[R]. London: The Royal Academy of Engineering, 2009. |
[8] | Synthetic biology UK: a decade of rapid progress[R]. London: Synthetic Biology Leadership Council, 2020. |
[9] | Innovate UK KTN. Engineering biology leadership council[EB/OL].[2021-10-05]. https://ktn-uk.org/programme/engineering-biology-leadership-council/. |
[10] |
赵国屏, 刘陈立, 赵广立. 我国迎来定量合成生物学发展重要契机[N]. 中国科学报, 2021-12-06. DOI:10.28514/n.cnki.nkxsb.2021.004024.
doi: 10.28514/n.cnki.nkxsb.2021.004024 |
Zhao GP, Liu CL, Zhao GL. China ushers in an important opportunity for the development of quantitative synthetic biology[N]. China Daily, 2021-12-06. DOI:10.28514/n.cnki.nkxsb.2021.004024.
doi: 10.28514/n.cnki.nkxsb.2021.004024 |
|
[11] | 动脉网. 《美国创新与竞争法案》获通过, 合成生物学产业再受大众火热瞩目[EB/OL].(2021-06-20).[2021-10-05]. https://www.163.com/dy/article/GCU8T0CQ05118K9D.html. |
Arterial network. With the passage of the American innovation and competition act, the synthetic biology industry has again attracted the attention of the public[EB/OL].(2021-06-20).[2021-10-05]. https://www.163.com/dy/article/GCU8T0CQ05118K9D.html. | |
[12] | Engineering Biology: A Research Roadmap for the next-generation bioeconomy[R]. California: EBRC, 2019. |
[13] | Microbiome engineering: A research roadmap for the next-generation bioeconomy[R]. California: EBRC, 2020. |
[14] | Engineering Biology & Materials Science: A research roadmap for Interdisciplinary innovation[R]. California: EBRC, 2021. |
[15] | 张先恩. 中国合成生物学发展回顾与展望[J]. 中国科学: 生命科学, 2019, 49(12): 1543-1572. |
Zhang XN. Synthetic biology in China: review and prospects[J]. Sci Sin Vitae, 2019, 49(12): 1543-1572.
doi: 10.1360/SSV-2019-0299 URL |
|
[16] |
Si T, Zhao HM. A brief overview of synthetic biology research programs and roadmap studies in the United States[J]. Synth Syst Biotechnol, 2016, 1(4): 258-264.
doi: 10.1016/j.synbio.2016.08.003 pmid: 29062951 |
[17] | 黄群译. 德国马尔堡大学-马普学会合成微生物学中心成立[R]. 北京: 中国科学院国家科技图书馆, 2010. |
Translated by Huang Q. The center for synthetic microbiology of Marburg University MARPOL society was established[R]. Beijing, National Library of science and technology, Chinese Academy of Sciences, 2010. | |
[18] | 周光明, 陈大明, 熊燕, 等. 英国合成生物学规划及其影响与启示[J]. 中国细胞生物学学报, 2019, 41(11): 2091-2100. |
Zhou GM, Chen DM, Xiong Y, et al. UK synthetic biology strategic planning and its enlightenment[J]. Chin J Cell Biol, 2019, 41(11): 2091-2100. | |
[19] |
Hillson N, Caddick M, Cai YZ, et al. Building a global alliance of biofoundries[J]. Nat Commun, 2019, 10(1): 2040.
doi: 10.1038/s41467-019-10079-2 pmid: 31068573 |
[20] | Global Biofoundries Alliance. Current members of the Alliance[EB/OL].[2021-10-05]. https://biofoundries.org/members. |
[21] | 林章凛, 张艳, 王胥, 等. 合成生物学研究进展[J]. 化工学报, 2015, 66(8): 2863-2871. |
Lin ZL, Zhang Y, Wang X, et al. Recent advances in synthetic biology[J]. CIESC J, 2015, 66(8): 2863-2871. | |
[22] |
Shao YY, Lu N, Wu ZF, et al. Creating a functional single-chromosome yeast[J]. Nature, 2018, 560(7718): 331-335.
doi: 10.1038/s41586-018-0382-x URL |
[23] |
Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785): 149-157.
doi: 10.1038/s41586-019-1711-4 URL |
[24] |
Wang HF, Nakamura M, Abbott TR, et al. CRISPR-mediated live imaging of genome editing and transcription[J]. Science, 2019, 365(6459): 1301-1305.
doi: 10.1126/science.aax7852 pmid: 31488703 |
[25] |
Crozet P, Navarro FJ, Willmund F, et al. Birth of a photosynthetic chassis: a MoClo toolkit enabling synthetic biology in the microalga Chlamydomonas reinhardtii[J]. ACS Synth Biol, 2018, 7(9): 2074-2086.
doi: 10.1021/acssynbio.8b00251 URL |
[26] |
Kopniczky MB, Canavan C, McClymont DW, et al. Cell-free protein synthesis as a prototyping platform for mammalian synthetic biology[J]. ACS Synth Biol, 2020, 9(1): 144-156.
doi: 10.1021/acssynbio.9b00437 pmid: 31899623 |
[27] |
Xiang N, Guo CY, Liu JW, et al. Using synthetic biology to overcome barriers to stable expression of nitrogenase in eukaryotic organelles[J]. Proc Natl Acad Sci USA, 2020, 117(28): 16537-16545.
doi: 10.1073/pnas.2002307117 pmid: 32601191 |
[28] | 创新研究. 国外合成生物学重大项目及最新应用成果[EB/OL].(2017-11-24).[2021-10-06]. https://www.sohu.com/a/206335231_468720. |
Innovation research. Major projects and latest application achievements of foreign synthetic biology[EB/OL].(2017-11-24).[2021-10-06]. https://www.sohu.com/a/206335231_468720. | |
[29] |
Ausländer S, Ausländer D, Fussenegger M. Synthetic biology-the synthesis of biology[J]. Angew Chem Int Ed, 2017, 56(23): 6396-6419.
doi: 10.1002/anie.201609229 pmid: 27943572 |
[30] | 高越. 2019年世界前沿科技发展态势及2020年趋势展望——生物篇[EB/OL].(2020-02-02).[2021-10-06]. http://www.bioec.org/news/b689.html. |
Gao Y. Development trend of world cutting-edge science and technology in 2019 and Trend Outlook in 2020-biology[EB/OL].(2020-02-02).[2021-10-06]. http://www.bioec.org/news/b689.html. | |
[31] |
Voigt CA. Synthetic biology 2020-2030: six commercially-available products that are changing our world[J]. Nat Commun, 2020, 11(1): 6379.
doi: 10.1038/s41467-020-20122-2 pmid: 33311504 |
[32] | 熊燕, 陈大明, 杨琛, 等. 合成生物学发展现状与前景[J]. 生命科学, 2011, 23(9): 826-837. |
Xiong Y, Chen DM, Yang C, et al. Progress and perspective of synthetic biology[J]. Chin Bull Life Sci, 2011, 23(9): 826-837. | |
[33] | 陈大明, 刘晓, 毛开云, 等. 合成生物学应用产品开发现状与趋势[J]. 中国生物工程杂志, 2016, 36(7): 117-126. |
Chen DM, Liu X, Mao KY, et al. Development status and trend analysis of synthetic biology products[J]. China Biotechnol, 2016, 36(7): 117-126. | |
[34] |
Tang TC, An B, Huang YY, et al. Materials design by synthetic biology[J]. Nat Rev Mater, 2021, 6: 332-350.
doi: 10.1038/s41578-020-00265-w URL |
[35] |
Takahashi MK, Tan X, Dy AJ, et al. A low-cost paper-based synthetic biology platform for analyzing gut microbiota and host biomarkers[J]. Nat Commun, 2018, 9(1): 3347.
doi: 10.1038/s41467-018-05864-4 pmid: 30131493 |
[36] | GlobeNewswire. Novome biotechnologies initiates phase 1/2a study to evaluate therapeutically engineered bacteria for the treatment of enteric hyperoxaluria[EB/OL].(2021-06-30).[2022-03-16]. https://www.globenewswire.com/news-release/2021/06/30/2255713/0/en/Novome-Biotechnologies-Initiates-Phase-1-2a-Study-to-Evaluate-Therapeutically-Engineered-Bacteria-for-the-Treatment-of-Enteric-Hyperoxaluria.html. |
[37] |
McNerney MP, Doiron KE, Ng TL, et al. Theranostic cells: emerging clinical applications of synthetic biology[J]. Nat Rev Genet, 2021, 22(11): 730-746.
doi: 10.1038/s41576-021-00383-3 pmid: 34234299 |
[38] |
Ro DK, Paradise EM, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440(7086): 940-943.
doi: 10.1038/nature04640 URL |
[39] |
Nguyen PQ, Soenksen LR, Donghia NM, et al. Wearable materials with embedded synthetic biology sensors for biomolecule detection[J]. Nat Biotechnol, 2021, 39(11): 1366-1374.
doi: 10.1038/s41587-021-00950-3 pmid: 34183860 |
[40] | U.S. Food & Drug. FDA approval brings first gene therapy to the United States[EB/OL].(2017-8-30). https://www.fda.gov/news-events/press-announcements/fda-approval-brings-first-gene-therapy-united-states. |
[41] | U.S. Food & Drug. FDA approves innovative gene therapy to treat pediatric patients with spinal muscular atrophy, a rare disease and leading genetic cause of infant mortality[EB/OL].(2019-05-24).[2021-10-10]. https://www.fda.gov/news-events/press-announcements/fda-approves-innovative-gene-therapy-treat-pediatric-patients-spinal-muscular-atrophy-rare-disease. |
[42] | 张媛媛, 王钦宏. 合成生物能源的发展状况与趋势[J]. 生命科学, 2021, 33(12): 1502-1509. |
Zhang YY, Wang QH. Synthetic biology-driven manufacturing of bioenergy: development status and trends[J]. Chin Bull Life Sci, 2021, 33(12): 1502-1509. | |
[43] | 朱新广, 熊燕, 阮梅花, 等. 光合作用合成生物学研究现状及未来发展策略[J]. 中国科学院院刊, 2018, 33(11): 1239-1248. |
Zhu XG, Xiong Y, Ruan MH, et al. Research status and future development strategies of synthetic biology in photosynthesis[J]. Bull Chin Acad Sci, 2018, 33(11): 1239-1248. | |
[44] |
Yadav I, Rautela A, Kumar S. Approaches in the photosynthetic production of sustainable fuels by cyanobacteria using tools of synthetic biology[J]. World J Microbiol Biotechnol, 2021, 37(12): 201.
doi: 10.1007/s11274-021-03157-5 URL |
[45] |
Gleizer S, Ben-Nissan R, Bar-On YM, et al. Conversion of Escherichia coli to generate all biomass carbon from CO2[J]. Cell, 2019, 179(6): 1255-1263.e12.
doi: S0092-8674(19)31230-9 pmid: 31778652 |
[46] | Gov. UK. Tech that turns CO2 into animal feed gets funding boost[EB/OL].(2020-07-17).[2021-12-06]. https://www.gov.uk/government/news/tech-that-turns-co2-into-animal-feed-gets-funding-boost. |
[47] | 刘夺, 杜瑾, 赵广荣, 等. 合成生物学在医药及能源领域的应用[J]. 化工学报, 2011, 62(9): 2391-2397. |
Liu D, Du J, Zhao GR, et al. Applications of synthetic biology in medicine and energy[J]. CIESC J, 2011, 62(9): 2391-2397. | |
[48] | 徐彦芹, 杨锡智, 罗若诗, 等. 合成生物学在生物基塑料制造中的应用[J]. 化工学报, 2020, 71(10): 4520-4531. |
Xu YQ, Yang XZ, Luo RS, et al. Application of synthetic biology in manufacture of bio-based plastics[J]. CIESC J, 2020, 71(10): 4520-4531. | |
[49] | Genomatica: our products[EB/OL].[2021-10-20]. https://www.genomatica.com/products/. |
[50] |
González LM, Mukhitov N, Voigt CA. Resilient living materials built by printing bacterial spores[J]. Nat Chem Biol, 2020, 16(2): 126-133.
doi: 10.1038/s41589-019-0412-5 pmid: 31792444 |
[51] |
Cai T, Sun HB, Qiao J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide[J]. Science, 2021, 373(6562): 1523-1527.
doi: 10.1126/science.abh4049 pmid: 34554807 |
[52] | Gao JC, Jiang LH, Lian JZ. Development of synthetic biology tools to engineer Pichia pastoris as a chassis for the production of natural products[J]. Synth Syst Biotechnol, 2021, 6(2): 110-119. |
[53] | 李宏彪, 张国强, 周景文. 合成生物学在食品领域的应用[J]. 生物产业技术, 2019(4): 5-10. |
Li HB, Zhang GQ, Zhou JW. Applications of synthetic biology in food industry[J]. Biotechnol & Bus, 2019(4): 5-10. | |
[54] | CB Insights. CB Insights合成生物学全球初创公司图谱,万亿美金市场现状梳理[EB/OL].(2020-11-14).[2021-10-20]. https://www.sohu.com/a/431793932_120725184. |
CB Insights. CB insights synthetic biology global start-up company map, USD trillion market status[EB/OL].(2020-11-14).[2021-10-20]. https://www.sohu.com/a/431793932_120725184. | |
[55] | Proactive: Andrew Kessel. Calyxt debuts premium soybean cooking oil Calyno[EB/OL].(2020-04-30).[2020-10-20]. https://www.proactiveinvestors.com/companies/news/918560/calyxt-debuts-premium-soybean-cooking-oil-calyno-918560.html. |
[56] | 毛金竹, 肖淑玲, 杨智淳, 等. 合成生物学在农残检测领域的应用[J]. 化工学报, 2021, 72(5): 2413-2425. |
Mao JZ, Xiao SL, Yang ZC, et al. Application of synthetic biology in pesticides residues detection[J]. CIESC J, 2021, 72(5): 2413-2425. | |
[57] | 吴杰, 赵乔. 合成生物学在现代农业中的应用与前景[J]. 植物生理学报, 2020, 56(11): 2308-2316. |
Wu J, Zhao Q. The application and prospect of synthetic biology in future agriculture[J]. Plant Physiol J, 2020, 56(11): 2308-2316. | |
[58] | Agrivida. News[EB/OL].[2021-10-20]. https://agrivida.com/news/. |
[59] | GreenLight Biosciences. What we do[EB/OL].[2021-10-20]. https://greenlightbiosciences.com/overview/. |
[60] | Wen ZQ, Ledesma-Amaro R, Lin JP, et al. Improved n-butanol production from Clostridium cellulovorans by integrated metabolic and evolutionary engineering[J]. Appl Environ Microbiol, 2019, 85(7): e02560-e02518. |
[61] | 曾艳, 赵心刚, 周桔. 合成生物学工业应用的现状和展望[J]. 中国科学院院刊, 2018, 33(11): 1211-1217. |
Zeng Y, Zhao XG, Zhou J. Current situations and perspectives of industrial applications of synthetic biology[J]. Bull Chin Acad Sci, 2018, 33(11): 1211-1217. | |
[62] | 谢华玲, 李东巧, 迟培娟, 等. 合成生物学领域专利竞争态势分析[J]. 中国生物工程杂志, 2019, 39(4): 114-123. |
Xie HL, Li DQ, Chi PJ, et al. An analysis on the competition of patents in synthetic biology[J]. China Biotechnol, 2019, 39(4): 114-123. | |
[63] | 赵国屏. 合成生物学: 开启生命科学“会聚”研究新时代[J]. 中国科学院院刊, 2018, 33(11): 1135-1149. |
Zhao GP. Synthetic biology: unsealing the convergence era of life science research[J]. Bull Chin Acad Sci, 2018, 33(11): 1135-1149. | |
[64] | 于军. 合成生物学的发展路线及治理[J]. 科学与社会, 2014, 4(4): 34-42. |
Yu J. Developing route and governance of synthetic biology[J]. Sci Soc, 2014, 4(4): 34-42.
doi: 10.3390/socsci4010034 URL |
[1] | 成婷, 苑帅, 张晓元, 林良才, 李欣, 张翠英. 酿酒酵母异丁醇合成途径调控的研究进展[J]. 生物技术通报, 2023, 39(7): 80-90. |
[2] | 陈晓琳, 刘洋儿, 许文涛, 郭明璋, 刘慧琳. 合成生物学细胞传感技术在食品安全快速检测中的应用[J]. 生物技术通报, 2023, 39(1): 137-149. |
[3] | 周琳, 梁轩铭, 赵磊. 天然类胡萝卜素的生物合成研究进展[J]. 生物技术通报, 2022, 38(7): 119-127. |
[4] | 郭晓真, 张学福. 植物合成生物学领域发展态势的文献计量分析[J]. 生物技术通报, 2022, 38(2): 289-296. |
[5] | 赵玉雪, 王芸, 余璐瑶, 刘京晶, 斯金平, 张新凤, 张磊. 植物中C-糖基转移酶的结构与应用[J]. 生物技术通报, 2022, 38(10): 18-28. |
[6] | 叶敏, 高教琪, 周雍进. 非常规酵母细胞工厂合成天然产物[J]. 生物技术通报, 2021, 37(8): 12-24. |
[7] | 叶健文, 陈江楠, 张旭, 吴赴清, 陈国强. 动态调控:一种高效的细胞工厂工程化代谢改造策略[J]. 生物技术通报, 2020, 36(6): 1-12. |
[8] | 常瀚文, 郑鑫铃, 骆健美, 王敏, 申雁冰. 抗逆元件及其在高效微生物细胞工厂构建中的应用进展[J]. 生物技术通报, 2020, 36(6): 13-34. |
[9] | 张慧, 田方方, 吴毅. 合成型酵母基因组重排技术[J]. 生物技术通报, 2020, 36(4): 13-18. |
[10] | 曹燕亭, 刘延峰, 李江华, 刘龙, 堵国成. 基于细胞亚群调控提升生物合成效率的研究进展[J]. 生物技术通报, 2020, 36(4): 19-25. |
[11] | 高星爱, 王鑫, 解娇, 王飞虎, 巩彧玄, 关法春, 李忠和. 低温秸秆降解复合微生物菌剂的研究进展[J]. 生物技术通报, 2020, 36(4): 144-150. |
[12] | 李佳秀, 蔡倩茹, 吴杰群. 萜类化合物在酿酒酵母中的合成生物学研究进展[J]. 生物技术通报, 2020, 36(12): 199-207. |
[13] | 刘新平, 谭玉萌, 张雪, 冯雁, 杨广宇. 神经节苷脂氟化寡糖在大肠杆菌中的生物合成[J]. 生物技术通报, 2019, 35(8): 162-169. |
[14] | 刘洋儿, 郭明璋, 杜若曦, 贺晓云, 黄昆仑, 许文涛. 乳酸菌在合成生物学中的研究现状及展望[J]. 生物技术通报, 2019, 35(8): 193-204. |
[15] | 罗利. 植物固氮细胞器的合成生物学研究[J]. 生物技术通报, 2019, 35(10): 1-6. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||