生物技术通报 ›› 2023, Vol. 39 ›› Issue (3): 116-122.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0743
李天顺1(), 李宸葳1, 王佳2, 朱龙佼2, 许文涛1,2()
收稿日期:
2022-06-21
出版日期:
2023-03-26
发布日期:
2023-04-10
通讯作者:
许文涛,男,教授,博士生导师,研究方向:生物安全、功能核酸及功能食品;E-mail:xuwentao@cau.edu.cn作者简介:
李天顺,男,硕士,研究方向:基于功能核酸的生物传感;E-mail:litianshun@cau.edu.cn
基金资助:
LI Tian-shun1(), LI Chen-wei1, WANG Jia2, ZHU Long-Jiao2, XU Wen-tao1,2()
Received:
2022-06-21
Published:
2023-03-26
Online:
2023-04-10
摘要:
通过SELEX技术体外筛选功能核酸元件是其发挥各种功能的必要前提。SELEX程序中,制备高质量的单链次级文库是最基础、最关键的技术之一,很大程度上决定了筛选的成败。全面总结了功能核酸筛选中的单链生成策略,如基于扩增的方法、酶消化技术、基于链霉亲和素包被珠的链分离和基于迁移率变化分离获得次级文库等,详细阐述了各种方法的优缺点与关键细节,以期为进一步开发高效的功能核酸筛选方法奠定基础。
李天顺, 李宸葳, 王佳, 朱龙佼, 许文涛. 功能核酸筛选过程中次级文库的有效制备[J]. 生物技术通报, 2023, 39(3): 116-122.
LI Tian-shun, LI Chen-wei, WANG Jia, ZHU Long-Jiao, XU Wen-tao. Efficient Generation of Secondary Libraries During Functional Nucleic Acids Screening[J]. Biotechnology Bulletin, 2023, 39(3): 116-122.
[1] |
Ali MM, Slepenkin A, Peterson E, et al. A simple DNAzyme-based fluorescent assay for Klebsiella pneumoniae[J]. Chembiochem, 2019, 20(7): 906-910.
doi: 10.1002/cbic.v20.7 URL |
[2] |
Blind M, Blank M. Aptamer selection technology and recent advances[J]. Mol Ther Nucleic Acids, 2015, 4(1): e223.
doi: 10.1038/mtna.2014.74 URL |
[3] |
Boussebayle A, Torka D, Ollivaud S, et al. Next-level riboswitch development-implementation of Capture-SELEX facilitates identification of a new synthetic riboswitch[J]. Nucleic Acids Res, 2019, 47(9): 4883-4895.
doi: 10.1093/nar/gkz216 pmid: 30957848 |
[4] |
Douglas SM, Marblestone AH, Teerapittayanon S, et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno[J]. Nucleic Acids Res, 2009, 37(15): 5001-5006.
doi: 10.1093/nar/gkp436 pmid: 19531737 |
[5] |
周子琦, 张洋子, 兰欣悦, 等. 发光核酸适配体的筛选及应用[J]. 生物技术通报, 2022, 38(5): 240-247.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1183 |
Zhou ZQ, Zhang YZ, Lan XY, et al. Selection and application of light-up nucleic acid aptamers[J]. Biotechnol Bull, 2022, 38(5): 240-247. | |
[6] |
Xu WT, He WC, Du ZH, et al. Functional nucleic acid nanomaterials: development, properties, and applications[J]. Angew Chem Int Ed Engl, 2021, 60(13): 6890-6918.
doi: 10.1002/anie.v60.13 URL |
[7] |
Zhu C, Li LS, Yang G, et al. Online reaction based single-step capillary electrophoresis-systematic evolution of ligands by exponential enrichment for ssDNA aptamers selection[J]. Anal Chim Acta, 2019, 1070: 112-122.
doi: S0003-2670(19)30468-4 pmid: 31103164 |
[8] |
Han SR, Yu J, Lee SW. In vitro selection of RNA aptamers that selectively bind danofloxacin[J]. Biochem Biophys Res Commun, 2014, 448(4): 397-402.
doi: 10.1016/j.bbrc.2014.04.103 URL |
[9] |
Thiel WH, Bair T, Wyatt Thiel K, et al. Nucleotide bias observed with a short SELEX RNA aptamer library[J]. Nucleic Acid Ther, 2011, 21(4): 253-263.
doi: 10.1089/nat.2011.0288 pmid: 21793789 |
[10] |
Tsuji S, Hirabayashi N, Kato S, et al. Effective isolation of RNA aptamer through suppression of PCR bias[J]. Biochem Biophys Res Commun, 2009, 386(1): 223-226.
doi: 10.1016/j.bbrc.2009.06.013 URL |
[11] |
Ellington AD, Szostak JW. Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures[J]. Nature, 1992, 355(6363): 850-852.
doi: 10.1038/355850a0 |
[12] |
Yunusov D, So M, Shayan S, et al. Kinetic capillary electrophoresis-based affinity screening of aptamer clones[J]. Anal Chim Acta, 2009, 631(1): 102-107.
doi: 10.1016/j.aca.2008.10.027 pmid: 19046686 |
[13] |
He CZ, Zhang KH, Wang T, et al. Single-primer-limited amplification: a method to generate random single-stranded DNA sub-library for aptamer selection[J]. Anal Biochem, 2013, 440(1): 63-70.
doi: 10.1016/j.ab.2013.05.008 URL |
[14] |
Kang J, Lee MS, Gorenstein DG. The enhancement of PCR amplification of a random sequence DNA library by DMSO and betaine: application to in vitro combinatorial selection of aptamers[J]. J Biochem Biophys Methods, 2005, 64(2): 147-151.
doi: 10.1016/j.jbbm.2005.06.003 URL |
[15] |
Redcenko O, Draberova L, Draber P. Carboxymethylcellulose enhances the production of single-stranded DNA aptamers generated by asymmetric PCR[J]. Anal Biochem, 2020, 589: 113502.
doi: 10.1016/j.ab.2019.113502 URL |
[16] | 孟祥贤, 羊小海, 王柯敏, 等. 金纳米颗粒介导不对称PCR: 制备单链核酸的新方法[J]. 化学学报, 2010, 68(9): 917-920. |
Meng XX, Yang XH, Wang KM, et al. Gold nanoparticle-based asymmetric PCR for single-strand DNA[J]. Acta Chimica Sin, 2010, 68(9): 917-920. | |
[17] |
Sanchez JA, Pierce KE, Rice JE, et al. Linear-after-the-exponential(LATE)-PCR: an advanced method of asymmetric PCR and its uses in quantitative real-time analysis[J]. Proc Natl Acad Sci USA, 2004, 101(7): 1933-1938.
doi: 10.1073/pnas.0305476101 URL |
[18] |
Tolnai Z, Harkai Á, Szeitner Z, et al. A simple modification increases specificity and efficiency of asymmetric PCR[J]. Anal Chim Acta, 2019, 1047: 225-230.
doi: S0003-2670(18)31219-4 pmid: 30567654 |
[19] |
Shao KK, Shi XH, Zhu XJ, et al. Construction and optimization of an efficient amplification method of a random ssDNA library by asymmetric emulsion PCR[J]. Biotechnol Appl Biochem, 2017, 64(2): 239-243.
doi: 10.1002/bab.2017.64.issue-2 URL |
[20] |
Heiat M, Ranjbar R, Latifi AM, et al. Essential strategies to optimize asymmetric PCR conditions as a reliable method to generate large amount of ssDNA aptamers[J]. Biotechnol Appl Biochem, 2017, 64(4): 541-548.
doi: 10.1002/bab.2017.64.issue-4 URL |
[21] |
Lee ES, Kim EJ, Park TK, et al. Gold nanoparticle-assisted SELEX as a visual monitoring platform for the development of small molecule-binding DNA aptasensors[J]. Biosens Bioelectron, 2021, 191: 113468.
doi: 10.1016/j.bios.2021.113468 URL |
[22] |
Svobodová M, Pinto A, Nadal P, et al. Comparison of different methods for generation of single-stranded DNA for SELEX processes[J]. Anal Bioanal Chem, 2012, 404(3): 835-842.
doi: 10.1007/s00216-012-6183-4 pmid: 22733247 |
[23] |
Zhang YZ, Xu H, Zhou HY, et al. Indirect purification method provides high yield and quality ssDNA sublibrary for potential aptamer selection[J]. Anal Biochem, 2015, 476: 84-90.
doi: 10.1016/j.ab.2015.02.027 pmid: 25747350 |
[24] |
Song SX, Wang XY, Xu K, et al. Selection of highly specific aptamers to Vibrio parahaemolyticus using cell-SELEX powered by functionalized graphene oxide and rolling circle amplification[J]. Anal Chim Acta, 2019, 1052: 153-162.
doi: 10.1016/j.aca.2018.11.047 URL |
[25] |
Larsson C, Koch J, Nygren A, et al. In situ genotyping individual DNA molecules by target-primed rolling-circle amplification of padlock probes[J]. Nat Methods, 2004, 1(3): 227-232.
doi: 10.1038/nmeth723 |
[26] |
Citartan M, Tang TH, Tan SC, et al. Conditions optimized for the preparation of single-stranded DNA(ssDNA)employing lambda exonuclease digestion in generating DNA aptamer[J]. World J Microbiol Biotechnol, 2011, 27(5): 1167-1173.
doi: 10.1007/s11274-010-0563-8 URL |
[27] |
Momeni M, Mashayekhi K, Navashenaq JG, et al. Identification of G-quadruplex anti-Interleukin-2 aptamer with high specificity through SELEX stringency[J]. Heliyon, 2022, 8(6): e09721.
doi: 10.1016/j.heliyon.2022.e09721 URL |
[28] |
Subramanian K, Rutvisuttinunt W, Scott W, et al. The enzymatic basis of processivity in λ exonuclease[J]. Nucleic Acids Res, 2003, 31(6): 1585-1596.
pmid: 12626699 |
[29] |
Komarova NV, Glukhov SI, Andrianova MS, et al. Use of the Cy3 and Cy5 fluorescent labels to protect a DNA strand from degradation under λ exonuclease treatment[J]. Moscow Univ Chem Bull, 2018, 73(1): 19-26.
doi: 10.3103/S0027131418020062 |
[30] |
Nadal P, Pinto A, Svobodova M, et al. DNA aptamers against the lup an 1 food allergen[J]. PLoS One, 2012, 7(4): e35253.
doi: 10.1371/journal.pone.0035253 URL |
[31] |
Nehdi A, Samman N, Aguilar-Sánchez V, et al. Novel strategies to optimize the amplification of single-stranded DNA[J]. Front Bioeng Biotechnol, 2020, 8: 401.
doi: 10.3389/fbioe.2020.00401 URL |
[32] |
Coonahan ES, Yang KA, Pecic S, et al. Structure-switching aptamer sensors for the specific detection of piperaquine and mefloquine[J]. Sci Transl Med, 2021, 13(585): eabe1535.
doi: 10.1126/scitranslmed.abe1535 URL |
[33] |
Yang LY, Gao T, Li WJ, et al. Ni-nitrilotriacetic acid affinity SELEX method for selection of DNA aptamers specific to the N-cadherin protein[J]. ACS Comb Sci, 2020, 22(12): 867-872.
doi: 10.1021/acscombsci.0c00165 pmid: 33146506 |
[34] | Kohlberger M, Gadermaier G. SELEX: Critical factors and optimization strategies for successful aptamer selection[J]. Biotechnol Appl Biochem, 2021, Aug 24. |
[35] |
Paul A, Avci-Adali M, Ziemer G, et al. Streptavidin-coated magnetic beads for DNA strand separation implicate a multitude of problems during cell-SELEX[J]. Oligonucleotides, 2009, 19(3): 243-254.
doi: 10.1089/oli.2009.0194 pmid: 19732022 |
[36] |
Wilson R. Preparation of single-stranded DNA from PCR products with streptavidin magnetic beads[J]. Nucleic Acid Ther, 2011, 21(6): 437-440.
doi: 10.1089/nat.2011.0322 pmid: 22047177 |
[37] |
Shen ZF, Wu ZS, Chang DR, et al. A catalytic DNA activated by a specific strain of bacterial pathogen[J]. Angew Chem Int Ed Engl, 2016, 55(7): 2431-2434.
doi: 10.1002/anie.201510125 URL |
[38] |
Damase TR, Ellington AD, Allen PB. Purification of single-stranded DNA by co-polymerization with acrylamide and electrophoresis[J]. BioTechniques, 2017, 62(6): 275-282.
doi: 10.2144/000114557 pmid: 28625157 |
[39] |
Cao XX, Li SH, Chen LC, et al. Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus[J]. Nucleic Acids Res, 2009, 37(14): 4621-4628.
doi: 10.1093/nar/gkp489 URL |
[40] |
Martínez O, Ecochard V, Mahéo S, et al. Α, β-D-constrained nucleic acids are strong terminators of thermostable DNA polymerases in polymerase chain reaction[J]. PLoS One, 2011, 6(10): e25510.
doi: 10.1371/journal.pone.0025510 URL |
[41] | Navani NK, Wing KM, Li YF. In vitro selection of protein-binding DNA aptamers as ligands for biosensing applications[M]//. Rasooly A, Herold KE. Biosensors and Biodetection: Methods and protocols: Electrochemical and mechanical detectors, lateral flow and ligands for biosensors. Totowa, NJ: Humana Press. 2009: 399-415. |
[42] |
Walder RY, Hayes JR, Walder JA. Use of PCR primers containing a 3'-terminal ribose residue to prevent cross-contamination of amplified sequences[J]. Nucleic Acids Res, 1993, 21(18): 4339-4343.
pmid: 8414989 |
[43] |
Keefe AD, Pai S, Ellington A. Aptamers as therapeutics[J]. Nat Rev Drug Discov, 2010, 9(7): 537-550.
doi: 10.1038/nrd3141 pmid: 20592747 |
[44] |
Pagratis NC. Rapid preparation of single stranded DNA from PCR products by streptavidin induced electrophoretic mobility shift[J]. Nucleic Acids Res, 1996, 24(18): 3645-3646.
pmid: 8836196 |
[45] |
Wang T, Yin W, AlShamaileh H, et al. A detailed protein-SELEX protocol allowing visual assessments of individual steps for a high success rate[J]. Hum Gene Ther Methods, 2019, 30(1): 1-16.
doi: 10.1089/hgtb.2018.237 pmid: 30700146 |
[46] |
Dickman M, Hornby DP. Isolation of single-stranded DNA using denaturing DNA chromatography[J]. Anal Biochem, 2000, 284(1): 164-167.
pmid: 10933872 |
[47] |
Limbach PA, Crain PF, McCloskey JA. Characterization of oligonucleotides and nucleic acids by mass spectrometry[J]. Curr Opin Biotechnol, 1995, 6(1): 96-102.
doi: 10.1016/0958-1669(95)80015-8 URL |
[1] | 温晓蕾, 李建嫄, 李娜, 张娜, 杨文香. 小麦叶锈菌与小麦互作的酵母双杂交cDNA文库构建与应用[J]. 生物技术通报, 2023, 39(9): 136-146. |
[2] | 吴巧茵, 施友志, 李林林, 彭政, 谭再钰, 刘利平, 张娟, 潘勇. 类胡萝卜素降解菌株的原位筛选及其在雪茄提质增香中的应用[J]. 生物技术通报, 2023, 39(9): 192-201. |
[3] | 江海溶, 崔若琪, 王玥, 白淼, 张明露, 任连海. NH3和H2S降解功能菌的分离鉴定及降解特性研究[J]. 生物技术通报, 2023, 39(9): 246-254. |
[4] | 薛宁, 王瑾, 李世新, 刘叶, 程海娇, 张玥, 毛雨丰, 王猛. 多基因同步调控结合高通量筛选构建高产L-苯丙氨酸的谷氨酸棒杆菌工程菌株[J]. 生物技术通报, 2023, 39(9): 268-280. |
[5] | 余慧, 王静, 梁昕昕, 辛亚平, 周军, 赵会君. 宁夏枸杞铁镉响应基因的筛选及其功能验证[J]. 生物技术通报, 2023, 39(7): 195-205. |
[6] | 马俊秀, 吴皓琼, 姜威, 闫更轩, 胡基华, 张淑梅. 蔬菜软腐病菌广谱拮抗细菌菌株筛选鉴定及防效研究[J]. 生物技术通报, 2023, 39(7): 228-240. |
[7] | 谢东, 汪流伟, 李宁健, 李泽霖, 徐子航, 张庆华. 一株多功能菌株的发掘、鉴定及解磷条件优化[J]. 生物技术通报, 2023, 39(7): 241-253. |
[8] | 李典典, 粟元, 李洁, 许文涛, 朱龙佼. 抗菌适配体的筛选与应用进展[J]. 生物技术通报, 2023, 39(6): 126-132. |
[9] | 董聪, 高庆华, 王玥, 罗同阳, 王庆庆. 基于联合策略提高FAD依赖的葡萄糖脱氢酶的酵母表达[J]. 生物技术通报, 2023, 39(6): 316-324. |
[10] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[11] | 郭三保, 宋美玲, 李灵心, 尧子钊, 桂明明, 黄胜和. 斑地锦查尔酮合酶基因及启动子的克隆与分析[J]. 生物技术通报, 2023, 39(4): 148-156. |
[12] | 宋海娜, 吴心桐, 杨鲁豫, 耿喜宁, 张华敏, 宋小龙. 葱鳞葡萄孢菌诱导下韭菜RT-qPCR内参基因的筛选和验证[J]. 生物技术通报, 2023, 39(3): 101-115. |
[13] | 余世洲, 曹领改, 王世泽, 刘勇, 边文杰, 任学良. 烟草种质基因分型核心SNP标记的开发[J]. 生物技术通报, 2023, 39(3): 89-100. |
[14] | 穆德添, 万凌云, 章瑶, 韦树根, 陆英, 付金娥, 田艺, 潘丽梅, 唐其. 钩藤管家基因筛选及生物碱合成相关基因的表达分析[J]. 生物技术通报, 2023, 39(2): 126-138. |
[15] | 崔若琪, 张玲悦, 江海溶, 张毓羚, 张明露, 任连海. NH3和H2S除臭菌剂的制备及其对厨余垃圾堆肥除臭效果和机理探究[J]. 生物技术通报, 2023, 39(10): 311-322. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||