生物技术通报 ›› 2023, Vol. 39 ›› Issue (4): 268-276.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0972
侯筱媛1(), 车郑郑1, 李姮静1, 杜崇玉1, 胥倩2, 王群青1,2()
收稿日期:
2022-08-05
出版日期:
2023-04-26
发布日期:
2023-05-16
通讯作者:
王群青,男,博士,教授,研究方向:疫霉菌病害成灾机理以及疫病防控;E-mail: wangqunqing@163.com作者简介:
侯筱媛,女,硕士研究生,研究方向:植物病理学;E-mail: xiaoabcyuan@126.com车郑郑为本文共同第一作者
基金资助:
HOU Xiao-yuan1(), CHE Zheng-zheng1, LI Heng-jing1, DU Chong-yu1, XU Qian2, WANG Qun-qing1,2()
Received:
2022-08-05
Published:
2023-04-26
Online:
2023-05-16
摘要:
植物质膜是响应侵染的第一道屏障,其受体蛋白是感知病原菌入侵的雷达,是植物免疫系统的重要组成部分。大豆疫霉(Phytophthora sojae)通过分泌效应子干扰寄主免疫反应以促进自身侵染定殖。构建大豆膜系统酵母双杂交cDNA文库,为进一步探究大豆疫霉效应子与寄主膜蛋白靶标互作机制奠定基础。以大豆疫霉无毒效应子PsAvr3a为诱饵蛋白筛选文库,初步获得198个候选寄主靶标。酵母一对一验证试验表明,有5个候选靶标蛋白与PsAvr3a互作,包括酪氨酸分解酶、囊泡转运蛋白、乙烯合成调控酶、细胞代谢结合蛋白、抗逆的渗透蛋白等。通过双分子荧光互补试验(bimolecular fluorescence complementation, BIFC)与荧光素酶互补试验(luciferase complementation assay, LCA)验证得出GmACO、GmSec61与PsAvr3a均存在互作。确定2个寄主大豆膜蛋白乙烯前体ACC氧化酶GmACO、三聚体易位子GmSec61是大豆疫霉无毒效应子PsAvr3a的互作靶标。
侯筱媛, 车郑郑, 李姮静, 杜崇玉, 胥倩, 王群青. 大豆膜系统cDNA文库的构建及大豆疫霉效应子PsAvr3a互作蛋白的筛选[J]. 生物技术通报, 2023, 39(4): 268-276.
HOU Xiao-yuan, CHE Zheng-zheng, LI Heng-jing, DU Chong-yu, XU Qian, WANG Qun-qing. Construction of the Soybean Membrane System cDNA Library and Interaction Proteins Screening for Effector PsAvr3a[J]. Biotechnology Bulletin, 2023, 39(4): 268-276.
图1 pBIN-GFP2-PsAvr3a的亚细胞定位 pBIN-GFP2-PsAvr3a与pCAMBIA1300-mCherry-PsAvh241在烟草中共表达定位,比例尺:20 μm
Fig. 1 Subcelluar localization of pBIN-GFP2-PsAvr3a The pBIN-GFP2-PsAvr3a fusion protein was coexpressed with pCAMBIA1300-mCherry-PsAvh241 in N. benthamiana through agroinfiltration. Scale bar: 20 μm
图2 自激活检测与功能验证结果
Fig. 2 Results of self-activation detection and functional verification A:pNubG-Fe65 + pTSU2-APP;B:pBT3-N-APP + pPR3-N;C:pBT3-N-PsAvr3a + pOst1-NubI;D:pBT3-N-PsAvr3a + pPR3-N。100、10-1、10-2为酵母菌液稀释倍数。下同100, 10-1, 10-2 are the dilution ratio of yeast solution. The same below
编号No. | 基因名称Gene name | 功能预测Function forecasting |
---|---|---|
1 | Glycine max protein transport protein Sec61 subunit beta-like | 介导信号肽依赖性蛋白质转运到内质网 Mediating signal peptide-dependent protein transport to endoplasmic reticulum |
2 | Glycine soja ER membrane protein complex subunit 4-like | 参与eIF2B 介导的翻译Participating in eIF2B-mediated translation |
3 | Glycine max bax inhibitor 1-like | 凋亡抑制基因Apoptotic inhibitor gene |
4 | Glycine max peroxisomal membrane protein 11 | 过氧化物酶体膜蛋白Peroxisomal membrane protein |
5 | Glycine max 1-aminocyclopropane-1-carboxylate oxidase | 参与乙烯生物合成Participating in ethylene biosynthesis |
6 | Glycine max zinc finger CCCH domain-containing protein 23 | DNA结合蛋白DNA binding protein |
7 | Glycine soja RING-H2 finger protein ATL8-like | 泛素蛋白连接酶Ubiquitin-protein ligase enzyme |
8 | Glycine max SNF1-related protein kinase regulatory subunit beta-1 | 参与种子内部碳水化合物代谢和储藏物质积累 Involving in carbohydrate metabolism and storage material accumulation in seeds |
9 | Glycine max 4-hydroxyphenylpyruvate dioxygenase | α-酮酸依赖性加氧酶,催化酪氨酸分解代谢 α-ketoacid-dependent oxygenase, catalyzing tyrosine catabolism |
10 | Glycine max wound-induced protein | 创伤诱导蛋白Wound-induced protein |
11 | Glycine max formin-like protein 20 | 钙依赖性脂质结合域蛋白Calcium-dependent lipid-binding domain protein |
12 | Glycine max osmotin-like protein, acidic(OLPa) | 具有抗逆功能的渗透蛋白The stress-resistant osmotic protein |
13 | Glycine max probable enoyl-CoA hydratase 1 | 烯酰辅酶A水合酶Enoyl-CoA hydratase |
表1 部分比对检索互作蛋白
Table 1 Retrieved partial interacting proteins
编号No. | 基因名称Gene name | 功能预测Function forecasting |
---|---|---|
1 | Glycine max protein transport protein Sec61 subunit beta-like | 介导信号肽依赖性蛋白质转运到内质网 Mediating signal peptide-dependent protein transport to endoplasmic reticulum |
2 | Glycine soja ER membrane protein complex subunit 4-like | 参与eIF2B 介导的翻译Participating in eIF2B-mediated translation |
3 | Glycine max bax inhibitor 1-like | 凋亡抑制基因Apoptotic inhibitor gene |
4 | Glycine max peroxisomal membrane protein 11 | 过氧化物酶体膜蛋白Peroxisomal membrane protein |
5 | Glycine max 1-aminocyclopropane-1-carboxylate oxidase | 参与乙烯生物合成Participating in ethylene biosynthesis |
6 | Glycine max zinc finger CCCH domain-containing protein 23 | DNA结合蛋白DNA binding protein |
7 | Glycine soja RING-H2 finger protein ATL8-like | 泛素蛋白连接酶Ubiquitin-protein ligase enzyme |
8 | Glycine max SNF1-related protein kinase regulatory subunit beta-1 | 参与种子内部碳水化合物代谢和储藏物质积累 Involving in carbohydrate metabolism and storage material accumulation in seeds |
9 | Glycine max 4-hydroxyphenylpyruvate dioxygenase | α-酮酸依赖性加氧酶,催化酪氨酸分解代谢 α-ketoacid-dependent oxygenase, catalyzing tyrosine catabolism |
10 | Glycine max wound-induced protein | 创伤诱导蛋白Wound-induced protein |
11 | Glycine max formin-like protein 20 | 钙依赖性脂质结合域蛋白Calcium-dependent lipid-binding domain protein |
12 | Glycine max osmotin-like protein, acidic(OLPa) | 具有抗逆功能的渗透蛋白The stress-resistant osmotic protein |
13 | Glycine max probable enoyl-CoA hydratase 1 | 烯酰辅酶A水合酶Enoyl-CoA hydratase |
图3 酵母双杂交验证结果
Fig. 3 Results of yeast two-hybrid verification A: pPR3-N-GmOsmotin + pBT3-N-PsAvr3a; B: pPR3-N-GmSNF1 + pBT3-N-PsAvr3a; C: pPR3-N-GmHPPD + pBT3-N-PsAvr3a; D: pPR3-N-GmSec61 + pBT3-N-PsAvr3a; E: pPR3-N-GmACO + pBT3-N-PsAvr3a; F: pNubG-Fe65 + pTSU2-APP; G: pBT3-N-APP + pPR3-N
图4 利用BiFC方法在烟草细胞中验证蛋白互作 双分子荧光互补PsAvr3a和GmACO、GmSec61在烟草叶片中表达,通过共聚焦显微镜观察YFP荧光信号,比例尺:20 μm
Fig. 4 Verifying protein interacting results in tobacco cells using the BiFC method BiFC of PsAvr3a and GmACO, GmSec61 in transiently transformed N. benthamiana leaves. The YFP fluorescent signal was observed using confocal microscopy. Scale bar: 20 μm
图5 利用荧光素酶互补在烟草中验证蛋白互作试验
Fig. 5 Verifying protein interacting results in tobacco using LCA A: p1300-35S-cLUC-PsAvr3a/p1300-35S-Nluc; B: p1300-35S-cLUC/p1300-35S-nLUC-GmACO; C: p1300-35S-cLUC /p1300-35S-nLUC-GmSec61; D: p1300-35S-cLUC-PsAvr3a/p1300-35S-nLUC-GmACO; E: p1300-35S-cLUC-PsAvr3a/p1300-35S-nLUC-GmSec61
图8 GmACO、GmSec61的亚细胞定位 农杆菌注射表达后GmACO、GmSec61和空载体的亚细胞定位,通过共聚焦显微镜观察GFP荧光信号,比例尺:20 μm
Fig. 8 Subcellular localization of GmACO and GmSec61 Subcellular localization of GmACO, GmSec61 or empty vector after agroinfiltration. The GFP signal was observed using confocal microscopy. Scale bar: 20 μm
[1] | 王新刚, 喻佳节, 司伟. 2021年大豆产业发展趋势与政策建议[J]. 大豆科技, 2021(1): 15-18. |
Wang XG, Yu JJ, Si W. Soybean industry development trends and policy recommendations in 2021[J]. Soybean Sci & Technol, 2021(1): 15-18. | |
[2] |
Schmitthenner AF. Problems and progress in control of Phytophthora root rot of soybean[J]. Plant Dis, 1985, 69(4): 362.
doi: 10.1094/PD-69-362 URL |
[3] |
Jones JDG, Dangl JL. The plant immune system[J]. Nature, 2006, 444(7117): 323-329.
doi: 10.1038/nature05286 |
[4] |
Wang QQ, Han CZ, Ferreira AO, et al. Transcriptional programming and functional interactions within the Phytophthora sojae RXLR effector repertoire[J]. Plant Cell, 2011, 23(6): 2064-2086.
doi: 10.1105/tpc.111.086082 URL |
[5] | 蒋凌雁, 高梦泽, 杨丽云, 等. 植物质膜蛋白质调控生物胁迫研究进展[J]. 植物生理学报, 2021, 57(2): 323-336. |
Jiang LY, Gao MZ, Yang LY, et al. Research progress on the plant plasma membrane proteomics regulating biotic stress[J]. Plant Physiol J, 2021, 57(2): 323-336. | |
[6] | 曹炜. Split-ubiquitin膜蛋白酵母双杂交系统的构建及其应用[D]. 上海: 复旦大学, 2007. |
Cao W. Construction and utilization of split-ubiquitin membrane yeast two-hybrid system[D]. Shanghai: Fudan University, 2007. | |
[7] |
Stagljar I, Korostensky C, Johnsson N, et al. A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo[J]. Proc Natl Acad Sci USA, 1998, 95(9): 5187-5192.
doi: 10.1073/pnas.95.9.5187 pmid: 9560251 |
[8] | 王欢, 田沂民, 董汉松. 水稻水通道蛋白OsPIP1;3与白叶枯病菌harpin蛋白Hpa1互作关系研究[J]. 植物生理学报, 2016, 52(8): 1223-1230. |
Wang H, Tian YM, Dong HS. Studies on the interaction between aquaporin OsPIP1;3 of rice and harpin protein Hpa1 of Xanthomonas oryzae pv. oryzae[J]. Plant Physiol J, 2016, 52(8): 1223-1230. | |
[9] |
Chen XC, Ma JB, Wang X, et al. Functional modulation of an aquaporin to intensify photosynthesis and abrogate bacterial virulence in rice[J]. Plant J, 2021, 108(2): 330-346.
doi: 10.1111/tpj.v108.2 URL |
[10] | 陆文静, 周通, 王桂玲, 等. 利用酵母双杂交膜系统筛选与小麦蓝矮植原体免疫膜蛋白互作的异沙叶蝉蛋白[J]. 植物病理学报, 2020, 50(5): 637-640. |
Lu WJ, Zhou T, Wang GL, et al. Screening of leafhopper(Psam-motettix alienus L.) proteins interacting with immunomembrane protein of Wheat blue dwarf phytoplasma using yeast two-hybrid membrane system[J]. Acta Phytopathol Sin, 2020, 50(5): 637-640. | |
[11] |
Song PW, Chen X, Wu BY, et al. Identification for soybean host factors interacting with P3N-PIPO protein of soybean mosaic virus[J]. Acta Physiol Plant, 2016, 38(6): 1-12.
doi: 10.1007/s11738-015-2023-4 URL |
[12] |
Armstrong MR, Whisson SC, Pritchard L, et al. An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm[J]. Proc Natl Acad Sci USA, 2005, 102(21): 7766-7771.
doi: 10.1073/pnas.0500113102 pmid: 15894622 |
[13] |
Qutob D, Tedman-Jones J, Dong SM, et al. Copy number variation and transcriptional polymorphisms of Phytophthora sojae RXLR effector genes Avr1a and Avr3a[J]. PLoS One, 2009, 4(4): e5066.
doi: 10.1371/journal.pone.0005066 URL |
[14] | 翟路翀. 大豆疫霉无毒基因Avr3a识别位点及亚细胞定位分析[D]. 南京: 南京农业大学, 2013. |
Zhai LC. Analysis of recognition sites and subcellular localization of Avr3a from Phytophthora sojae[D]. Nanjing: Nanjing Agricultural University, 2013. | |
[15] |
Bos JI, Armstrong MR, Gilroy EM, et al. Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1[J]. PNAS, 2010, 107(21): 9909-9914.
doi: 10.1073/pnas.0914408107 URL |
[16] |
González-Lamothe R, Tsitsigiannis DI, Ludwig AA, et al. The U-box protein CMPG1 is required for efficient activation of defense mechanisms triggered by multiple resistance genes in tobacco and tomato[J]. Plant Cell, 2006, 18(4): 1067-1083.
doi: 10.1105/tpc.106.040998 pmid: 16531490 |
[17] |
Chaparro-Garcia A, Schwizer S, Sklenar J, et al. Phytophthora in-festans RXLR-WY effector AVR3a associates with dynamin-related protein 2 required for endocytosis of the plant pattern recognition receptor FLS2[J]. PLoS One, 2015, 10(9): e0137071.
doi: 10.1371/journal.pone.0137071 URL |
[18] |
Fan GJ, Yang Y, Li TT, et al. A Phytophthora capsici RXLR effector targets and inhibits a plant ppiase to suppress endoplasmic reticulum-mediated immunity[J]. Mol Plant, 2018, 11(8): 1067-1083.
doi: 10.1016/j.molp.2018.05.009 URL |
[19] | Li T, Wang Q, Feng R, et al. Negative regulators of plant immunity derived from cinnamyl alcohol dehydrogenases are targeted by multiple Phytophthora Avr3a-like effectors[J]. New Phytol, 2019: 2019 Aug 22. |
[20] |
Bailey K, Cevik V, Holton N, et al. Molecular cloning of ATR5(Emoy2)from Hyaloperonospora arabidopsidis, an avirulence determinant that triggers RPP5-mediated defense in Arabidop-sis[J]. Mol Plant Microbe Interact, 2011, 24(7): 827-838.
doi: 10.1094/MPMI-12-10-0278 URL |
[21] |
Goritschnig S, Krasileva KV, Dahlbeck D, et al. Computational prediction and molecular characterization of an oomycete effector and the cognate Arabidopsis resistance gene[J]. PLoS Genet, 2012, 8(2): e1002502.
doi: 10.1371/journal.pgen.1002502 URL |
[22] |
Cooper W, Bouzayen M, Hamilton A, et al. Use of transgenic plants to study the role of ethylene and polygalacturonase during infection of tomato fruit by Colletotrichum gloeosporioides[J]. Plant Pathol, 1998, 47(3): 308-316.
doi: 10.1046/j.1365-3059.1998.00228.x URL |
[23] |
Kim YS, Kim HS, Lee YH, et al. Elevated H2O2 production via overexpression of a chloroplastic Cu/ZnSOD gene of lily(Lilium oriental hybrid ‘Marco Polo’)triggers ethylene synthesis in transgenic potato[J]. Plant Cell Rep, 2008, 27(6): 973-983.
doi: 10.1007/s00299-008-0515-z URL |
[24] |
Itskanov S, Kuo KM, Gumbart JC, et al. Stepwise gating of the Sec61 protein-conducting channel by Sec63 and Sec62[J]. Nat Struct Mol Biol, 2021, 28(2): 162-172.
doi: 10.1038/s41594-020-00541-x pmid: 33398175 |
[25] | Du Y, Mpina MH, Birch PRJ, et al. Phytophthora infestans RXLR effector AVR1 interacts with exocyst component Sec5 to manipulate plant immunity[J]. Plant Physiol, 2015, 169(3): 1975-1990. |
[1] | 郭少华, 毛会丽, 刘征权, 付美媛, 赵平原, 马文博, 李旭东, 关建义. 一株鱼源致病性嗜水气单胞菌XDMG的全基因组测序及比较基因组分析[J]. 生物技术通报, 2023, 39(8): 291-306. |
[2] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[3] | 李文辰, 刘鑫, 康越, 李伟, 齐泽铮, 于璐, 王芳. TRV病毒诱导大豆基因沉默体系优化及应用[J]. 生物技术通报, 2023, 39(7): 143-150. |
[4] | 翟莹, 李铭杨, 张军, 赵旭, 于海伟, 李珊珊, 赵艳, 张梅娟, 孙天国. 异源表达大豆转录因子GmNF-YA19提高转基因烟草抗旱性[J]. 生物技术通报, 2023, 39(5): 224-232. |
[5] | 杨春洪, 董璐, 陈林, 宋丽. 大豆VAS1基因家族的鉴定及参与侧根发育的研究[J]. 生物技术通报, 2023, 39(3): 133-142. |
[6] | 陈奕博, 杨万明, 岳爱琴, 王利祥, 杜维俊, 王敏. 基于SLAF标记的大豆遗传图谱构建及苗期耐盐性QTL定位[J]. 生物技术通报, 2023, 39(2): 70-79. |
[7] | 苗淑楠, 高宇, 李昕儒, 蔡桂萍, 张飞, 薛金爱, 季春丽, 李润植. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析[J]. 生物技术通报, 2023, 39(2): 96-106. |
[8] | 白苗, 田雯青, 武帅, 王敏, 王利祥, 岳爱琴, 牛景萍, 张永坡, 高春艳, 张武霞, 郭数进, 杜维俊, 赵晋忠. 激素和逆境胁迫对大豆维生素E和γ-TMT表达的影响[J]. 生物技术通报, 2023, 39(10): 148-162. |
[9] | 于惠林, 吴孔明. 中国转基因大豆的产业化策略[J]. 生物技术通报, 2023, 39(1): 1-15. |
[10] | 郭宾会, 宋丽. 大豆孢囊线虫侵染对乙烯合成及信号传导基因表达调控的研究[J]. 生物技术通报, 2022, 38(8): 150-158. |
[11] | 石广成, 杨万明, 杜维俊, 王敏. 大豆耐盐种质的筛选及其耐盐生理特性分析[J]. 生物技术通报, 2022, 38(4): 174-183. |
[12] | 郑向, 段左平, 张杰, 潘素君, 戴良英, 刘世名, 李魏. 大豆疫霉菌效应子研究进展[J]. 生物技术通报, 2022, 38(11): 10-20. |
[13] | 陈倩, 张露源, 陈伯昌, 吴海燕. 大豆孢囊线虫生防菌株Myrothecium verrucaria ZW-2发酵条件优化及活性物质分析[J]. 生物技术通报, 2021, 37(7): 127-136. |
[14] | 韩少杰, 郑经武. 寄主对大豆孢囊线虫抗性相关基因功能研究进展[J]. 生物技术通报, 2021, 37(7): 14-24. |
[15] | 李春杰, 王从丽. 植物寄生线虫对化感信号的识别及机制[J]. 生物技术通报, 2021, 37(7): 35-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||