生物技术通报 ›› 2023, Vol. 39 ›› Issue (7): 13-25.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1468
胡海琳1,2,3,4(), 徐黎1,2,3,4, 李晓旭1,2,3,4, 王晨璨1,2,3,4, 梅曼1,2,3,4, 丁文静1,2,3,4, 赵媛媛1,2,3,4()
收稿日期:
2022-11-29
出版日期:
2023-07-26
发布日期:
2023-08-17
通讯作者:
赵媛媛,女,博士,副教授,研究方向:木本植物生长发育;E-mail: yyzhao@bjfu.edu.cn作者简介:
胡海琳,女,硕士研究生,研究方向:木本植物生长发育;E-mail: huhailin@bjfu.edu.cn基金资助:
HU Hai-lin1,2,3,4(), XU Li1,2,3,4, LI Xiao-xu1,2,3,4, WANG Chen-can1,2,3,4, MEI Man1,2,3,4, DING Wen-jing1,2,3,4, ZHAO Yuan-yuan1,2,3,4()
Received:
2022-11-29
Published:
2023-07-26
Online:
2023-08-17
摘要:
小肽激素通常是指含5-100个氨基酸长度的肽段。在植物体内小肽激素含量很低、分子量小、数量多、来源及加工成熟机制复杂,这赋予了小肽多种多样的生物学功能,能够在极低浓度下与受体结合,调节植物的细胞分裂与生长、组织与器官分化、开花与结实、成熟与衰老等生理过程,协调植物响应多种胁迫环境。小肽激素作为细胞间信号转导的重要介质,参与调控生长发育的分子机制是近年来植物学科研究的热点和前沿。本文系统综述了小肽激素的结构、分类及其功能研究进展,重点讨论了CLE、RALFs、PSK、CIF、SYS等家族调控植物生长发育及逆境生理的研究进展,并展望了植物小肽激素的应用前景,为植物小肽激素的深层次研究和开发应用提供了重要的理论基础。
胡海琳, 徐黎, 李晓旭, 王晨璨, 梅曼, 丁文静, 赵媛媛. 小肽激素调控植物生长发育及逆境生理研究进展[J]. 生物技术通报, 2023, 39(7): 13-25.
HU Hai-lin, XU Li, LI Xiao-xu, WANG Chen-can, MEI Man, DING Wen-jing, ZHAO Yuan-yuan. Advances in the Regulation of Plant Growth, Development and Stress Physiology by Small Peptide Hormones[J]. Biotechnology Bulletin, 2023, 39(7): 13-25.
家族 Family | 名称 Name | 受体 Receptor | 加工过程 Processing | 功能 Fuction | 参考文献References |
---|---|---|---|---|---|
SYS | SYS | SYR1 | 非富含Cys 非翻译 | 介导植物防御的反应 | [ |
CLE | CLV3 | CLV1, CLV2, SOL2/CRN | Pro羟基化 羟脯氨酸阿拉伯糖基化 | 维持茎尖干细胞的正常分化 | [ |
CLE25/26/45 | BAM1/3 | 维持茎尖和根尖分生组织的稳态 | [ | ||
TDIF | TDR/PXY | 促进原形成层细胞增殖,抑制其分化成木质部筛管 | [ | ||
CLE45 | BAM3 | 抑制RAM中的初生韧皮部筛分子的分化 | [ | ||
CLE9/10 | BAM1, HSL1 | 抑制木质部位置上的木质部前体细胞的平周分裂;依赖ABA信号通路调控气孔的关闭 | [ | ||
CIF | CIF1, CIF2 | GSO1/SGN3 | Pro羟基化 Tyr硫酸化 | 调控凯氏带的完整性 | [ |
CIF3, CIF4 | GSO1/SGN3, GSO2 | 调控绒毡层发育和花粉壁形成 | [ | ||
PSK | PSK-α | PSKR1, PSKR2 | Tyr硫酸化 | 调节根和下胚轴细胞的伸长、花粉管的生长、体细胞胚胎发生、体外再生能力和豆科结瘤过程;调节生物营养和坏死病原体的免疫反应 | [ |
PSK-γ | 促进营养器官和种子的生长 | [ | |||
PSK-δ | 增加豆科植物的根瘤菌数量,促进共生结瘤 | [ | |||
RALFs | RALF1 | FER, BAK1 | 富含Cys 形成二硫键 | 抑制植物侧根的发育;抑制根生长和细胞伸长 | [ |
RALF34 | THE1, ANX1/2-BUPS1/2 | 调控侧根发育;使花粉管破裂释放精子完成双受精 | [ | ||
RALF4/19 | ANX1/2-BUPS1/2 | 调控花粉管的生长和完整性 | [ |
表1 小肽激素加工过程及功能
Table 1 Processing and function of small peptide hormones
家族 Family | 名称 Name | 受体 Receptor | 加工过程 Processing | 功能 Fuction | 参考文献References |
---|---|---|---|---|---|
SYS | SYS | SYR1 | 非富含Cys 非翻译 | 介导植物防御的反应 | [ |
CLE | CLV3 | CLV1, CLV2, SOL2/CRN | Pro羟基化 羟脯氨酸阿拉伯糖基化 | 维持茎尖干细胞的正常分化 | [ |
CLE25/26/45 | BAM1/3 | 维持茎尖和根尖分生组织的稳态 | [ | ||
TDIF | TDR/PXY | 促进原形成层细胞增殖,抑制其分化成木质部筛管 | [ | ||
CLE45 | BAM3 | 抑制RAM中的初生韧皮部筛分子的分化 | [ | ||
CLE9/10 | BAM1, HSL1 | 抑制木质部位置上的木质部前体细胞的平周分裂;依赖ABA信号通路调控气孔的关闭 | [ | ||
CIF | CIF1, CIF2 | GSO1/SGN3 | Pro羟基化 Tyr硫酸化 | 调控凯氏带的完整性 | [ |
CIF3, CIF4 | GSO1/SGN3, GSO2 | 调控绒毡层发育和花粉壁形成 | [ | ||
PSK | PSK-α | PSKR1, PSKR2 | Tyr硫酸化 | 调节根和下胚轴细胞的伸长、花粉管的生长、体细胞胚胎发生、体外再生能力和豆科结瘤过程;调节生物营养和坏死病原体的免疫反应 | [ |
PSK-γ | 促进营养器官和种子的生长 | [ | |||
PSK-δ | 增加豆科植物的根瘤菌数量,促进共生结瘤 | [ | |||
RALFs | RALF1 | FER, BAK1 | 富含Cys 形成二硫键 | 抑制植物侧根的发育;抑制根生长和细胞伸长 | [ |
RALF34 | THE1, ANX1/2-BUPS1/2 | 调控侧根发育;使花粉管破裂释放精子完成双受精 | [ | ||
RALF4/19 | ANX1/2-BUPS1/2 | 调控花粉管的生长和完整性 | [ |
[1] |
Busch W, Benfey PN. Information processing without brains—the power of intercellular regulators in plants[J]. Development, 2010, 137(8): 1215-1226.
doi: 10.1242/dev.034868 URL |
[2] | 李文凤, 兰平. 植物小肽研究进展I:来源、鉴定和调控[J]. 土壤, 2019, 51(6): 1049-1056. |
Li WF, Lan P. Research progress of plant signal peptide: origin, identification and regulation[J]. Soils, 2019, 51(6): 1049-1056. | |
[3] |
Djordjevic MA, Mohd-Radzman NA, Imin N. Small-peptide signals that control root nodule number, development, and symbiosis[J]. J Exp Bot, 2015, 66(17): 5171-5181.
doi: 10.1093/jxb/erv357 pmid: 26249310 |
[4] |
Imin N, Mohd-Radzman NA, Ogilvie HA, et al. The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula[J]. J Exp Bot, 2013, 64(17): 5395-5409.
doi: 10.1093/jxb/ert369 URL |
[5] |
Nakayama T, Shinohara H, Tanaka M, et al. A peptide hormone required for Casparian strip diffusion barrier formation in Arabidopsis roots[J]. Science, 2017, 355(6322): 284-286.
doi: 10.1126/science.aai9057 pmid: 28104889 |
[6] |
Li XX, Salman A, Guo C, et al. Identification and characterization of LRR-RLK family genes in potato reveal their involvement in peptide signaling of cell fate decisions and biotic/abiotic stress responses[J]. Cells, 2018, 7(9): 120.
doi: 10.3390/cells7090120 URL |
[7] |
De Smet I, Voss U, Jürgens G, et al. Receptor-like kinases shape the plant[J]. Nat Cell Biol, 2009, 11(10): 1166-1173.
doi: 10.1038/ncb1009-1166 pmid: 19794500 |
[8] |
Pearce G, Strydom D, Johnson S, et al. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins[J]. Science, 1991, 253(5022): 895-897.
doi: 10.1126/science.253.5022.895 pmid: 17751827 |
[9] | Hsu PY, Benfey PN. Small but mighty: functional peptides encoded by small ORFs in plants[J]. Proteomics, 2018, 18(10): e1700038. |
[10] |
Tavormina P, De Coninck B, Nikonorova N, et al. The plant peptidome: an expanding repertoire of structural features and biological functions[J]. Plant Cell, 2015, 27(8): 2095-2118.
doi: 10.1105/tpc.15.00440 URL |
[11] | Juntawong P, Girke T, Bazin J, et al. Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis[J]. Proc Natl Acad Sci USA, 2014, 111(1): E203-E212. |
[12] |
Crappé J, Van Criekinge W, Trooskens G, et al. Combining in silico prediction and ribosome profiling in a genome-wide search for novel putatively coding sORFs[J]. BMC Genomics, 2013, 14: 648.
doi: 10.1186/1471-2164-14-648 pmid: 24059539 |
[13] |
Samir P, Link AJ. Analyzing the cryptome: uncovering secret sequences[J]. AAPS J, 2011, 13(2): 152-158.
doi: 10.1208/s12248-011-9252-2 pmid: 21327597 |
[14] |
Pearce G, Munske G, Yamaguchi Y, et al. Structure-activity studies of GmSubPep, a soybean peptide defense signal derived from an extracellular protease[J]. Peptides, 2010, 31(12): 2159-2164.
doi: 10.1016/j.peptides.2010.09.004 pmid: 20833217 |
[15] | 蔺欢, 王俊娟, 孙振婷, 等. 植物小分子肽的研究进展[J]. 西北植物学报, 2021, 41(1): 168-180. |
Lin H, Wang JJ, Sun ZT, et al. The research progress of plant small molecular peptides[J]. Acta Bot Boreali Occidentalia Sin, 2021, 41(1): 168-180. | |
[16] |
Patel N, Mohd-Radzman NA, Corcilius L, et al. Diverse peptide hormones affecting root growth identified in the Medicago truncatula secreted peptidome[J]. Mol Cell Proteomics, 2018, 17(1): 160-174.
doi: 10.1074/mcp.RA117.000168 pmid: 29079721 |
[17] |
Meng L, Buchanan BB, Feldman LJ, et al. A putative nuclear CLE-like(CLEL)peptide precursor regulates root growth in Arabidopsis[J]. Mol Plant, 2012, 5(4): 955-957.
doi: 10.1093/mp/sss060 URL |
[18] | 华春, 周峰, 陈全战, 等. 植物多肽信号及翻译后修饰小肽[J]. 湖北农业科学, 2015, 54(15): 3585-3589. |
Hua C, Zhou F, Chen QZ, et al. Plant peptide signal and post-translationally modified small-peptide signals[J]. Hubei Agric Sci, 2015, 54(15): 3585-3589. | |
[19] |
Zhang HY, Zhang H, Lin JX. Systemin-mediated long-distance systemic defense responses[J]. New Phytol, 2020, 226(6): 1573-1582.
doi: 10.1111/nph.16495 pmid: 32083726 |
[20] |
Stintzi A, Schaller A. Biogenesis of post-translationally modified peptide signals for plant reproductive development[J]. Curr Opin Plant Biol, 2022, 69: 102274.
doi: 10.1016/j.pbi.2022.102274 URL |
[21] |
Murphy E, Smith S, De Smet I. Small signaling peptides in Arabidopsis development: how cells communicate over a short distance[J]. Plant Cell, 2012, 24(8): 3198-3217.
doi: 10.1105/tpc.112.099010 URL |
[22] |
Pearce G, Ryan CA. Systemic signaling in tomato plants for defense against herbivores. Isolation and characterization of three novel defense-signaling glycopeptide hormones coded in a single precursor gene[J]. J Biol Chem, 2003, 278(32): 30044-30050.
doi: 10.1074/jbc.M304159200 pmid: 12748180 |
[23] |
Doblas VG, Smakowska-Luzan E, Fujita S, et al. Root diffusion barrier control by a vasculature-derived peptide binding to the SGN3 receptor[J]. Science, 2017, 355(6322): 280-284.
doi: 10.1126/science.aaj1562 pmid: 28104888 |
[24] |
Fletcher JC, Brand U, Running MP, et al. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems[J]. Science, 1999, 283(5409): 1911-1914.
doi: 10.1126/science.283.5409.1911 pmid: 10082464 |
[25] |
Butenko MA, Patterson SE, Grini PE, et al. Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants[J]. Plant Cell, 2003, 15(10): 2296-2307.
doi: 10.1105/tpc.014365 URL |
[26] |
Tinoco AD, Kim YG, Tagore DM, et al. A peptidomics strategy to elucidate the proteolytic pathways that inactivate peptide hormones[J]. Biochemistry, 2011, 50(12): 2213-2222.
doi: 10.1021/bi2000033 pmid: 21299233 |
[27] |
Tinoco AD, Saghatelian A. Investigating endogenous peptides and peptidases using peptidomics[J]. Biochemistry, 2011, 50(35): 7447-7461.
doi: 10.1021/bi200417k pmid: 21786763 |
[28] |
Chen YL, Lee CY, Cheng KT, et al. Quantitative peptidomics study reveals that a wound-induced peptide from PR-1 regulates immune signaling in tomato[J]. Plant Cell, 2014, 26(10): 4135-4148.
doi: 10.1105/tpc.114.131185 URL |
[29] |
Matsuzaki Y, Ogawa-Ohnishi M, Mori A, et al. Secreted peptide signals required for maintenance of root stem cell niche in Arabidopsis[J]. Science, 2010, 329(5995): 1065-1067.
doi: 10.1126/science.1191132 pmid: 20798316 |
[30] |
Ohyama K, Ogawa M, Matsubayashi Y. Identification of a biologically active, small, secreted peptide in Arabidopsis by in silico gene screening, followed by LC-MS-based structure analysis[J]. Plant J, 2008, 55(1): 152-160.
doi: 10.1111/tpj.2008.55.issue-1 URL |
[31] |
Ghorbani S, Lin YC, Parizot B, et al. Expanding the repertoire of secretory peptides controlling root development with comparative genome analysis and functional assays[J]. J Exp Bot, 2015, 66(17): 5257-5269.
doi: 10.1093/jxb/erv346 pmid: 26195730 |
[32] |
Constabel CP, Yip L, Ryan CA. Prosystemin from potato, black nightshade, and bell pepper: primary structure and biological activity of predicted systemin polypeptides[J]. Plant Mol Biol, 1998, 36(1): 55-62.
doi: 10.1023/a:1005986004615 pmid: 9484462 |
[33] | Bücherl CA, Jarsch IK, Schudoma C, et al. Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains[J]. eLife, 2017, 6: e25114. |
[34] |
Goad DM, Zhu CM, Kellogg EA. Comprehensive identification and clustering of CLV3/ESR-related(CLE)genes in plants finds groups with potentially shared function[J]. New Phytol, 2017, 216(2): 605-616.
doi: 10.1111/nph.2017.216.issue-2 URL |
[35] |
Reichardt S, Piepho HP, Stintzi A, et al. Peptide signaling for drou-ght-induced tomato flower drop[J]. Science, 2020, 367(6485): 1482-1485.
doi: 10.1126/science.aaz5641 pmid: 32217727 |
[36] |
Rodriguez-Villalon A. Wiring a plant: genetic networks for phloem formation in Arabidopsis thaliana roots[J]. New Phytol, 2016, 210(1): 45-50.
doi: 10.1111/nph.13527 pmid: 26171671 |
[37] |
Fletcher JC. Recent advances in Arabidopsis CLE peptide signaling[J]. Trends Plant Sci, 2020, 25(10): 1005-1016.
doi: 10.1016/j.tplants.2020.04.014 URL |
[38] |
Brand U, Fletcher JC, Hobe M, et al. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity[J]. Science, 2000, 289(5479): 617-619.
doi: 10.1126/science.289.5479.617 pmid: 10915624 |
[39] |
Zhang LS, Shi X, Zhang YT, et al. CLE 9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in Arabidopsis thaliana[J]. Plant Cell Environ, 2019, 42(3): 1033-1044.
doi: 10.1111/pce.v42.3 URL |
[40] |
Fujita S. CASPARIAN STRIP INTEGRITY FACTOR(CIF)family peptides - regulator of plant extracellular barriers[J]. Peptides, 2021, 143: 170599.
doi: 10.1016/j.peptides.2021.170599 URL |
[41] | Truskina J, Brück S, Stintzi A, et al. A peptide-mediated, multilateral molecular dialogue for the coordination of pollen wall formation[J]. Proc Natl Acad Sci USA, 2022, 119(22): e2201446119. |
[42] |
Yang H, Matsubayashi Y, Hanai H, et al. Phytosulfokine-alpha, a peptide growth factor found in higher plants: its structure, functions, precursor and receptors[J]. Plant Cell Physiol, 2000, 41(7): 825-830.
pmid: 10965938 |
[43] | Stührwohldt N, Dahlke RI, Steffens B, et al. Phytosulfokine-α controls hypocotyl length and cell expansion in Arabidopsis thaliana through phytosulfokine receptor 1[J]. PLoS One, 2011, 6(6): e21054. |
[44] |
Wang C, Yu HX, Zhang ZM, et al. Phytosulfokine is involved in positive regulation of lotus japonicus nodulation[J]. Mol Plant Microbe Interact, 2015, 28(8): 847-855.
doi: 10.1094/MPMI-02-15-0032-R URL |
[45] |
Stührwohldt N, Bühler E, Sauter M, et al. Phytosulfokine(PSK)precursor processing by subtilase SBT3.8 and PSK signaling improve drought stress tolerance in Arabidopsis[J]. J Exp Bot, 2021, 72(9): 3427-3440.
doi: 10.1093/jxb/erab017 pmid: 33471900 |
[46] |
Liu YM, Zhang DP, Li M, et al. Overexpression of PSK-γ in Arabidopsis promotes growth without influencing pattern-triggered immunity[J]. Plant Signal Behav, 2019, 14(12): 1684423.
doi: 10.1080/15592324.2019.1684423 URL |
[47] |
Yu LL, Di Q, Zhang DP, et al. A legume-specific novel type of phytosulfokine, PSK-δ, promotes nodulation by enhancing nodule organogenesis[J]. J Exp Bot, 2022, 73(8): 2698-2713.
doi: 10.1093/jxb/erac051 pmid: 35137020 |
[48] |
Blackburn MR, Haruta M, Moura DS. Twenty years of progress in physiological and biochemical investigation of RALF peptides[J]. Plant Physiol, 2020, 182(4): 1657-1666.
doi: 10.1104/pp.19.01310 pmid: 32071151 |
[49] |
Pearce G, Moura DS, Stratmann J, et al. RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development[J]. Proc Natl Acad Sci USA, 2001, 98(22): 12843-12847.
pmid: 11675511 |
[50] |
Matos JL, Fiori CS, Silva-Filho MC, et al. A conserved dibasic site is essential for correct processing of the peptide hormone AtRALF1 in Arabidopsis thaliana[J]. FEBS Lett, 2008, 582(23/24): 3343-3347.
doi: 10.1016/j.febslet.2008.08.025 URL |
[51] |
Gonneau M, Desprez T, Martin M, et al. Receptor kinase THESEUS1 is a rapid alkalinization factor 34 receptor in Arabidop-sis[J]. Curr Biol, 2018, 28(15): 2452-2458.e4.
doi: 10.1016/j.cub.2018.05.075 URL |
[52] |
Ge ZX, Zhao YL, Liu MC, et al. LLG2/3 are co-receptors in BUPS/ANX-RALF signaling to regulate Arabidopsis pollen tube integrity[J]. Curr Biol, 2019, 29(19): 3256-3265.e5.
doi: 10.1016/j.cub.2019.08.032 URL |
[53] |
Ge ZX, Cheung AY, Qu LJ. Pollen tube integrity regulation in flowering plants: insights from molecular assemblies on the pollen tube surface[J]. New Phytol, 2019, 222(2): 687-693.
doi: 10.1111/nph.15645 pmid: 30556141 |
[54] |
Cock JM, McCormick S. A large family of genes that share homology with CLAVATA3[J]. Plant Physiol, 2001, 126(3): 939-942.
doi: 10.1104/pp.126.3.939 pmid: 11457943 |
[55] |
Casamitjana-Martínez E, Hofhuis HF, Xu J, et al. Root-specific CLE19 overexpression and the sol1/2 suppressors implicate a CLV-like pathway in the control of Arabidopsis root meristem maintenance[J]. Curr Biol, 2003, 13(16): 1435-1441.
doi: 10.1016/s0960-9822(03)00533-5 pmid: 12932329 |
[56] |
Ni J, Clark SE. Evidence for functional conservation, sufficiency, and proteolytic processing of the CLAVATA3 CLE domain[J]. Plant Physiol, 2006, 140(2): 726-733.
doi: 10.1104/pp.105.072678 pmid: 16407446 |
[57] |
Zhang Y, Tan SY, Gao YH, et al. CLE42 delays leaf senescence by antagonizing ethylene pathway in Arabidopsis[J]. New Phytol, 2022, 235(2): 550-562.
doi: 10.1111/nph.18154 pmid: 35396726 |
[58] |
Wang WP, Hu C, Li XN, et al. Receptor-like cytoplasmic kinases PBL34/35/36 are required for CLE peptide-mediated signaling to maintain shoot apical meristem and root apical meristem homeostasis in Arabidopsis[J]. Plant Cell, 2022, 34(4): 1289-1307.
doi: 10.1093/plcell/koab315 URL |
[59] |
Roman AO, Jimenez-Sandoval P, Augustin S, et al. HSL1 and BAM1/2 impact epidermal cell development by sensing distinct signaling peptides[J]. Nat Commun, 2022, 13(1): 876.
doi: 10.1038/s41467-022-28558-4 |
[60] |
Li J, Nagpal P, Vitart V, et al. A role for brassinosteroids in light-dependent development of Arabidopsis[J]. Science, 1996, 272(5260): 398-401.
doi: 10.1126/science.272.5260.398 pmid: 8602526 |
[61] |
Lorbiecke R, Steffens M, Tomm JM, et al. Phytosulphokine gene regulation during maize(Zea mays L.) reproduction[J]. J Exp Bot, 2005, 56(417): 1805-1819.
doi: 10.1093/jxb/eri169 pmid: 15897229 |
[62] |
Hanai H, Matsuno T, Yamamoto M, et al. A secreted peptide growth factor, phytosulfokine, acting as a stimulatory factor of carrot somatic embryo formation[J]. Plant Cell Physiol, 2000, 41(1): 27-32.
doi: 10.1093/pcp/41.1.27 pmid: 10750705 |
[63] |
Kutschmar A, Rzewuski G, Stührwohldt N, et al. PSK-α promotes root growth in Arabidopsis[J]. New Phytol, 2009, 181(4): 820-831.
doi: 10.1111/j.1469-8137.2008.02710.x pmid: 19076296 |
[64] |
Hartmann J, Fischer C, Dietrich P, et al. Kinase activity and calmodulin binding are essential for growth signaling by the phytosulfokine receptor PSKR1[J]. Plant J, 2014, 78(2): 192-202.
doi: 10.1111/tpj.12460 URL |
[65] |
Matsubayashi Y, Ogawa M, Morita A, et al. An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine[J]. Science, 2002, 296(5572): 1470-1472.
doi: 10.1126/science.1069607 pmid: 12029134 |
[66] |
Wang JZ, Li HJ, Han ZF, et al. Allosteric receptor activation by the plant peptide hormone phytosulfokine[J]. Nature, 2015, 525(7568): 265-268.
doi: 10.1038/nature14858 |
[67] |
Kwezi L, Ruzvidzo O, Wheeler JI, et al. The phytosulfokine(PSK)receptor is capable of guanylate cyclase activity and enabling cyclic GMP-dependent signaling in plants[J]. J Biol Chem, 2011, 286(25): 22580-22588.
doi: 10.1074/jbc.M110.168823 URL |
[68] |
Matsubayashi Y, Ogawa M, Kihara H, et al. Disruption and overexpression of Arabidopsis phytosulfokine receptor gene affects cellular longevity and potential for growth[J]. Plant Physiol, 2006, 142(1): 45-53.
doi: 10.1104/pp.106.081109 pmid: 16829587 |
[69] |
Kaufmann C, Stührwohldt N, Sauter M. Tyrosylprotein sulfotransferase-dependent and-independent regulation of root development and signaling by PSK LRR receptor kinases in Arabidopsis[J]. J Exp Bot, 2021, 72(15): 5508-5521.
doi: 10.1093/jxb/erab233 URL |
[70] | Gómez BG, Holzwart E, Shi CN, et al. Phosphorylation-dependent routing of RLP44 towards brassinosteroid or phytosulfokine signalling[J]. J Cell Sci, 2021, 134(20): jcs259134. |
[71] | Wu H, Zheng RH, Hao ZD, et al. Cunninghamia lanceolata PSK peptide hormone genes promote primary root growth and adventitious root formation[J]. Plants(Basel), 2019, 8(11): 520. |
[72] |
Ochatt S, Conreux C, Mcolo RM, et al. Phytosulfokine-alpha, an enhancer of in vitro regeneration competence in recalcitrant legumes[J]. Plant Cell Tiss Organ Cult, 2018, 135(2): 189-201.
doi: 10.1007/s11240-018-1455-0 |
[73] |
Han J, Tan JF, Tu LL, et al. A peptide hormone gene, GhPSK promotes fiber elongation and contributes to longer and finer cotton fiber[J]. Plant Biotechnol J, 2014, 12(7): 861-871.
doi: 10.1111/pbi.2014.12.issue-7 URL |
[74] |
Campbell L, Turner SR. A comprehensive analysis of RALF proteins in green plants suggests there are two distinct functional groups[J]. Front Plant Sci, 2017, 8: 37.
doi: 10.3389/fpls.2017.00037 pmid: 28174582 |
[75] |
Stegmann M, Monaghan J, Smakowska-Luzan E, et al. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling[J]. Science, 2017, 355(6322): 287-289.
doi: 10.1126/science.aal2541 pmid: 28104890 |
[76] |
Pearce G, Yamaguchi Y, Munske G, et al. Structure-activity studies of RALF, Rapid Alkalinization Factor, reveal an essential-YISY-motif[J]. Peptides, 2010, 31(11): 1973-1977.
doi: 10.1016/j.peptides.2010.08.012 URL |
[77] |
Xiao Y, Stegmann M, Han ZF, et al. Mechanisms of RALF peptide perception by a heterotypic receptor complex[J]. Nature, 2019, 572(7768): 270-274.
doi: 10.1038/s41586-019-1409-7 |
[78] | Li C, Yeh FL, Cheung AY, et al. Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis[J]. eLife, 2015, 4: e06587. |
[79] |
Haruta M, Sabat G, Stecker K, et al. A peptide hormone and its receptor protein kinase regulate plant cell expansion[J]. Science, 2014, 343(6169): 408-411.
doi: 10.1126/science.1244454 pmid: 24458638 |
[80] |
Bergonci T, Ribeiro B, Ceciliato PHO, et al. Arabidopsis thaliana RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation[J]. J Exp Bot, 2014, 65(8): 2219-2230.
doi: 10.1093/jxb/eru099 pmid: 24620000 |
[81] |
Ge ZX, Bergonci T, Zhao YL, et al. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling[J]. Science, 2017, 358(6370): 1596-1600.
doi: 10.1126/science.aao3642 URL |
[82] |
Okuda S, Fujita S, Moretti A, et al. Molecular mechanism for the recognition of sequence-divergent CIF peptides by the plant receptor kinases GSO1/SGN3 and GSO2[J]. Proc Natl Acad Sci USA, 2020, 117(5): 2693-2703.
doi: 10.1073/pnas.1911553117 pmid: 31964818 |
[83] | Fujita S, De Bellis D, Edel KH, et al. SCHENGEN receptor module drives localized ROS production and lignification in plant roots[J]. EMBO J, 2020, 39(9): e103894. |
[84] |
Doll NM, Royek S, Fujita S, et al. A two-way molecular dialogue between embryo and endosperm is required for seed development[J]. Science, 2020, 367(6476): 431-435.
doi: 10.1126/science.aaz4131 pmid: 31974252 |
[85] |
Roberts I, Smith S, De Rybel B, et al. The CEP family in land plants: evolutionary analyses, expression studies, and role in Arabidopsis shoot development[J]. J Exp Bot, 2013, 64(17): 5371-5381.
doi: 10.1093/jxb/ert331 pmid: 24179095 |
[86] |
Higashiyama T. Peptide signaling in pollen-pistil interactions[J]. Plant Cell Physiol, 2010, 51(2): 177-189.
doi: 10.1093/pcp/pcq008 pmid: 20081210 |
[87] | 孙翔, 程丽军, 刘志文, 等. 小肽激素调控植物生殖发育的研究进展[J]. 自然杂志, 2021, 43(2): 105-111. |
Sun X, Cheng LJ, Liu ZW, et al. Peptides regulators in plant reproduction[J]. Chin J Nat, 2021, 43(2): 105-111.
doi: 10.3969/j.issn.0253-9608.2021.02.004 |
|
[88] |
Liu C, Shen LP, Xiao Y, et al. Pollen PCP-B peptides unlock a stigma peptide-receptor kinase gating mechanism for pollination[J]. Science, 2021, 372(6538): 171-175.
doi: 10.1126/science.abc6107 pmid: 33833120 |
[89] |
McGurl B, Pearce G, Orozco-Cardenas M, et al., Structure, expression, and antisense inhibition of the systemin precursor gene[J]. Science, 1992, 255(5051): 1570-1573.
doi: 10.1126/science.1549783 pmid: 1549783 |
[90] |
Buonanno M, Coppola M, Di Lelio I, et al. Prosystemin, a prohormone that modulates plant defense barriers, is an intrinsically disordered protein[J]. Protein Sci, 2018, 27(3): 620-632.
doi: 10.1002/pro.3348 pmid: 29168260 |
[91] |
de la Noval B, Pérez E, Martínez B, et al. Exogenous systemin has a contrasting effect on disease resistance in mycorrhizal tomato(Solanum lycopersicum)plants infected with necrotrophic or hemibiotrophic pathogens[J]. Mycorrhiza, 2007, 17(5): 449-460.
doi: 10.1007/s00572-007-0122-9 URL |
[92] |
Wang L, Einig E, Almeida-Trapp M, et al. The systemin receptor SYR1 enhances resistance of tomato against herbivorous insects[J]. Nat Plants, 2018, 4(3): 152-156.
doi: 10.1038/s41477-018-0106-0 pmid: 29459726 |
[93] | Cui YN, Li XJ, Yu M, et al. Sterols regulate endocytic pathways during flg22-induced defense responses in Arabidopsis[J]. Development, 2018, 145(19): dev165688. |
[94] |
Liu HW, Brettell LE. Plant defense by VOC-induced microbial priming[J]. Trends Plant Sci, 2019, 24(3): 187-189.
doi: S1360-1385(19)30023-8 pmid: 30738790 |
[95] |
Takahashi F, Suzuki T, Osakabe Y, et al. A small peptide modulates stomatal control via abscisic acid in long-distance signalling[J]. Nature, 2018, 556(7700): 235-238.
doi: 10.1038/s41586-018-0009-2 |
[96] |
Guo HQ, Nolan TM, Song GY, et al. FERONIA receptor kinase contributes to plant immunity by suppressing jasmonic acid signaling in Arabidopsis thaliana[J]. Curr Biol, 2018, 28(20): 3316-3324.e6.
doi: 10.1016/j.cub.2018.07.078 URL |
[97] |
Chakravorty D, Yu YQ, Assmann SM. A kinase-dead version of FERONIA receptor-like kinase has dose-dependent impacts on rosette morphology and RALF1-mediated stomatal movements[J]. FEBS Lett, 2018, 592(20): 3429-3437.
doi: 10.1002/1873-3468.13249 pmid: 30207378 |
[98] |
Yu YQ, Assmann SM. Inter-relationships between the heterotrimeric Gβ subunit AGB1, the receptor-like kinase FERONIA, and RALF1 in salinity response[J]. Plant Cell Environ, 2018, 41(10): 2475-2489.
doi: 10.1111/pce.v41.10 URL |
[99] |
Zhang H, Hu ZJ, Lei C, et al. A plant phytosulfokine peptide initiates auxin-dependent immunity through cytosolic Ca2+ signaling in tomato[J]. Plant Cell, 2018, 30(3): 652-667.
doi: 10.1105/tpc.17.00537 URL |
[100] |
Igarashi D, Tsuda K, Katagiri F. The peptide growth factor, phytosulfokine, attenuates pattern-triggered immunity[J]. Plant J, 2012, 71(2): 194-204.
doi: 10.1111/tpj.2012.71.issue-2 URL |
[101] |
Mosher S, Seybold H, Rodriguez P, et al. The tyrosine-sulfated peptide receptors PSKR1 and PSY1R modify the immunity of Arabidopsis to biotrophic and necrotrophic pathogens in an antagonistic manner[J]. Plant J, 2013, 73(3): 469-482.
doi: 10.1111/tpj.12050 URL |
[102] |
Motose H, Iwamoto K, Endo S, et al. Involvement of phytosulfokine in the attenuation of stress response during the transdifferentiation of zinnia mesophyll cells into tracheary elements[J]. Plant Physiol, 2009, 150(1): 437-447.
doi: 10.1104/pp.109.135954 pmid: 19270060 |
[103] |
Li XM, Han HP, Chen M, et al. Overexpression of OsDT11, which encodes a novel cysteine-rich peptide, enhances drought tolerance and increases ABA concentration in rice[J]. Plant Mol Biol, 2017, 93(1): 21-34.
doi: 10.1007/s11103-016-0544-x URL |
[104] |
Nakaminami K, Okamoto M, Higuchi-Takeuchi M, et al. AtPep3 is a hormone-like peptide that plays a role in the salinity stress tolerance of plants[J]. Proc Natl Acad Sci USA, 2018, 115(22): 5810-5815.
doi: 10.1073/pnas.1719491115 pmid: 29760074 |
[105] |
Chien PS, Nam HG, Chen YR. A salt-regulated peptide derived from the CAP superfamily protein negatively regulates salt-stress tolerance in Arabidopsis[J]. J Exp Bot, 2015, 66(17): 5301-5313.
doi: 10.1093/jxb/erv263 URL |
[106] |
Xu C, Liberatore KL, MacAlister CA, et al. A cascade of Arabinosyltransferases controls shoot meristem size in tomato[J]. Nat Genet, 2015, 47(7): 784-792.
doi: 10.1038/ng.3309 pmid: 26005869 |
[1] | 李托, 李陇平, 屈雷. 有尾噬菌体的结构及其受体研究进展[J]. 生物技术通报, 2023, 39(6): 88-101. |
[2] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[3] | 薛皦, 朱庆锋, 冯彦钊, 陈沛, 刘文华, 张爱霞, 刘勤坚, 张琪, 于洋. 植物基因上游开放阅读框的研究进展[J]. 生物技术通报, 2023, 39(4): 157-165. |
[4] | 魏明, 王欣玉, 伍国强, 赵萌. NAD依赖型去乙酰化酶SRT在植物表观遗传调控中的作用[J]. 生物技术通报, 2023, 39(4): 59-70. |
[5] | 桑田, 王鹏程. 植物SUMO化修饰研究进展[J]. 生物技术通报, 2023, 39(3): 1-12. |
[6] | 陈广霞, 李秀杰, 蒋锡龙, 单雷, 张志昌, 李勃. 植物小分子信号肽参与非生物逆境胁迫应答的研究进展[J]. 生物技术通报, 2023, 39(11): 61-73. |
[7] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[8] | 安昌, 陆琳, 沈梦千, 陈盛圳, 叶康卓, 秦源, 郑平. 植物bHLH基因家族研究进展及在药用植物中的应用前景[J]. 生物技术通报, 2023, 39(10): 1-16. |
[9] | 陈英, 王艺磊, 邹鹏飞. 大黄鱼TRAF6的克隆及表达分析[J]. 生物技术通报, 2022, 38(8): 233-243. |
[10] | 汤茜茜, 林楚宇, 陶增. 植物组蛋白去甲基化酶研究进展[J]. 生物技术通报, 2022, 38(7): 13-22. |
[11] | 李萍, 郭发平, 田敏, 税阳, 徐娜娜, 白大嵩, 余德金, 张杰, 胡运高, 彭友林. 甾醇在调节植物生长发育中的研究进展[J]. 生物技术通报, 2022, 38(7): 90-98. |
[12] | 古盼, 齐学影, 李莉, 张曦, 单晓昳. AtRGS1胞吞动态调控G蛋白参与拟南芥生长发育和抗性反应[J]. 生物技术通报, 2022, 38(6): 34-42. |
[13] | 李洋, 张晓天, 朴静子, 周如军, 李自博, 关海雯. 花生疮痂病菌蓝光受体EaWC 1基因克隆及生物信息学分析[J]. 生物技术通报, 2022, 38(5): 93-99. |
[14] | 悦曼芳, 张春, 吴忠义. 植物转录因子AP2/ERF家族蛋白结构和功能的研究进展[J]. 生物技术通报, 2022, 38(12): 11-26. |
[15] | 汤晓丽, 姜福东, 张洪霞. 植物SINA E3泛素连接酶功能的研究进展[J]. 生物技术通报, 2022, 38(10): 10-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||