生物技术通报 ›› 2022, Vol. 38 ›› Issue (8): 233-243.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1389
收稿日期:
2021-11-05
出版日期:
2022-08-26
发布日期:
2022-09-14
作者简介:
陈英,女,硕士研究生,研究方向:水产生物医学;E-mail: 基金资助:
CHEN Ying(), WANG Yi-lei, ZOU Peng-fei()
Received:
2021-11-05
Published:
2022-08-26
Online:
2022-09-14
摘要:
肿瘤坏死因子受体相关因子6(tumor necrosis factor receptor associated factor 6,TRAF6)是TRAF家族的重要成员,参与调控模式识别受体介导的信号通路,在宿主的固有免疫应答中发挥重要作用。本研究以大黄鱼(Larimichthys crocea)为实验对象,对大黄鱼TRAF6基因进行了克隆与鉴定。克隆获得的大黄鱼TRAF6基因ORF全长1 725 bp,编码574 aa,其基因结构由7个外显子和6个内含子构成。亚细胞定位分析结果表明大黄鱼TRAF6定位于细胞的胞浆,并在细胞核周围存在点状聚集现象。表达分析结果显示TRAF6广泛表达于健康大黄鱼不同组织/器官中,在血液中表达水平最高,在脑中表达水平最低;且在Poly I:C、LPS、PGN和变形假单胞菌(Pseudomonas plecoglossicida)刺激下,大黄鱼鳃、脾、头肾、肠与血液组织中TRAF6的表达水平显著上调。上述研究结果揭示了大黄鱼TRAF6的序列与时空表达特征,为深入解析大黄鱼TRAF6在宿主免疫反应中的作用及其分子机制提供了参考。
陈英, 王艺磊, 邹鹏飞. 大黄鱼TRAF6的克隆及表达分析[J]. 生物技术通报, 2022, 38(8): 233-243.
CHEN Ying, WANG Yi-lei, ZOU Peng-fei. Cloning and Expression Analysis of TRAF6 from Large Yellow Croaker Larimichthys crocea[J]. Biotechnology Bulletin, 2022, 38(8): 233-243.
引物名称Primer name | 引物序列Primer sequence(5'-3') | 目的Application |
---|---|---|
Lc-TRAF6-F | ATGGCTTGCATTGACAGCAAT | Lc-TRAF6 ORF cloning |
Lc-TRAF6-R | AGCCTCGGTTTCAAGGGAC | |
pTurbo-TRAF6-F | CCGGAATTCTGATGGCTTGCATTGACAGCAAT | pTurbo-TRAF6-GFP |
pTurbo-TRAF6-R | CGCGGATCCCGGTCCCTTGAAACCGAGGCT | |
qTRAF6-F | GACGGACGGTTGGTAAAGCAG | RT-qPCR |
qTRAF6-R | CAACTTGTAGCCTGGACGACCC | |
qβ-actin-F | TTATGAAGGCTATGCCCTGCC | RT-qPCR |
qβ-actin-R | TGAAGGAGTAGCCACGCTCTGT |
表1 本研究所用引物
Table 1 Primers used in this study
引物名称Primer name | 引物序列Primer sequence(5'-3') | 目的Application |
---|---|---|
Lc-TRAF6-F | ATGGCTTGCATTGACAGCAAT | Lc-TRAF6 ORF cloning |
Lc-TRAF6-R | AGCCTCGGTTTCAAGGGAC | |
pTurbo-TRAF6-F | CCGGAATTCTGATGGCTTGCATTGACAGCAAT | pTurbo-TRAF6-GFP |
pTurbo-TRAF6-R | CGCGGATCCCGGTCCCTTGAAACCGAGGCT | |
qTRAF6-F | GACGGACGGTTGGTAAAGCAG | RT-qPCR |
qTRAF6-R | CAACTTGTAGCCTGGACGACCC | |
qβ-actin-F | TTATGAAGGCTATGCCCTGCC | RT-qPCR |
qβ-actin-R | TGAAGGAGTAGCCACGCTCTGT |
图1 大黄鱼TRAF6与其他脊椎动物TRAF6氨基酸序列比对 黑色箭头分别代表环指结构域、锌指结构域、卷曲结构域和MATH结构域
Fig. 1 Multiple alignment of Lc-TRAF6 with TRAF6 in other vertebrates The black arrows represent the RING finger domain,zinc finger domain, coiled-coil domain, and MATH domain respectively
常用名Common name | 物种名Scientific name | NCBI序列登录号Accession No. | 序列长度Length/aa | 一致性Identity/% | 相似性Similarity/% |
---|---|---|---|---|---|
Grouper | Epinephelus coioides | AGQ45557.1 | 570 | 89 | 94 |
Fugu | Takifugu rubripes | XP_011608207.2 | 564 | 79 | 87 |
Rainbow trout | Oncorhynchus mykiss | AVM80404.1 | 551 | 66 | 78 |
Grass carp | Ctenopharyngodon idella | AGI51678.1 | 542 | 63 | 75 |
Zebrafish | Danio rerio | NP_001038217.1 | 542 | 61 | 74 |
channel catfish | Ictalurus punctatus | XP_017313923.1 | 540 | 60 | 74 |
Chicken | Gallus gallus | XP_015142694.1 | 545 | 52 | 66 |
Human | Homo sapiens | NP_665802.1 | 522 | 51 | 65 |
Mouse | Mus musculus | NP_001290202.1 | 530 | 50 | 64 |
表2 Lc-TRAF6与其它脊椎动物TRAF6氨基酸序列相似性比较
Table 2 Comparison of amino acid sequence similarity between Lc-TRAF6 and TRAF6 in other vertebrates
常用名Common name | 物种名Scientific name | NCBI序列登录号Accession No. | 序列长度Length/aa | 一致性Identity/% | 相似性Similarity/% |
---|---|---|---|---|---|
Grouper | Epinephelus coioides | AGQ45557.1 | 570 | 89 | 94 |
Fugu | Takifugu rubripes | XP_011608207.2 | 564 | 79 | 87 |
Rainbow trout | Oncorhynchus mykiss | AVM80404.1 | 551 | 66 | 78 |
Grass carp | Ctenopharyngodon idella | AGI51678.1 | 542 | 63 | 75 |
Zebrafish | Danio rerio | NP_001038217.1 | 542 | 61 | 74 |
channel catfish | Ictalurus punctatus | XP_017313923.1 | 540 | 60 | 74 |
Chicken | Gallus gallus | XP_015142694.1 | 545 | 52 | 66 |
Human | Homo sapiens | NP_665802.1 | 522 | 51 | 65 |
Mouse | Mus musculus | NP_001290202.1 | 530 | 50 | 64 |
图2 Lc-TRAF6与其他脊椎动物TRAF6基因结构比较 大黄鱼、红鳍东方鲀、斑马鱼、鸡、小鼠和人TRAF6基因的外显子和内含子结构比较。外显子和内含子分别用黑色方框和线条表示,外显子的长度大小显示在黑框的上方,而内含子的长度大小则显示在线条下方。黑框的长度以及线的长度与其序列长度成正比。基因序列信息及其GenBank数据库登录号:大黄鱼,NC_040018.1(4990344-4997110);红鳍东方鲀,NC_042297.1(13166964-13171483);斑马鱼,NC_007118.7(48722838-48738718);鸡,NC_052536.1(19015766-19036372);小鼠,NC_000068.8(101508765-101532013);人,NC_000011.10(36483769-36510313)
Fig.2 Genomic structure comparison of gene Lc-TRAF6 with TRAF6 in other vertebrates Structure comparison of exons and introns of TRAF6 gene in L. crocea,T. rubripes,D. rerio,G. gallus,M. musculus and H. sapiens. Exons and introns are represented by black boxes and lines respectively,with the length of the exon shown above the black box and the length of the intron shown below the line. The length of the black box and the length of the line is proportional to the length of the sequence. Gene sequences information and their GenBank accession numbers are shown as follows:L. crocea,NC_040018.1(4990344-4997110);T. rubripes,NC_042297.1(13166964-13171483);D. rerio,NC_0071187(48722838-48738718);G. gallus,NC_052536.1(19015766-19036372);M. musculus,NC_000068.8(101508655-101532013);H. sapiens,NC_000011.10(36483769-36510313)
图3 Lc-TRAF6的亚细胞定位分析 分别用pTurboGFP和pTurbo-TRAF6-GFP瞬时转染HEK 293T细胞。在转染24 h后,用DAPI进行细胞核染色,在激光共聚焦显微镜下观察细胞并拍照
Fig.3 Subcellular localization analysis of Lc-TRAF6 HEK 293T cells were transiently transfected with pTurboGFP and pTurbo-TRAF6-GFP respectively. At 24 h after transfection,cells were stained with DAPI,detected under a confocal microscope and photographed
图4 Lc-TRAF6的组织表达分析 实时荧光定量PCR检测了健康大黄鱼在11种组织/器官中Lc-TRAF6 mRNA表达情况。将Lc-TRAF6 mRNA在脑中的表达水平设定为1倍,在其他器官/组织中Lc-TRAF6 mRNA的表达水平记录为相对于脑中表达水平的倍数,1倍的基线用红色虚线标记。所有数据均以平均值±标准误表示(n = 6)。组间差异无统计学意义用相同上标,统计学上差异显著用不同的上标表示(P < 0.05)
Fig. 4 Tissue expression analysis of Lc-TRAF6 The expression pattern of Lc-TRAF6 mRNA in 11 different tissues/organs of healthy large yellow croaker was detected by quantitative real-time PCR analysis. The mRNA expression level of Lc-TRAF6 in the brain was set as 1-fold,and the mRNA expression level of Lc-TRAF6 in other organs/tissues was recorded as multiple of the expression level in the brain,and the baseline of 1-fold was marked with red dotted line. All data were expressed as mean±SE(n = 6). Different superscripts indicate statistically different results(P < 0.05)and the same superscript indicates no statistical differences between groups
图5 Poly I:C、LPS、PGN和P. plecoglossicida刺激下Lc-TRAF6的表达分析 Poly I:C、LPS、PGN和P. plecoglossicida免疫刺激健康大黄鱼6、12、24 h后(以PBS为对照),通过实时荧光定量PCR技术检测鱼鳃(A)、脾脏(B)、头肾(C)、肠(D)和血液(E)中Lc-TRAF6 mRNA的表达水平。其结果以β-actin为内参基因进行校正,数据表示为平均值±标准误(n=6),* P <0.05,** P <0.01
Fig. 5 Expression analysis of Lc-TRAF6 under Poly I:C,LPS,PGN,and P. plecoglossicida stimulation The healthy large yellow croakers was stimulated with Poly I:C,LPS,PGN,and P. plecoglossicida for 6,12,and 24 h(with PBS set as the control group),then the mRNA expression levels of Lc-TRAF6 in gill(A),spleen(B),head kidney(C),intestine(D),and blood(E)were detected by RT-qPCR. The results were normalized to the expression of β-actin and the data were recorded as mean ±SE(n = 6). * P < 0.05,**P < 0.01
[1] |
Dhillon B, Aleithan F, Abdul-Sater Z, et al. The evolving role of TRAFs in mediating inflammatory responses[J]. Front Immunol, 2019, 10:104.
doi: 10.3389/fimmu.2019.00104 URL |
[2] |
Wajant H, Henkler F, Scheurich P. The TNF-receptor-associated factor family:scaffold molecules for cytokine receptors, kinases and their regulators[J]. Cell Signal, 2001, 13(6):389-400.
doi: 10.1016/s0898-6568(01)00160-7 pmid: 11384837 |
[3] |
Xie P. TRAF molecules in cell signaling and in human diseases[J]. J Mol Signal, 2013, 8(1):7.
doi: 10.1186/1750-2187-8-7 URL |
[4] |
Lalani AI, Zhu SN, Gokhale S, et al. TRAF molecules in inflammation and inflammatory diseases[J]. Curr Pharmacol Rep, 2018, 4(1):64-90.
doi: 10.1007/s40495-017-0117-y pmid: 29527458 |
[5] |
Zou PF, Tang JC, Li Y, et al. MAVS splicing variants associated with TRAF3 and TRAF6 in NF-κB and IRF3 signaling pathway in large yellow croaker Larimichthys crocea[J]. Dev Comp Immunol, 2021, 121:104076.
doi: 10.1016/j.dci.2021.104076 URL |
[6] |
Zotti T, Vito P, Stilo R. The seventh ring:exploring TRAF7 functions[J]. J Cell Physiol, 2012, 227(3):1280-1284.
doi: 10.1002/jcp.24011 URL |
[7] |
Arch RH, Gedrich RW, Thompson CB. Tumor necrosis factor receptor-associated factors(TRAFs)—a family of adapter proteins that regulates life and death[J]. Genes Dev, 1998, 12(18):2821-2830.
doi: 10.1101/gad.12.18.2821 URL |
[8] | 施伟梅, 杨凯, 李林福, 等. IRE1/TRAF2诱导细胞凋亡的分子机制[J]. 基因组学与应用生物学, 2018, 37(6):2579-2582. |
Shi WM, Yang K, Li LF, et al. Molecular mechanism of cell apoptosis induced by IRE1/TRAF2[J]. Genom Appl Biol, 2018, 37(6):2579-2582. | |
[9] |
Li FB, Li Y, Liang HC, et al. HECTD3 mediates TRAF3 polyubiquitination and type I interferon induction during bacterial infection[J]. J Clin Invest, 2018, 128(9):4148-4162.
doi: 10.1172/JCI120406 URL |
[10] |
Martinez-Forero I, Rouzaut A, Palazon A, et al. Lysine 63 polyubiquitination in immunotherapy and in cancer-promoting inflammation[J]. Clin Cancer Res, 2009, 15(22):6751-6757.
doi: 10.1158/1078-0432.CCR-09-1225 pmid: 19887490 |
[11] |
Wang XW, Yang J, Han L, et al. TRAF5-mediated Lys-63-linked polyubiquitination plays an essential role in positive regulation of RORγt in promoting IL-17A expression[J]. J Biol Chem, 2015, 290(48):29086-29094.
doi: 10.1074/jbc.M115.664573 URL |
[12] |
Li YW, Li X, Xiao XX, et al. Molecular characterization and functional analysis of TRAF6 in orange-spotted grouper(Epinephelus coioides)[J]. Dev Comp Immunol, 2014, 44(1):217-225.
doi: 10.1016/j.dci.2013.12.011 URL |
[13] |
Darnay BG, Ni J, Moore PA, et al. Activation of NF-kappaB by RANK requires tumor necrosis factor receptor-associated factor(TRAF)6 and NF-kappaB-inducing kinase. Identification of a novel TRAF6 interaction motif[J]. J Biol Chem, 1999, 274(12):7724-7731.
doi: 10.1074/jbc.274.12.7724 pmid: 10075662 |
[14] |
Pollet I, Opina CJ, Zimmerman C, et al. Bacterial lipopolysaccharide directly induces angiogenesis through TRAF6-mediated activation of NF-kappaB and c-Jun N-terminal kinase[J]. Blood, 2003, 102(5):1740-1742.
doi: 10.1182/blood-2003-01-0288 URL |
[15] |
Kanamori M, Kai C, Hayashizaki Y, et al. NF-kappaB activator Act1 associates with IL-1/Toll pathway adaptor molecule TRAF6[J]. FEBS Lett, 2002, 532(1/2):241-246.
doi: 10.1016/S0014-5793(02)03688-8 URL |
[16] |
Kang LS, Wang LP, Wu CW, et al. Molecular characterization and expression analysis of tumor necrosis factor receptor-associated factors 3 and 6 in large yellow croaker(Larimichthys crocea)[J]. Fish Shellfish Immunol, 2018, 82:27-31.
doi: 10.1016/j.fsi.2018.07.051 URL |
[17] | Wang JJ, Wu XJ, Jiang MY, et al. Mechanism by which TRAF6 participates in the immune regulation of autoimmune diseases and cancer[J]. Biomed Res Int, 2020, 2020:4607197. |
[18] |
Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity[J]. Immunity, 2011, 34(5):637-650.
doi: 10.1016/j.immuni.2011.05.006 pmid: 21616434 |
[19] |
Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity:update on Toll-like receptors[J]. Nat Immunol, 2010, 11(5):373-384.
doi: 10.1038/ni.1863 pmid: 20404851 |
[20] |
Deng L, Wang C, Spencer E, et al. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain[J]. Cell, 2000, 103(2):351-361.
doi: 10.1016/s0092-8674(00)00126-4 pmid: 11057907 |
[21] |
Chariot A. The NF-kappaB-independent functions of IKK subunits in immunity and cancer[J]. Trends Cell Biol, 2009, 19(8):404-413.
doi: 10.1016/j.tcb.2009.05.006 pmid: 19648011 |
[22] |
Konno H, Yamamoto T, Yamazaki K, et al. TRAF6 establishes innate immune responses by activating NF-kappaB and IRF7 upon sensing cytosolic viral RNA and DNA[J]. PLoS One, 2009, 4(5):e5674.
doi: 10.1371/journal.pone.0005674 URL |
[23] |
Peng F, Jin SS, Chen ZY, et al. TRIF-mediated antiviral signaling is differentially regulated by TRAF2 and TRAF6 in black carp[J]. Dev Comp Immunol, 2021, 121:104073.
doi: 10.1016/j.dci.2021.104073 URL |
[24] |
Wang PF, Li FX, Zhao C, et al. Molecular characterization and functional analysis of TRAF6 in the spotted sea bass(Lateolabrax maculatus)[J]. Fish Shellfish Immunol, 2020, 105:233-243.
doi: 10.1016/j.fsi.2020.06.048 URL |
[25] |
Li YP, Mao YX, Yu NL, et al. Grass carp(Ctenopharyngodon idellus)TRAF6 up-regulates IFN1 expression by activating IRF5[J]. Dev Comp Immunol, 2020, 102:103475.
doi: 10.1016/j.dci.2019.103475 URL |
[26] |
Zhang J, Zhu YC, Chen Z, et al. Molecular cloning and expression analysis of MyD88 and TRAF6 in Qihe crucian carp Carassius auratus[J]. Fish Shellfish Immunol, 2019, 87:829-838.
doi: 10.1016/j.fsi.2019.02.034 URL |
[27] |
Jang JH, Kim H, Cho JH. Molecular cloning and functional characterization of TRAF6 and TAK1 in rainbow trout, Oncorhynchus mykiss[J]. Fish Shellfish Immunol, 2019, 84:927-936.
doi: 10.1016/j.fsi.2018.11.002 URL |
[28] | 刘家富, 韩坤煌. 我国大黄鱼产业的发展现状与对策[J]. 福建水产, 2011, 33(5):4-8. |
Liu JF, Han KH. Current development situation and countermeasure of large yellow crocker industry in China[J]. J Fujian Fish, 2011, 33(5):4-8. | |
[29] | 徐春霞. 网箱养殖大黄鱼内脏白点病病原菌分离鉴定及致病性研究[J]. 水产科学, 2021, 40(5):670-678. |
Xu CX. Isolation, identification and pathogenicity of white-nodules disease in internal organs of large yellow croaker pseudosciaena crocea in a sea cage[J]. Fish Sci, 2021, 40(5):670-678. | |
[30] | 游剑涛. 大黄鱼烂鳃病病原菌的分离鉴定及药敏分析[J]. 渔业研究, 2018, 40(6):425-433. |
You JT. Isolation, identification and antibiotic sensitivity analysis of bacterial pathogen from Larimichthys crocea with gill-rot disease[J]. J Fish Res, 2018, 40(6):425-433. | |
[31] | 施慧, 陈卓, 丁慧昕, 等. 养殖大黄鱼一种黏孢子虫病的组织病理学及检测方法初探[J]. 中国水产科学, 2019, 26(1):203-213. |
Shi H, Chen Z, Ding HX, et al. Preliminary study on the histopathology and detection methods of a Myxosporea parasite that causes white-gill disease in cultured Larimichthys crocea[J]. J Fish Res, 2019, 26(1):203-213. | |
[32] | 吴静. 饥饿对大黄鱼体内虹彩病毒载量及相关免疫反应影响的初步研究[D]. 舟山: 浙江海洋大学, 2020. |
Wu J. A preliminary study on the effects of starvation on the iridovirus load and related immune responses in large yellow croaker[D]. Zhoushan: Zhejiang Ocean University, 2020. | |
[33] |
Shi JH, Sun SC. Tumor necrosis factor receptor-associated factor regulation of nuclear factor κB and mitogen-activated protein kinase pathways[J]. Front Immunol, 2018, 9:1849.
doi: 10.3389/fimmu.2018.01849 URL |
[34] |
Chen H, Xiao J, Li J, et al. TRAF2 of black carp upregulates MAVS-mediated antiviral signaling during innate immune response[J]. Fish Shellfish Immunol, 2017, 71:1-9.
doi: 10.1016/j.fsi.2017.09.069 URL |
[35] |
Zhao F, Li YW, Pan HJ, et al. Grass carp(Ctenopharyngodon idella)TRAF6 and TAK1:molecular cloning and expression analysis after Ichthyophthirius multifiliis infection[J]. Fish Shellfish Immunol, 2013, 34(6):1514-1523.
doi: 10.1016/j.fsi.2013.03.003 URL |
[36] |
Wang ZW, Huang Y, Li Y, et al. Biological characterization, expression, and functional analysis of tumor necrosis factor receptor-associated factor 6 in Nile tilapia(Oreochromis niloticus)[J]. Fish Shellfish Immunol, 2018, 80:497-504.
doi: 10.1016/j.fsi.2018.06.036 URL |
[37] |
Jiang S, Xiao J, Li J, et al. Characterization of the black carp TRAF6 signaling molecule in innate immune defense[J]. Fish Shellfish Immunol, 2017, 67:147-158.
doi: 10.1016/j.fsi.2017.06.011 URL |
[38] |
Wang PF, Li FX, Zhao C, et al. Molecular characterization and functional analysis of TRAF6 in the spotted sea bass(Lateolabrax maculatus)[J]. Fish Shellfish Immunol, 2020, 105:233-243.
doi: 10.1016/j.fsi.2020.06.048 URL |
[39] | 罗智文, 董志祥, 林连兵, 等. 鱼类重要免疫器官抗菌机制的研究进展[J]. 水产科学, 2021, 40(4):624-634. |
Luo ZW, Dong ZX, Lin LB, et al. Advances on immunological mechanisms of important immune organs against pathogenic microorganisms in fish:a review[J]. Fish Sci, 2021, 40(4):624-634. | |
[40] | 姜红烨, 黄艳, 余新炳. 鱼的黏膜免疫研究进展[J]. 热带医学杂志, 2015, 15(8):1150-1153. |
Jiang HY, Huang Y, Yu XB. Research progress in mucosal immunity of fish[J]. J Trop Med, 2015, 15(8):1150-1153. | |
[41] | 贾生美. 鲤鱼TLR通路中TRAF6的基因克隆、鉴定及差异表达分析[D]. 长春: 吉林大学, 2014. |
Jia SM. Cloning, characterization and expression analysis of common carp TRAF6[D]. Changchun: Jilin University, 2014. |
[1] | 王佳蕊, 孙培媛, 柯瑾, 冉彬, 李洪有. 苦荞糖基转移酶基因FtUGT143的克隆及表达分析[J]. 生物技术通报, 2023, 39(8): 204-212. |
[2] | 孙明慧, 吴琼, 刘丹丹, 焦小雨, 王文杰. 茶树CsTMFs的克隆与表达分析[J]. 生物技术通报, 2023, 39(7): 151-159. |
[3] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[4] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[5] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[6] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
[7] | 刘思佳, 王浩楠, 付宇辰, 闫文欣, 胡增辉, 冷平生. ‘西伯利亚’百合LiCMK基因克隆及功能分析[J]. 生物技术通报, 2023, 39(3): 196-205. |
[8] | 王涛, 漆思雨, 韦朝领, 王艺清, 戴浩民, 周喆, 曹士先, 曾雯, 孙威江. CsPPR和CsCPN60-like在茶树白化叶片中的表达分析及互作蛋白验证[J]. 生物技术通报, 2023, 39(3): 218-231. |
[9] | 庞强强, 孙晓东, 周曼, 蔡兴来, 张文, 王亚强. 菜心BrHsfA3基因克隆及其对高温胁迫的响应[J]. 生物技术通报, 2023, 39(2): 107-115. |
[10] | 苗淑楠, 高宇, 李昕儒, 蔡桂萍, 张飞, 薛金爱, 季春丽, 李润植. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析[J]. 生物技术通报, 2023, 39(2): 96-106. |
[11] | 葛雯冬, 王腾辉, 马天意, 范震宇, 王玉书. 结球甘蓝PRX基因家族全基因组鉴定与逆境条件下的表达分析[J]. 生物技术通报, 2023, 39(11): 252-260. |
[12] | 杨旭妍, 赵爽, 马天意, 白玉, 王玉书. 三个甘蓝WRKY基因的克隆及其对非生物胁迫的表达[J]. 生物技术通报, 2023, 39(11): 261-269. |
[13] | 陈楚怡, 杨小梅, 陈胜艳, 陈斌, 岳莉然. ABA和干旱胁迫下菊花脑ZF-HD基因家族的表达分析[J]. 生物技术通报, 2023, 39(11): 270-282. |
[14] | 尤垂淮, 谢津津, 张婷, 崔天真, 孙欣路, 臧守建, 武奕凝, 孙梦瑶, 阙友雄, 苏亚春. 钩吻脂氧合酶基因 GeLOX1 的鉴定及低温胁迫表达分析[J]. 生物技术通报, 2023, 39(11): 318-327. |
[15] | 刘媛媛, 魏传正, 谢永波, 仝宗军, 韩星, 甘炳成, 谢宝贵, 严俊杰. 金针菇II类过氧化物酶基因在子实体发育与胁迫应答过程的表达特征[J]. 生物技术通报, 2023, 39(11): 340-349. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||