生物技术通报 ›› 2023, Vol. 39 ›› Issue (10): 219-230.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0071
刘传和1(), 贺涵1, 何秀古2(), 陈鑫1, 刘开1, 邵雪花1, 赖多1, 秦健1, 庄庆礼1, 匡石滋1, 肖维强1
收稿日期:
2023-02-01
出版日期:
2023-10-26
发布日期:
2023-11-28
通讯作者:
何秀古,男,研究员,研究方向:菠萝优质高效种植技术研究与应用推广;E-mail: hexiugu@gdaas.cn作者简介:
刘传和,男,博士,研究员,研究方向:菠萝优质高效种植技术与新品种选育;E-mail: founderlch@126.com
基金资助:
LIU Chuan-he1(), HE Han1, HE Xiu-gu2(), CHEN Xin1, LIU Kai1, SHAO Xue-hua1, LAI Duo1, QIN Jian1, ZHUANG Qing-li1, KUANG Shi-zi1, XIAO Wei-qiang1
Received:
2023-02-01
Published:
2023-10-26
Online:
2023-11-28
摘要:
为探明菠萝不同品种对低温胁迫响应差异的相关机理,本研究以耐寒性强的‘粤甜’和耐寒性弱的‘巴厘’品种为试材,对常温(25℃)及低温(5℃)处理48 h植株的叶片生理指标、基因相对表达量及差异代谢物等进行比较测定。结果表明,低温处理后‘粤甜’的可溶性蛋白、可溶性糖、脯氨酸含量及POD、SOD、CAT酶活性均显著高于‘巴厘’,丙二醛含量显著低于‘巴厘’;POD、CAT基因相对表达量显著高于‘巴厘’,ProDH基因显著低于‘巴厘’;内源生长素、细胞分裂素、茉莉酸、水杨酸及独角金内酯含量高于‘巴厘’,赤霉素、脱落酸含量低于‘巴厘’。代谢组分析表明,低温处理后‘粤甜’与‘巴厘’间共检测出差异代谢物262个,其中黄酮类代谢物最多。KEGG分析表明‘粤甜’‘巴厘’间差异代谢物主要富集在次生代谢物生物合成、类黄酮生物合成、黄酮与黄酮醇生物合成等代谢通路中。筛选出110个低温诱导的‘粤甜’与‘巴厘’差异代谢物,其中41个在常温下差异显著、低温处理后差异倍数增大,69个在常温下无显著差异、低温处理后差异显著;差异代谢物在‘粤甜’中的含量积累均显著高于‘巴厘’。由此可见,渗透调节及抗氧化活性、内源激素及代谢物积累的差异是‘粤甜’与‘巴厘’低温响应差异的重要原因。
刘传和, 贺涵, 何秀古, 陈鑫, 刘开, 邵雪花, 赖多, 秦健, 庄庆礼, 匡石滋, 肖维强. 菠萝不同品种对低温胁迫响应差异的生理代谢机制[J]. 生物技术通报, 2023, 39(10): 219-230.
LIU Chuan-he, HE Han, HE Xiu-gu, CHEN Xin, LIU Kai, SHAO Xue-hua, LAI Duo, QIN Jian, ZHUANG Qing-li, KUANG Shi-zi, XIAO Wei-qiang. Physiological and Metabolitic Mechanisms of Different Pineapple Cultivars Responding to Low Temperature Stress[J]. Biotechnology Bulletin, 2023, 39(10): 219-230.
基因Gene | ID | 正向引物Forward primer(5'-3') | 反向引物Reverse primer(5'-3') | 长度Length/bp |
---|---|---|---|---|
SOD | LOC109709661 | CTTCTCTTCCTCCACCTGGTCTCC | TAGGGTTAGGGCTCGCTTGGATG | 88 |
POD | LOC109727354 | CTCCGCCTTCACTTCCACGATTG | TGCTGACACGATGAATGACAGACTC | 80 |
CAT | LOC109707674 | CTGGCGGATCGTTGACTTCTTCTC | TCCATGTGGCGGTAGTCGGTAG | 102 |
ProDH | LOC109707212 | CTTCGCCTATTCACGGGAGCATTC | CAGATCCTTGCCTCACTCGTTCG | 90 |
Actin | LOC109722956 | CTGGCCTACGTGGCACTTGACTT | CACTTCTGGGCAGCGGAACCTTT | 135 |
表1 RT-qPCR引物序列
Table 1 Primer sequences for RT-qPCR
基因Gene | ID | 正向引物Forward primer(5'-3') | 反向引物Reverse primer(5'-3') | 长度Length/bp |
---|---|---|---|---|
SOD | LOC109709661 | CTTCTCTTCCTCCACCTGGTCTCC | TAGGGTTAGGGCTCGCTTGGATG | 88 |
POD | LOC109727354 | CTCCGCCTTCACTTCCACGATTG | TGCTGACACGATGAATGACAGACTC | 80 |
CAT | LOC109707674 | CTGGCGGATCGTTGACTTCTTCTC | TCCATGTGGCGGTAGTCGGTAG | 102 |
ProDH | LOC109707212 | CTTCGCCTATTCACGGGAGCATTC | CAGATCCTTGCCTCACTCGTTCG | 90 |
Actin | LOC109722956 | CTGGCCTACGTGGCACTTGACTT | CACTTCTGGGCAGCGGAACCTTT | 135 |
处理 Treatment | 品种 Cultivar | 可溶性蛋白 Soluble protein/(mg·kg-1 FW) | 可溶性糖 Soluble sugar/(mg·g-1 FW) | 脯氨酸Proline /(µg·g-1 FW) | 丙二醛MDA /(nmol·g-1 FW) | 过氧化物酶POD /(U·g-1 FW) | 超氧化物酶SOD /(U·g-1 FW) | 过氧化氢酶CAT /(U·g-1 FW) |
---|---|---|---|---|---|---|---|---|
常温Normal temperature(NT) | ‘粤甜’ ‘Yuetian’ | 963.00±2.00b | 9.78±0.05b | 14.10±0.29b | 7.94±0.09c | 213.99±2.91c | 42.23±0.04b | 13.93±0.53bc |
‘巴厘’ ‘Comte de Paris’ | 806.00±3.00c | 10.84±0.06a | 10.89±0.26d | 13.72±0.09b | 249.65±7.70b | 38.24±0.06d | 12.05±1.06c | |
低温Low temperature(LT) | ‘粤甜’ ‘Yuetian’ | 1056.00±2.00a | 9.68±0.12b | 23.12±0.31a | 7.25±0.08d | 356.65±2.92a | 43.51±0.06a | 24.85±1.84a |
‘巴厘’ ‘Comte de Paris’ | 761.00±8.00d | 8.01±0.05c | 12.57±0.30c | 24.46±0.07a | 178.32±2.91d | 39.55±0.05c | 16.57±1.06b |
表2 不同品种低温处理后菠萝叶片生理指标的变化
Table 2 Changes in physiological indexes between two different pineapple cultivars after low temperature treatment
处理 Treatment | 品种 Cultivar | 可溶性蛋白 Soluble protein/(mg·kg-1 FW) | 可溶性糖 Soluble sugar/(mg·g-1 FW) | 脯氨酸Proline /(µg·g-1 FW) | 丙二醛MDA /(nmol·g-1 FW) | 过氧化物酶POD /(U·g-1 FW) | 超氧化物酶SOD /(U·g-1 FW) | 过氧化氢酶CAT /(U·g-1 FW) |
---|---|---|---|---|---|---|---|---|
常温Normal temperature(NT) | ‘粤甜’ ‘Yuetian’ | 963.00±2.00b | 9.78±0.05b | 14.10±0.29b | 7.94±0.09c | 213.99±2.91c | 42.23±0.04b | 13.93±0.53bc |
‘巴厘’ ‘Comte de Paris’ | 806.00±3.00c | 10.84±0.06a | 10.89±0.26d | 13.72±0.09b | 249.65±7.70b | 38.24±0.06d | 12.05±1.06c | |
低温Low temperature(LT) | ‘粤甜’ ‘Yuetian’ | 1056.00±2.00a | 9.68±0.12b | 23.12±0.31a | 7.25±0.08d | 356.65±2.92a | 43.51±0.06a | 24.85±1.84a |
‘巴厘’ ‘Comte de Paris’ | 761.00±8.00d | 8.01±0.05c | 12.57±0.30c | 24.46±0.07a | 178.32±2.91d | 39.55±0.05c | 16.57±1.06b |
图1 不同品种低温处理后POD、SOD、CAT、ProDH基因相对表达量变化
Fig. 1 Changes in the expressions of POD, SOD, CAT and ProDH genes in two different cultivars after low temperature treatment
分类Class | 物质Compound | 常温NT | 低温LT | ||
---|---|---|---|---|---|
‘粤甜’‘Yuetian’ | ‘巴厘’‘Comte de Paris’ | ‘粤甜’‘Yuetian’ | ‘巴厘’‘Comte de Paris’ | ||
生长素 Auxin | 色胺Tryptamine | 9.77±1.19b | 2.59±0.65c | 16.78±0.51a | 2.06±0.97c |
L-色氨酸L-tryptophan | 1422.30±186.94ab | 1072.91±83.88b | 1734.66±127.79a | 946.77±157.24b | |
吲哚-3-乙酸甲酯 Methyl indole-3-acetate | 0.27±0.02ab | 0.19±0.01bc | 0.35±0.05a | 0.14±0.03c | |
吲哚-3-甲醛Indole-3-carboxaldehyde | 4.17±0.10a | 4.64±0.37a | 4.87±0.40a | 3.53±0.61a | |
吲哚-3-甲酸Indole-3-carboxylic acid | 0.73±0.07b | 1.39±0.11a | 1.19±0.15a | 0.76±0.07b | |
吲哚乙酸-缬氨酸甲酯 Indole-3-acetyl-L-valine methyl ester | 0.031±0.004a | 0.026±0.002a | 0.038±0.010a | 0.016±0.002a | |
吲哚乙酸-天冬氨酸 Indole-3-acetyl-L-aspartic acid | 9.32±1.92b | 2.31±0.4b | 21.69±3.69a | 3.49±2.2b | |
赤霉素GA | 赤霉素19 GA19 | 3.19±0.24b | 6.19±0.28a | 2.87±0.23b | 5.67±0.48a |
细胞分裂素 Cytokinin | 2-甲硫基顺式玉米素核苷 2-Methylthio-cis-zeatin riboside | 0.19±0ab | 0.17±0.01b | 0.23±0.02a | 0.16±0.01b |
异戊烯腺嘌呤核苷 N6-isopentenyladenosine | 1.12±0.07b | 0.45±0.07c | 2.00±0.21a | 0.25±0.05c | |
双氢玉米素-7-糖苷 Dihydrozeatin-7-glucoside | 0.32±0.06a | 0.16±0.02a | 0.34±0.02a | 0.18±0.05a | |
6-苄氨基嘌呤6-Benzyladenine | 0.13±0.02a | 0.11±0.02a | 0.15±0.02a | 0.11±0.01a | |
乙烯类 Ethylene | 1-氨基环丙烷羧酸 1-Aminocyclopropanecarboxylic acid(ACC) | 42.80±2.07a | 45.03±1.48a | 42.75±0.92a | 34.00±1.04b |
脱落酸 Abscisic acid | 脱落酸Abscisic acid | 10.34±0.27bc | 29.64±0.54a | 7.92±0.26c | 14.29±2.03b |
脱落酸葡萄糖酯 ABA-glucosyl ester | 118.57±6.49a | 189.16±41.33a | 119.57±4.59a | 174.47±2.04a | |
茉莉酸 Jasmonic acid | 二氢茉莉酸Dihydrojasmonic acid | 0.09±0.04a | 0.09±0.02a | 0.10±0.01a | 0.04±0.01a |
茉莉酸-异亮氨酸 Jasmonoyl-L-isoleucine | 0.63±0.09a | 0.36±0.19ab | 0.23±0.07ab | 0.08±0.03b | |
茉莉酸Jasmonic acid | 2.61±0.34a | 1.48±0.48ab | 0.43±0.06b | 0.40±0.03b | |
顺式-12-氧-植物-二烯酸 Cis(+)-12-Oxophytodienoic acid | 2.95±0.25a | 2.27±0.18a | 1.24±0.11b | 0.93±0.12b | |
水杨酸 Salicylic acid | 水杨酸Salicylic acid | 35.42±1.64a | 22.87±0.95b | 28.39±2.89ab | 14.59±0.98c |
水杨酸-2-O-β-葡萄糖苷 Salicylic acid 2-O-β-glucoside | 1135.25±119.94a | 219.08±7.58b | 1250.95±62.61a | 211.29±25.88b | |
独角金内酯 Strigolactone | 5-脱氧独脚金醇5-Deoxystrigol | 73.07±4.24a | 68.29±3.38ab | 66.97±2.03ab | 54.83±3.91b |
表3 不同品种低温处理后内源激素含量的变化
Table 3 Changes of endogenous hormone contents between two different pineapple cultivars after low temperature treatment /(ng·g-1)
分类Class | 物质Compound | 常温NT | 低温LT | ||
---|---|---|---|---|---|
‘粤甜’‘Yuetian’ | ‘巴厘’‘Comte de Paris’ | ‘粤甜’‘Yuetian’ | ‘巴厘’‘Comte de Paris’ | ||
生长素 Auxin | 色胺Tryptamine | 9.77±1.19b | 2.59±0.65c | 16.78±0.51a | 2.06±0.97c |
L-色氨酸L-tryptophan | 1422.30±186.94ab | 1072.91±83.88b | 1734.66±127.79a | 946.77±157.24b | |
吲哚-3-乙酸甲酯 Methyl indole-3-acetate | 0.27±0.02ab | 0.19±0.01bc | 0.35±0.05a | 0.14±0.03c | |
吲哚-3-甲醛Indole-3-carboxaldehyde | 4.17±0.10a | 4.64±0.37a | 4.87±0.40a | 3.53±0.61a | |
吲哚-3-甲酸Indole-3-carboxylic acid | 0.73±0.07b | 1.39±0.11a | 1.19±0.15a | 0.76±0.07b | |
吲哚乙酸-缬氨酸甲酯 Indole-3-acetyl-L-valine methyl ester | 0.031±0.004a | 0.026±0.002a | 0.038±0.010a | 0.016±0.002a | |
吲哚乙酸-天冬氨酸 Indole-3-acetyl-L-aspartic acid | 9.32±1.92b | 2.31±0.4b | 21.69±3.69a | 3.49±2.2b | |
赤霉素GA | 赤霉素19 GA19 | 3.19±0.24b | 6.19±0.28a | 2.87±0.23b | 5.67±0.48a |
细胞分裂素 Cytokinin | 2-甲硫基顺式玉米素核苷 2-Methylthio-cis-zeatin riboside | 0.19±0ab | 0.17±0.01b | 0.23±0.02a | 0.16±0.01b |
异戊烯腺嘌呤核苷 N6-isopentenyladenosine | 1.12±0.07b | 0.45±0.07c | 2.00±0.21a | 0.25±0.05c | |
双氢玉米素-7-糖苷 Dihydrozeatin-7-glucoside | 0.32±0.06a | 0.16±0.02a | 0.34±0.02a | 0.18±0.05a | |
6-苄氨基嘌呤6-Benzyladenine | 0.13±0.02a | 0.11±0.02a | 0.15±0.02a | 0.11±0.01a | |
乙烯类 Ethylene | 1-氨基环丙烷羧酸 1-Aminocyclopropanecarboxylic acid(ACC) | 42.80±2.07a | 45.03±1.48a | 42.75±0.92a | 34.00±1.04b |
脱落酸 Abscisic acid | 脱落酸Abscisic acid | 10.34±0.27bc | 29.64±0.54a | 7.92±0.26c | 14.29±2.03b |
脱落酸葡萄糖酯 ABA-glucosyl ester | 118.57±6.49a | 189.16±41.33a | 119.57±4.59a | 174.47±2.04a | |
茉莉酸 Jasmonic acid | 二氢茉莉酸Dihydrojasmonic acid | 0.09±0.04a | 0.09±0.02a | 0.10±0.01a | 0.04±0.01a |
茉莉酸-异亮氨酸 Jasmonoyl-L-isoleucine | 0.63±0.09a | 0.36±0.19ab | 0.23±0.07ab | 0.08±0.03b | |
茉莉酸Jasmonic acid | 2.61±0.34a | 1.48±0.48ab | 0.43±0.06b | 0.40±0.03b | |
顺式-12-氧-植物-二烯酸 Cis(+)-12-Oxophytodienoic acid | 2.95±0.25a | 2.27±0.18a | 1.24±0.11b | 0.93±0.12b | |
水杨酸 Salicylic acid | 水杨酸Salicylic acid | 35.42±1.64a | 22.87±0.95b | 28.39±2.89ab | 14.59±0.98c |
水杨酸-2-O-β-葡萄糖苷 Salicylic acid 2-O-β-glucoside | 1135.25±119.94a | 219.08±7.58b | 1250.95±62.61a | 211.29±25.88b | |
独角金内酯 Strigolactone | 5-脱氧独脚金醇5-Deoxystrigol | 73.07±4.24a | 68.29±3.38ab | 66.97±2.03ab | 54.83±3.91b |
图2 ‘粤甜’‘巴厘’菠萝品种常温及低温处理样品 PCA分析 C1、C2、C3:粤甜-低温;C4、C5、C6:粤甜-常温;D1、D2、D3:巴厘-低温;
Fig. 2 PCA analysis of the samples of the two cultivars ‘Yuetian’ and ‘Comte de Paris’ under normal and low temperatures D4、D5、D6:巴厘-常温. C1,C2, and C3: Yuetian-LT;C4, C5, and C6:Yuetian-NT;D1, D2, and D3: Comte de Paris-LT;D4, D5, and D6: Comte de Paris-NT
图4 常温(A)及低温处理后(B)‘粤甜’与‘巴厘’间差异代谢物KEGG代谢通路富集
Fig. 4 Differential metabolites KEGG pathways enrichment between ‘Yuetian’ and ‘Comte de Paris’ under normal temperature(A)and after low temperature treatment(B)
[1] |
Yan L, Shah T, Cheng Y, et al. Physiological and molecular responses to cold stress in rapeseed(Brassica napus L.)[J]. J Integr Agric, 2019, 18(12): 2742-2752.
doi: 10.1016/S2095-3119(18)62147-1 URL |
[2] |
Suzuki N, Mittler R. Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction[J]. Physiol Plant, 2006, 126: 45-51.
doi: 10.1111/ppl.2006.126.issue-1 URL |
[3] | 范宗民, 孙军利, 赵宝龙, 等. 不同砧木‘赤霞珠’葡萄枝条抗寒性比较[J]. 果树学报, 2020, 37(2): 215-225. |
Fan ZM, Sun JL, Zhao BL, et al. Evaluation of cold resistance of one-year shoots from’Cabernet Sauvignon’grape vine grafted on different rootstocks[J]. J Fruit Sci, 2020, 37(2): 215-225. | |
[4] | 吴玲利, 李建安, 王楠, 等. 低温胁迫对两个油茶品种开花结实及生理特性的影响[J]. 植物生理学报, 2020, 56(4): 681-692. |
Wu LL, Li JA, Wang N, et al. The effects of low temperature stress on the flowering, fruiting and physiological characteristics of two Camellia oleifera cultivars[J]. Plant Physiol J, 2020, 56(4): 681-692. | |
[5] | 肖玉洁, 李泽明, 易鹏飞, 等. 不同品种烟草响应低温胁迫生理生化差异分析[J]. 分子植物育种, 2019, 17(4): 1346-1351. |
Xiao YJ, Li ZM, Yi PF, et al. Physiological and biochemical differences of different tobacco varieties in response to low temperature stress[J]. Mol Plant Breed, 2019, 17(4): 1346-1351. | |
[6] |
朱春权, 魏倩倩, 项兴佳, 等. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027.
doi: 10.3724/SP.J.1006.2022.12041 |
Zhu CQ, Wei QQ, Xiang XJ, et al. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice[J]. Acta Agron Sin, 2022, 48(8): 2016-2027. | |
[7] | 池再香, 蒋仕华, 白慧, 等. 冬春季低温高湿条件易引发贵州红心猕猴桃溃疡病[J]. 中国农业气象, 2019, 40(9): 591-602. |
Chi ZX, Jiang SH, Bai H, et al. Conditions of low temperature and high humidity in winter and spring easily lead to red cartridge kiwifruit canker disease in Guizhou[J]. Chin J Agrometeorology, 2019, 40(9): 591-602. | |
[8] | 陆新华, 孙德权, 叶春海, 等. 低温胁迫下菠萝幼苗生长与生理特性变化[J]. 西北植物学报, 2010, 30(10): 2054-2060. |
Lu XH, Sun DQ, Ye CH, et al. Growth, physiological characteristics and evaluation of cold tolerance of pineapple seedlings under low temperature stress[J]. Acta Bot Boreali Occidentalia Sin, 2010, 30(10): 2054-2060. | |
[9] | 舒海燕, 冼淑云, 欧艳妃, 等. 通过转化脂肪酸去饱和酶基因AcoFAD2提高菠萝植株的抗寒能力[J]. 分子植物育种, 2021, 19(21): 7132-7137. |
Shu HY, Xian SY, Ou YF, et al. Improving the cold resistance of pineapple plants by transforming fatty acid desaturase gene AcoFAD2[J]. Mol Plant Breed, 2021, 19(21): 7132-7137. | |
[10] | 马帅鹏, 李静, 陈秀龙, 等. 广东江门菠萝的寒害调查和品种特性分析[J]. 中国农学通报, 2014, 30(25): 154-158. |
Ma SP, Li J, Chen XL, et al. Investigation and analysis of chilling damage and variety characteristics of different pineapple varieties in Jiangmen, Guangdong Province[J]. Chin Agric Sci Bull, 2014, 30(25): 154-158. | |
[11] | 刘传和, 贺涵, 邵雪花, 等. 不同抗逆性菠萝品种的差异基因和差异代谢物分析[J]. 西北植物学报, 2022, 42(9): 1514-1522. |
Liu CH, He H, Shao XH, et al. Diversity analysis of differential expressed genes and differential metabolites between two pineapple cultivars with different stress resistance[J]. Acta Bot Boreali Occidentalia Sin, 2022, 42(9): 1514-1522. | |
[12] | 曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导[M]. 北京: 轻工业出版社, 2017, 56-78. |
Cao JK, Jiang WB, ZhaoYM. Guidance on postharvest physiological and biochemical experiments of fruits and vegetables[M]. Beijing: China Light Industry Press, 2017, 56-78. | |
[13] |
Xiao HM, Cai WJ, Ye TT, et al. Spatio-temporal profiling of abscisic acid, indoleacetic acid and jasmonic acid in single rice seed during seed germination[J]. Anal Chimica Acta, 2018, 1031: 119-127.
doi: 10.1016/j.aca.2018.05.055 URL |
[14] |
Floková K, Tarkowská D, Miersch O, et al. UHPLC-MS/MS based target profiling of stress-induced phytohormones[J]. Phytochemistry, 2014, 105: 147-157.
doi: 10.1016/j.phytochem.2014.05.015 pmid: 24947339 |
[15] |
Li Y, Zhou CX, Yan XJ, et al. Simultaneous analysis of ten phytohormones in Sargassum horneri by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry[J]. J Sep Sci, 2016, 39(10): 1804-1813.
doi: 10.1002/jssc.201501239 pmid: 26990813 |
[16] |
Li Q, Song J. Analysis of widely targeted metabolites of the euhalophyte Suaeda salsa under saline conditions provides new insights into salt tolerance and nutritional value in halophytic species[J]. BMC Plant Biol, 2019, 19(1): 388.
doi: 10.1186/s12870-019-2006-5 |
[17] | 孙予璐, 李建东, 孙备, 等. 不同品种紫花苜蓿主要抗寒生理指标对低温的响应[J]. 沈阳农业大学学报, 2017, 48(5): 591-596. |
Sun YL, Li JD, Sun B, et al. Responses of cold resistance physiological indices of different alfalfa varieties to cold stress[J]. J Shenyang Agric Univ, 2017, 48(5): 591-596. | |
[18] | 陆新华, 叶春海, 孙德权, 等. 低温胁迫下10份菠萝种质幼苗的耐寒性评价[J]. 热带作物学报, 2010, 31(11): 1937-1940. |
Lu XH, Ye CH, Sun DQ, et al. Evaluation of cold tolerance on 10 pineapple germplasms under low temperature stress[J]. Chin J Trop Crops, 2010, 31(11): 1937-1940. | |
[19] |
O’Brien JA, Daudi A, Butt VS, et al. Reactive oxygen species and their role in plant defence and cell wall metabolism[J]. Planta, 2012, 236(3): 765-779.
doi: 10.1007/s00425-012-1696-9 pmid: 22767200 |
[20] | 赵训超, 盖胜男, 魏玉磊, 等. 低温胁迫下玉米根系生理变化及相关基因表达分析[J]. 农业生物技术学报, 2020, 28(1)32-41. |
Zhao XC, Gai SN, Wei YL, et al. Analysis of root physiology and related gene expression in maize(Zea mays)under low temperature stress[J]. J Agric Biotechnol, 2020, 28(1)32-41. | |
[21] | 马学才, 方彦, 刘丽君, 等. 低温胁迫下不同温敏性油菜保护酶活性及内源激素变化[J]. 甘肃农业大学学报, 2021, 56(3): 86-94. |
Ma XC, Fang Y, Liu LJ, et al. Change of protective enzyme activities and endogenous hormones in different temperature-sensitive rapes under low-temperature stress[J]. J Gansu Agric Univ, 2021, 56(3): 86-94. | |
[22] |
杨丽, 李洋, 王佳勤, 等. 孕穗期低温对小麦幼穗发育及产量的影响[J]. 核农学报, 2022, 36(12): 2490-2500.
doi: 10.11869/j.issn.100-8551.2022.12.2490 |
Yang L, Li Y, Wang JQ, et al. Effects of low temperature at booting stage on young ears development and yield of wheat[J]. J Nucl Agric Sci, 2022, 36(12): 2490-2500.
doi: 10.11869/j.issn.100-8551.2022.12.2490 |
|
[23] | 丁杨林, 施怡婷, 杨淑华. 植物响应低温胁迫的分子机制研究[J]. 生命科学, 2015, 27(3): 398-405. |
Ding YL, Shi YT, Yang SH. Study on molecular mechanism of plant response to low temperature stress[J]. Chin Bull Life Sci, 2015, 27(3): 398-405. | |
[24] |
王庆彬, 刘治国, 彭春娥, 等. 宛氏拟青霉提取物诱导小白菜抗低温胁迫的作用机理[J]. 核农学报, 2022, 36(2): 473-480.
doi: 10.11869/j.issn.100-8551.2022.02.0473 |
Wang QB, Liu ZG, Peng CE, et al. Mechanism of Paecilomyces variotii extract in inducing pakchoi resistance to low-temperature stress[J]. J Nucl Agric Sci, 2022, 36(2): 473-480. | |
[25] | 刘传和, 贺涵, 何秀古, 等. 壮果催熟对菠萝果实品质及激素的影响[J]. 植物生理学报, 2022, 58(9): 1693-1702. |
Liu CH, He H, He XG, et al. Effects of fruit enlargement and ripening practices on quality and phytohormones of pineapple fruit[J]. Plant Physiol J, 2022, 58(9): 1693-1702. | |
[26] |
许耀照, 孙万仓, 方彦, 等. 自然低温下白菜型冬油菜内源激素和总多酚含量的变化[J]. 核农学报, 2020, 34(7): 1551-1560.
doi: 10.11869/j.issn.100-8551.2020.07.1551 |
Xu YZ, Sun WC, Fang Y, et al. Changes of endogenous hormones and total polyphenols for winter turnip rape(Brassica rapa L.) subjected to low temperature[J]. J Nucl Agric Sci, 2020, 34(7): 1551-1560. | |
[27] |
孙鑫博, 韩烈保. 亚精胺、精胺对结缕草低温下内源激素含量及内源多胺代谢的影响[J]. 草地学报, 2015, 23(4): 804-810.
doi: 10.11733/j.issn.1007-0435.2015.04.020 |
Sun XB, Han LB. Effects of spermidine and spermine on phytohormones content and polyamine metabolism of zoysiagrass under low temperature condition[J]. Acta Agrestia Sin, 2015, 23(4): 804-810. | |
[28] |
Cheng F, Lu JY, Gao M, et al. Redox signaling and CBF-responsive pathway are involved in salicylic acid-improved photosynthesis and growth under chilling stress in watermelon[J]. Front Plant Sci, 2016, 7: 1519.
pmid: 27777580 |
[29] |
Shin H, Min K, Arora R. Exogenous salicylic acid improves freezing tolerance of spinach(Spinacia oleracea L.) leaves[J]. Cryobiology, 2018, 81: 192-200.
doi: 10.1016/j.cryobiol.2017.10.006 URL |
[30] |
Zhang XH, Zhang L, Sun YP, et al. Hydrogen peroxide is involved in strigolactone induced low temperature stress tolerance in rape seedlings(Brassica rapa L.)[J]. Plant Physiol Biochem, 2020, 157: 402-415.
doi: 10.1016/j.plaphy.2020.11.006 URL |
[31] |
Zhang ZJ, Huang RF. Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis[J]. Plant Mol Biol, 2010, 73(3): 241-249.
doi: 10.1007/s11103-010-9609-4 URL |
[32] |
Raza A, Su W, Hussain MA, et al. Integrated analysis of metabolome and transcriptome reveals insights for cold tolerance in rapeseed(Brassica napus L.)[J]. Front Plant Sci, 2021, 12: 721681.
doi: 10.3389/fpls.2021.721681 URL |
[33] |
Gong QQ, Li PH, Ma SS, et al. Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana[J]. Plant J, 2005, 44(5): 826-839.
doi: 10.1111/tpj.2005.44.issue-5 URL |
[34] |
Fürtauer L, Weiszmann J, Weckwerth W, et al. Dynamics of plant metabolism during cold acclimation[J]. Int J Mol Sci, 2019, 20(21): 5411.
doi: 10.3390/ijms20215411 URL |
[35] |
Pourcel L, Routaboul JM, Cheynier V, et al. Flavonoid oxidation in plants: from biochemical properties to physiological functions[J]. Trends Plant Sci, 2007, 12(1): 29-36.
doi: 10.1016/j.tplants.2006.11.006 pmid: 17161643 |
[36] |
Schulz E, Tohge T, Zuther E, et al. Natural variation in flavonol and anthocyanin metabolism during cold acclimation in Arabidopsis thaliana accessions[J]. Plant Cell Environ, 2015, 38(8): 1658-1672.
doi: 10.1111/pce.2015.38.issue-8 URL |
[37] | 段志芳, 刘文华, 马延红. 橙皮苷衍生物的制备鉴定及抗氧化活性研究[J]. 食品工业科技, 2019, 40(8): 37-42, 48. |
Duan ZF, Liu WH, Ma YH. Study on the preparation, identification and anti-oxidation activity of hesperidin derivatives[J]. Sci Technol Food Ind, 2019, 40(8): 37-42, 48. | |
[38] |
Jakhar R, Paul S, Park YR, et al. 3, 5, 7, 3', 4’-pentamethoxyflavone, a quercetin derivative protects DNA from oxidative challenges: potential mechanism of action[J]. J Photochem Photobiol B, 2014, 131: 96-103.
doi: 10.1016/j.jphotobiol.2014.01.003 URL |
[39] | 秦涛, 高祉婧, 苏艳芳, 等. 芦根化学成分及其抗氧化和α-葡萄糖苷酶抑制活性[J]. 中成药, 2022, 44(3): 798-806. |
Qin T, Gao ZJ, Su YF, et al. Chemical constituents from Phragmites communis and their antioxidant and α-glucosidase inhibitory activities[J]. Chin Tradit Pat Med, 2022, 44(3): 798-806. | |
[40] |
Singh R, Singh B, Singh S, et al. Umbelliferone-an antioxidant isolated from Acacia nilotica(L.) Willd. ex. del[J]. Food Chem, 2010, 120(3): 825-830.
doi: 10.1016/j.foodchem.2009.11.022 URL |
[41] | 李敏, 王垠, 牟晓飞, 等. 拟南芥芥子酸酯对UV-B辐射的响应[J]. 生态学报, 2012, 32(7): 1987-1994. |
Li M, Wang Y, Mu XF, et al. Response of sinapate esters in Arabidopsis thaliana to UV-B radiation[J]. Acta Ecol Sin, 2012, 32(7): 1987-1994. | |
[42] | 杜乐乐. 黄蜀葵非药用部位资源化学及生物转化研究[D]. 南京: 南京中医药大学, 2016. |
Du LL. Study on resource chemistry and biotransformation of non-medicinal parts of Abelmoschus manihot[D]. Nanjing: Nanjing University of Chinese Medicine, 2016. | |
[43] |
Zhang C, Zhang GW, Liao YJ, et al. Myricetin inhibits the generation of superoxide anion by reduced form of xanthine oxidase[J]. Food Chem, 2017, 221: 1569-1577.
doi: S0308-8146(16)31815-5 pmid: 27979130 |
[44] | 李子祥, 邓敏, 王晨悦, 等. 基于UPLC/Q-TOF MS/MS的花生油成分分析[J]. 中国油脂, 2021, 46(3):122-127. |
Li ZX, Deng M, Wang CY, et al. Component analysis of peanut oil based on UPLC/Q-TOF MS/MS[J]. China Oils Fats, 2021, 46(3): 122-127. | |
[45] | 杨建, 江煜章, 杨玉红. 基于LC-MS/MS羊肚菌子实体生物碱类代谢物差异分析[J]. 菌物研究, 2022, https://kns.cnki.net/kcms/detail/22.1352.S.20221122.1707.002.html. |
Yang J, Jiang YZ, Yang YH. Based on LC-MS/MS analysis of alkaloid metabolites in Morchella fruiting body[J]. Journal of Fungal Research, 2022, https://kns.cnki.net/kcms/detail/22.1352.S.20221122.1707.002.html. |
[1] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[2] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[3] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[4] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[5] | 于世霞, 姜雨彤, 林文慧. 胚珠原基起始的信号与分子机制研究进展[J]. 生物技术通报, 2023, 39(2): 1-9. |
[6] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[7] | 位欣欣, 兰海燕. 植物MYB转录因子调控次生代谢及逆境响应的研究进展[J]. 生物技术通报, 2022, 38(8): 12-23. |
[8] | 洪天澍, 海英, 恩和巴雅尔, 高峰. 甜瓜CmABCG8基因的表达特性分析[J]. 生物技术通报, 2022, 38(7): 178-185. |
[9] | 刘传和, 贺涵, 何秀古, 赖秋勤, 刘开, 邵雪花, 赖多, 匡石滋, 肖维强. 转录组与代谢组联合分析菠萝网纱覆盖防寒机制[J]. 生物技术通报, 2022, 38(11): 58-69. |
[10] | 刘传和, 贺涵, 何秀古, 刘开, 邵雪花, 赖多, 匡石滋, 肖维强. 不同连作年限菠萝园土壤差异代谢物和细菌群落结构分析[J]. 生物技术通报, 2021, 37(8): 162-175. |
[11] | 韩少杰, 郑经武. 寄主对大豆孢囊线虫抗性相关基因功能研究进展[J]. 生物技术通报, 2021, 37(7): 14-24. |
[12] | 黄文坤, 于敬文, 贾建平, 彭德良. 植物激素对植物寄生线虫取食位点建立与发育的影响[J]. 生物技术通报, 2021, 37(7): 56-64. |
[13] | 詹冬梅, 朱晨, 周承哲, 黄雪婷, 赖钟雄, 郭玉琼. 茶树Gro/Tup1基因家族鉴定及外源激素和非生物胁迫下表达分析[J]. 生物技术通报, 2021, 37(12): 1-12. |
[14] | 纪超, 王晓辉, 刘训理. 盐胁迫环境下植物促生菌的作用机制研究进展[J]. 生物技术通报, 2020, 36(4): 131-143. |
[15] | 王丹, 李圣彦, 刘进平, 郎志宏. 玉米萜类合成酶基因tps2的功能及其启动子功能区段鉴定[J]. 生物技术通报, 2020, 36(12): 1-11. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||