生物技术通报 ›› 2023, Vol. 39 ›› Issue (11): 252-260.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0073
收稿日期:
2023-02-01
出版日期:
2023-11-26
发布日期:
2023-12-20
通讯作者:
王玉书,女,博士,副教授,研究方向:园艺植物分子生物学;E-mail: wangys1019@126.com作者简介:
葛雯冬,女,硕士研究生,研究方向:生物化学与分子生物学;E-mail: 2524322881@qq.com
基金资助:
GE Wen-dong(), WANG Teng-hui, MA Tian-yi, FAN Zhen-yu, WANG Yu-shu()
Received:
2023-02-01
Published:
2023-11-26
Online:
2023-12-20
摘要:
III类过氧化物酶(class III peroxidases, PRX)在植物生长发育和胁迫响应中发挥重要的作用,本研究利用生物信息学方法对结球甘蓝PRX基因家族进行鉴定,预测其结构和功能,并分析PRX基因在逆境条件下的表达模式,旨在明确甘蓝PRX基因家族的进化关系和功能。结果表明,结球甘蓝基因组中共鉴定出125个BoPRX基因家族成员,不均匀的分布在9条染色体上;编码氨基酸173-488 aa,大部分为亲水蛋白;亚细胞定位预测BoPRX基因大部分定位在叶绿体上。系统进化分析将甘蓝PRX蛋白分为5个亚族,每个亚族的成员都含有相似的外显子/内含子结构和蛋白质保守基序;启动子区域分析发现,BoPRX启动子序列中含有多种与激素和逆境等胁迫响应相关的顺式调控元件;基于转录组数据的热图分析显示,BoPRXs表达在叶绿体中最多。荧光定量PCR分析显示,6个BoPRX基因均受NaCl和PEG诱导上调;在ABA处理下,除BoPRX100外其余基因的表达在大部分时间被抑制,这些基因均受到ABA的差异调控,说明这些BoPRX基因都参与了ABA信号通路。综上所述,本研究揭示了PRX的复杂调控依赖于PRX的类型和信号分子,为进一步分析甘蓝PRX家族关键成员的功能提供了有价值的信息。
葛雯冬, 王腾辉, 马天意, 范震宇, 王玉书. 结球甘蓝PRX基因家族全基因组鉴定与逆境条件下的表达分析[J]. 生物技术通报, 2023, 39(11): 252-260.
GE Wen-dong, WANG Teng-hui, MA Tian-yi, FAN Zhen-yu, WANG Yu-shu. Genome-wide Identification of the PRX Gene Family in Cabbage(Brassica oleracea L. var. capitata)and Expression Analysis Under Abiotic Stress[J]. Biotechnology Bulletin, 2023, 39(11): 252-260.
基因名称Gene name | 正向引物 Forward primer(5'-3') | 反向引物Reverse primer(5'-3') |
---|---|---|
BoActin | CGTGACCTTACTGACTACC | CTCCATCTCCTGCTCGTA |
BoPRX12 | TCTACGACAGTTCATGCCCAAACG | GTGGAAGTGAAGACGAAGGATGCTC |
BoPRX44 | CCAGAGCGACCAAGAGTTGTTCTC | TCCTTGTCATTGCGTCCACGAAC |
BoPRX99 | TCCAACGCCACTGACACAATTCC | ATCCTATTCATCGCCTCCACAAACG |
BoPRX100 | GTCCGATGCTCAACTTACACCTACC | GTGGAAGTGAAGACGAAGGATGCTC |
BoPRX113 | TCAGTCGAGTTGGCAGGAGGTC | AAGCGTGAAGAATGGAGCAGGAAG |
BoPRX116 | CCAGAGCGACCAAGAGTTGTTCTC | TTCCCATCCTTTTCATTGCCTCCAC |
表1 荧光定量PCR引物
Table 1 Primer information for qRT-PCR
基因名称Gene name | 正向引物 Forward primer(5'-3') | 反向引物Reverse primer(5'-3') |
---|---|---|
BoActin | CGTGACCTTACTGACTACC | CTCCATCTCCTGCTCGTA |
BoPRX12 | TCTACGACAGTTCATGCCCAAACG | GTGGAAGTGAAGACGAAGGATGCTC |
BoPRX44 | CCAGAGCGACCAAGAGTTGTTCTC | TCCTTGTCATTGCGTCCACGAAC |
BoPRX99 | TCCAACGCCACTGACACAATTCC | ATCCTATTCATCGCCTCCACAAACG |
BoPRX100 | GTCCGATGCTCAACTTACACCTACC | GTGGAAGTGAAGACGAAGGATGCTC |
BoPRX113 | TCAGTCGAGTTGGCAGGAGGTC | AAGCGTGAAGAATGGAGCAGGAAG |
BoPRX116 | CCAGAGCGACCAAGAGTTGTTCTC | TTCCCATCCTTTTCATTGCCTCCAC |
[1] |
Passardi F, Cosio C, Penel C, et al. Peroxidases have more functions than a Swiss army knife[J]. Plant Cell Rep, 2005, 24(5): 255-265.
doi: 10.1007/s00299-005-0972-6 pmid: 15856234 |
[2] | 魏崃, 张丽, 王伟威, 等. 大豆过氧化物酶III的生物信息学分析[J]. 分子植物育种, 2015, 13(11): 2453-2460. |
Wei L, Zhang L, Wang WW, et al. Bioinformatics analysis of class III peroxidases in Glycine max[J]. Mol Plant Breed, 2015, 13(11): 2453-2460. | |
[3] |
Cosio C, Dunand C. Transcriptome analysis of various flower and silique development stages indicates a set of class III peroxidase genes potentially involved in pod shattering in Arabidopsis thaliana[J]. BMC Genomics, 2010, 11: 528.
doi: 10.1186/1471-2164-11-528 URL |
[4] |
Hiraga S, Sasaki K, Ito H, et al. A large family of class III plant peroxidases[J]. Plant Cell Physiol, 2001, 42(5): 462-468.
doi: 10.1093/pcp/pce061 pmid: 11382811 |
[5] |
Almagro L, Gómez Ros LV, Belchi-Navarro S, et al. Class III peroxidases in plant defence reactions[J]. J Exp Bot, 2009, 60(2): 377-390.
doi: 10.1093/jxb/ern277 pmid: 19073963 |
[6] |
Kidwai M, Dhar YV, Gautam N, et al. Oryza sativa class III peroxidase(OsPRX38)overexpression in Arabidopsis thaliana reduces arsenic accumulation due to apoplastic lignification[J]. J Hazard Mater, 2019, 362: 383-393.
doi: S0304-3894(18)30824-0 pmid: 30245406 |
[7] |
Shigeto J, Tsutsumi Y. Diverse functions and reactions of class III peroxidases[J]. New Phytol, 2016, 209(4): 1395-1402.
doi: 10.1111/nph.13738 pmid: 26542837 |
[8] |
Mohr PG, Cahill DM. Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato[J]. Funct Integr Genomics, 2007, 7(3): 181-191.
doi: 10.1007/s10142-006-0041-4 URL |
[9] |
Wang Y, Wang QQ, Zhao Y, et al. Systematic analysis of maize class III peroxidase gene family reveals a conserved subfamily involved in abiotic stress response[J]. Gene, 2015, 566(1): 95-108.
doi: 10.1016/j.gene.2015.04.041 pmid: 25895479 |
[10] |
Yang X, Yuan JZ, Luo WB, et al. Genome-wide identification and expression analysis of the class III peroxidase gene family in potato(Solanum tuberosum L.)[J]. Front Genet, 2020, 11: 593577.
doi: 10.3389/fgene.2020.593577 URL |
[11] |
Tognolli M, Penel C, Greppin H, et al. Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana[J]. Gene, 2002, 288(1/2): 129-138.
doi: 10.1016/S0378-1119(02)00465-1 URL |
[12] | Cao YP, Han YH, Meng DD, et al. Structural, evolutionary, and functional analysis of the class III peroxidase gene family in Chinese pear(Pyrus bretschneideri)[J]. Front Plant Sci, 2016, 7: 1874. |
[13] | 周禹, 李燕, 孙勃, 等. 芥蓝与甘蓝其他变种分类关系的研究[J]. 园艺学报, 2010, 37(7): 1161-1168. |
Zhou Y, Li Y, Sun B, et al. Taxonomic relationship between Chinese kale and other varieties in Brassica oleracea L[J]. Acta Hortic Sin, 2010, 37(7): 1161-1168. | |
[14] |
Finn RD, Coggill P, Eberhardt RY, et al. The Pfam protein families database: towards a more sustainable future[J]. Nucleic Acids Res, 2016, 44(D1): D279-D285.
doi: 10.1093/nar/gkv1344 URL |
[15] |
Letunic I, Doerks T, Bork P. SMART: recent updates, new developments and status in 2015[J]. Nucleic Acids Res, 2015, 43(Database issue): D257-D260.
doi: 10.1093/nar/gku949 URL |
[16] |
梁桂红, 华营鹏, 周婷, 等. 甘蓝型油菜NRT1.5和NRT1.8家族基因的生物信息学分析及其对氮-镉胁迫的响应[J]. 作物学报, 2019, 45(3): 365-380.
doi: 10.3724/SP.J.1006.2019.84099 |
Liang GH, Hua YP, Zhou T, et al. Bioinformatics analysis and response to nitrate-cadmium stress of NRT1.5 and NRT1.8 family genes in Brassica napus[J]. Acta Agron Sin, 2019, 45(3): 365-380.
doi: 10.3724/SP.J.1006.2019.84099 URL |
|
[17] |
Chen CJ, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8): 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[18] |
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7): 1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904 |
[19] | 郑雪, 王慧娜, 朱彦秋, 等. 胡黄连GPPS基因的生物信息学分析[J]. 河南农业科学, 2018, 47(6): 104-110. |
Zheng X, Wang HN, Zhu YQ, et al. Bioinformatics analysis of GPPS gene of Picrorrhiza royle[J]. J Henan Agric Sci, 2018, 47(6): 104-110. | |
[20] |
Lysak MA, Koch MA, Pecinka A, et al. Chromosome triplication found across the tribe Brassiceae[J]. Genome Res, 2005, 15(4): 516-525.
doi: 10.1101/gr.3531105 URL |
[21] | 陈国户, 王浩, 李广, 等. 白菜PRX基因家族的鉴定与生物信息学分析[J]. 浙江大学学报: 农业与生命科学版, 2020, 46(6): 677-686. |
Chen GH, Wang H, Li G, et al. Genome-wide identification and bioinformatics analysis of PRX gene family in Brassica rapa[J]. J Zhejiang Univ Agric Life Sci, 2020, 46(6): 677-686. | |
[22] |
Ren LL, Liu YJ, Liu HJ, et al. Subcellular relocalization and positive selection play key roles in the retention of duplicate genes of Populus class III peroxidase family[J]. Plant Cell, 2014, 26(6): 2404-2419.
doi: 10.1105/tpc.114.124750 URL |
[23] | 王浩. 芸薹属植物PRX基因家族的比较基因组学研究[D]. 合肥: 安徽农业大学, 2021. |
Wang H. Comparative genomics study on PRX gene family in Brassica plants[D]. Hefei: Anhui Agricultural University, 2021. | |
[24] | 冯立娟, 史作亚, 杨雪梅, 等. 石榴POD基因家族鉴定及生物信息学分析[J]. 分子植物育种, 2020, 18(10): 3172-3184. |
Feng LJ, Shi ZY, Yang XM, et al. Identification and bioinformatics analysis of peroxidase gene family in pomegranate[J]. Mol Plant Breed, 2020, 18(10): 3172-3184. | |
[25] |
姚丹, 倪晓鹏, 侍婷, 等. 果梅NAC基因家族的鉴定及组织表达分析[J]. 核农学报, 2019, 33(2): 226-239.
doi: 10.11869/j.issn.100-8551.2019.02.0226 |
Yao D, Ni XP, Shi T, et al. Identification and tissue expression analysis of NAC GeneFamily in Prunus mume[J]. J Nucl Agric Sci, 2019, 33(2): 226-239. | |
[26] |
Wu AM, Hao PB, Wei HL, et al. Genome-wide identification and characterization of glycosyltransferase family 47 in cotton[J]. Front Genet, 2019, 10: 824.
doi: 10.3389/fgene.2019.00824 pmid: 31572442 |
[27] |
Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters[J]. Trends Plant Sci, 2005, 10(2): 88-94.
doi: 10.1016/j.tplants.2004.12.012 pmid: 15708346 |
[28] |
Fujita M, Fujita Y, Noutoshi Y, et al. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks[J]. Current opinion in plant biology, 2006, 9(4): 436-442.
doi: 10.1016/j.pbi.2006.05.014 pmid: 16759898 |
[29] |
Barranco-Medina S, Krell T, Bernier-Villamor L, et al. Hexameric oligomerization of mitochondrial peroxiredoxin PrxIIF and formation of an ultrahigh affinity complex with its electron donor thioredoxin Trx-O[J]. J Exp Bot, 2008, 59(12): 3259-3269.
doi: 10.1093/jxb/ern177 pmid: 18632730 |
[30] |
Dietz KJ. Peroxiredoxins in plants and cyanobacteria[J]. Antioxid Redox Signal, 2011, 15(4): 1129-1159.
doi: 10.1089/ars.2010.3657 URL |
[1] | 王腾辉, 葛雯冬, 罗雅方, 范震宇, 王玉书. 基于极端混合池(BSA)全基因组重测序的羽衣甘蓝白色叶基因定位[J]. 生物技术通报, 2023, 39(9): 176-182. |
[2] | 王佳蕊, 孙培媛, 柯瑾, 冉彬, 李洪有. 苦荞糖基转移酶基因FtUGT143的克隆及表达分析[J]. 生物技术通报, 2023, 39(8): 204-212. |
[3] | 孙明慧, 吴琼, 刘丹丹, 焦小雨, 王文杰. 茶树CsTMFs的克隆与表达分析[J]. 生物技术通报, 2023, 39(7): 151-159. |
[4] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[5] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[6] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[7] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
[8] | 肖小军, 陈明, 韩德鹏, 余跑兰, 郑伟, 肖国滨, 周庆红, 周会汶. 甘蓝型油菜每角果粒数全基因组关联分析[J]. 生物技术通报, 2023, 39(3): 143-151. |
[9] | 刘思佳, 王浩楠, 付宇辰, 闫文欣, 胡增辉, 冷平生. ‘西伯利亚’百合LiCMK基因克隆及功能分析[J]. 生物技术通报, 2023, 39(3): 196-205. |
[10] | 王涛, 漆思雨, 韦朝领, 王艺清, 戴浩民, 周喆, 曹士先, 曾雯, 孙威江. CsPPR和CsCPN60-like在茶树白化叶片中的表达分析及互作蛋白验证[J]. 生物技术通报, 2023, 39(3): 218-231. |
[11] | 蔡梦鲜, 高作敏, 胡利娟, 冯群, 王洪程, 朱斌. 天然甘蓝型油菜C染色体组C1,C2缺体的创建及遗传分析[J]. 生物技术通报, 2023, 39(3): 81-88. |
[12] | 庞强强, 孙晓东, 周曼, 蔡兴来, 张文, 王亚强. 菜心BrHsfA3基因克隆及其对高温胁迫的响应[J]. 生物技术通报, 2023, 39(2): 107-115. |
[13] | 苗淑楠, 高宇, 李昕儒, 蔡桂萍, 张飞, 薛金爱, 季春丽, 李润植. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析[J]. 生物技术通报, 2023, 39(2): 96-106. |
[14] | 韩芳英, 胡昕, 王楠楠, 谢裕红, 王晓艳, 朱强. DREBs响应植物非生物逆境胁迫研究进展[J]. 生物技术通报, 2023, 39(11): 86-98. |
[15] | 杨旭妍, 赵爽, 马天意, 白玉, 王玉书. 三个甘蓝WRKY基因的克隆及其对非生物胁迫的表达[J]. 生物技术通报, 2023, 39(11): 261-269. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||