生物技术通报 ›› 2023, Vol. 39 ›› Issue (12): 158-168.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0390
杨艳1(), 莫雨杏2, 周祎1, 陈惠明3, 肖浪涛1(), 王若仲1()
收稿日期:
2023-04-23
出版日期:
2023-12-26
发布日期:
2024-01-11
通讯作者:
王若仲,男,博士,教授,研究方向:植物生理学;E-mail: wangruozhong@hunau.edu.cn;作者简介:
杨艳,女,硕士,研究助理,研究方向:植物激素与生长发育;E-mail: 976664175@qq.com
基金资助:
YANG Yan1(), MO Yu-xing2, ZHOU Yi1, CHEN Hui-ming3, XIAO Lang-tao1(), WANG Ruo-zhong1()
Received:
2023-04-23
Published:
2023-12-26
Online:
2024-01-11
摘要:
明确黄瓜内果皮汁液在种子萌发中的作用、化学成分及机制,为基于黄瓜来源的种子萌发抑制剂研发提供一定的理论依据。以易胎萌黄瓜(C-L)种子为供试材料,研究难胎萌黄瓜(M-H)内果皮汁液(质量分数为100%、50%)及其不同提取液(质量分数为3%)对C-L种子萌发的影响,并分析汁液化学成分。针对质量分数为100%的M-H汁液和蒸馏水(对照)处理的种子生理生化指标动态变化进行分析。质量分数为100%、50%的M-H黄瓜内果皮汁液对C-L种子萌发均表现出显著的抑制作用,20 h抑制率分别为100%和73%。乙醇相、正丁醇相在种子整个萌发过程中均发挥抑制作用,与对照相比,26 h其抑制率分别提高12.22%和47.77%。在汁液中鉴定到影响种子萌发的化合物:肉豆蔻酸、棕榈酸、柠檬酸和组氨酸。质量分数为100%汁液处理的种子可溶性糖含量变化不大。植物激素ABA含量一直高于对照,ABA/GA3 0-20 h显著高于对照。ABA合成酶基因CsNCED1 10-15 h表达量增加,CsNCED2 15-25 h表达量显著增加;ABA信号转导基因CsPYL2、CsPP2C2、CsSnRK2和代谢基因CsCYP707A1 10 h后表达量均显著增加,20 h时表达量均最高。黄瓜内果皮汁液中的肉豆蔻酸、棕榈酸、柠檬酸、组氨酸可能通过促使ABA合成基因CsNCED2及信号转导基因CsPYL2、CsPP2C2、CsSnRK2表达量增加,从而使得ABA含量提高,同时阻碍可溶性糖代谢,进而有效抑制种子萌发。
杨艳, 莫雨杏, 周祎, 陈惠明, 肖浪涛, 王若仲. 黄瓜内果皮汁液对种子萌发的影响[J]. 生物技术通报, 2023, 39(12): 158-168.
YANG Yan, MO Yu-xing, ZHOU Yi, CHEN Hui-ming, XIAO Lang-tao, WANG Ruo-zhong. Effects of Cucumber Endocarp Juice on Seed Germination[J]. Biotechnology Bulletin, 2023, 39(12): 158-168.
时间 Time/min | 流动相A Mobile phase A/% | 流动相B Mobile phase B/% |
---|---|---|
0 | 90 | 10 |
5 | 98 | 2 |
8 | 85 | 15 |
14 | 73 | 27 |
15 | 70 | 30 |
20 | 65 | 35 |
25 | 5 | 95 |
30 | 5 | 95 |
30.1 | 98 | 2 |
35 | 98 | 2 |
表1 流动相及保留时间基本情况
Table 1 Basic situation of mobile phase and retention time
时间 Time/min | 流动相A Mobile phase A/% | 流动相B Mobile phase B/% |
---|---|---|
0 | 90 | 10 |
5 | 98 | 2 |
8 | 85 | 15 |
14 | 73 | 27 |
15 | 70 | 30 |
20 | 65 | 35 |
25 | 5 | 95 |
30 | 5 | 95 |
30.1 | 98 | 2 |
35 | 98 | 2 |
编号Code | 基因Gene | 引物序列Primer sequence(5'-3') |
---|---|---|
1 | CsNCED1 | F: CACGCTGTCAGCATCAATCATGG R: GAAGGCGTGATACGCACGTGG |
2 | CsNCED2 | F: AAGACGACGGCCACATCTTAGCC R: GACGTAAATTCACACTCATCCCGC |
3 | CsYP707A1 | F: CGAAGACCTCAAGGGATGCTACTAC R: GCAGCGAAGATGAGACCTATGACG |
4 | CsPYL2 | F: GATGCAGGATGCAGTTGAACCAATT R: AAACAGAACTCCACACTTCCCCACT |
5 | CsPP2C2 | F: AGTGGAACGGACATCGTGTGTTTG R: AGCAAGAGATGAAGCCCCGTGTT |
6 | CsSnRK2 | F: AGTTCACAGATGAAGGGTTGGAAGG R: GACAATGACTAGCACTCCAAGGCAC |
表2 相关基因及qPCR引物
Table 2 Related genes and qPCR primers
编号Code | 基因Gene | 引物序列Primer sequence(5'-3') |
---|---|---|
1 | CsNCED1 | F: CACGCTGTCAGCATCAATCATGG R: GAAGGCGTGATACGCACGTGG |
2 | CsNCED2 | F: AAGACGACGGCCACATCTTAGCC R: GACGTAAATTCACACTCATCCCGC |
3 | CsYP707A1 | F: CGAAGACCTCAAGGGATGCTACTAC R: GCAGCGAAGATGAGACCTATGACG |
4 | CsPYL2 | F: GATGCAGGATGCAGTTGAACCAATT R: AAACAGAACTCCACACTTCCCCACT |
5 | CsPP2C2 | F: AGTGGAACGGACATCGTGTGTTTG R: AGCAAGAGATGAAGCCCCGTGTT |
6 | CsSnRK2 | F: AGTTCACAGATGAAGGGTTGGAAGG R: GACAATGACTAGCACTCCAAGGCAC |
试剂Reagent | 体积Volume/μL |
---|---|
2×ChamQ Universal SYBR qPCR Master Mix | 5 |
Forward primer | 0.2 |
Reverse primer | 0.2 |
cDNA | 0.4 |
ddH2O | Up to 10 |
表3 反应体系
Table 3 Reaction system
试剂Reagent | 体积Volume/μL |
---|---|
2×ChamQ Universal SYBR qPCR Master Mix | 5 |
Forward primer | 0.2 |
Reverse primer | 0.2 |
cDNA | 0.4 |
ddH2O | Up to 10 |
图1 黄瓜果实胎萌表型 A:C-L果实;B:C-L剖开的果实;C:M-H果实;D:M-H剖开的果实;E:C-L果实中取出的幼苗;F:C-L果实中未萌发种子取出后的萌发表型
Fig. 1 Viviparous phenotypes of cucumber fruits A: C-L fruit; B: C-L split fruit; C: M-H fruit; D: M-H split fruit; E: seedlings taken from C-L fruit; F: germination phenotype of ungerminated seeds in C-L fruit after removal
图2 汁液处理的黄瓜种子萌发表型 A:CK(蒸馏水);B:50%汁液;C:100%汁液
Fig. 2 Germination phenotypes of cucumber seeds treated with juice A: CK(distilled water); B: 50% juice; C: 100% juice
图3 汁液处理的黄瓜种子萌发率 不同小写字母表示不同处理条件下黄瓜种子萌发率差异显著(P<0.05)。下同
Fig. 3 Germination rate of cucumber seeds treated with juice Different lowercase letters in the figure indicate significant differences in cucumber seed germination rates under different treatments(P<0.05). The same below
图4 汁液提取液处理的黄瓜种子萌发表型 A:CK(蒸馏水);B:乙醇相;C:石油醚相;D:乙酸乙酯相;E:正丁醇相;F:水相
Fig. 4 Germination phenotypes of cucumber seeds treated with the extracts of juice A: CK(distilled water); B: EtOH layer; C: PET layer; D: EtOAc layer; E: n-BuOH layer; F: water layer
序号No | 保留时间tR/min | 分子式Formula | 化合物Compounds | 加和离子 Plus ion | 误差值Error/ppm | 实际值Experimental mass/(m/z) | 理论值Theoretical mass/(m/z) |
---|---|---|---|---|---|---|---|
1 | 1.16 | C12H20O4 | 延胡索酸丁二酯 | Na+ | -1.143 0 | 228.135 1 | 252.135 4 |
2 | 1.34 | C5H13NO | 缬氨醇 | H+ | -8.759 0 | 104.106 1 | 104.107 0 |
3 | 1.34 | C5H10O | 环戊醇 | NH4+ | -8.759 0 | 104.106 1 | 104.107 0 |
4 | 1.45 | C6H9N3O2 | 组氨酸 | H+ | -0.815 0 | 156.076 7 | 156.076 8 |
5 | 2.18 | C6H8O7 | 柠檬酸 | H+ | 6.500 0 | 193.035 5 | 193.034 3 |
6 | 2.28 | C5H7NO3 | D-5-Oxoproline | H+ | 9.141 0 | 130.051 1 | 130.049 9 |
7 | 9.95 | C12H26O7 | 六乙二醇 | NH4+ | -0.514 0 | 300.201 6 | 300.201 7 |
8 | 10.42 | C14H30O8 | 七聚乙二醇 | NH4+ | -7.189 0 | 344.225 4 | 344.257 9 |
9 | 10.42 | C12H28N3O7 | (1R,2R,3S,4R,6S)-4,6-Diammonio-2,3-dihydroxycyclohexyl2-ammonio-2-deoxy-α-D-glucopyranoside | NH4+ | -3.289 0 | 344.225 4 | 344.226 6 |
10 | 10.92 | C16H34O9 | 伸辛二醇 | NH4+ | -0.363 0 | 388.25 4 | 388.254 1 |
11 | 11.00 | C12H20O4 | 己二酸-3-甲基-1,5-戊二醇二酯 | Na+ | -1.143 0 | 251.125 1 | 251.125 4 |
12 | 11.33 | C12H19NO2 | DOM | NH4+ | -3.025 0 | 227.174 7 | 227.175 4 |
13 | 11.33 | C12H22N2O2 | 克罗乙胺 | H+ | -3.025 0 | 227.174 7 | 227.175 4 |
14 | 11.33 | C15H24 | 石竹烯 | Na+ | -10.145 0 | 227.174 7 | 227.177 0 |
15 | 11.43 | C18H38O10 | 酒甘醇 | NH4+ | 0.996 0 | 432.280 6 | 432.280 3 |
16 | 11.92 | C20H42O11 | 二甘醇 | NH4+ | -2.011 0 | 476.305 6 | 476.306 5 |
17 | 12.40 | C22H46O12 | 十一乙二醇 | NH4+ | 2.990 0 | 520.334 3 | 520.332 8 |
18 | 14.58 | C4H8O2 | 4-羟基-2-丁酮 | H+ | 5.896 0 | 89.060 2 | 89.059 7 |
19 | 14.62 | C8H18O3 | 原乙酸三乙酯 | H+ | 3.692 0 | 163.133 5 | 163.132 9 |
20 | 15.59 | C31H64O16 | 十六乙二醇单甲醚 | NH4+ | -1.671 0 | 710.452 1 | 710.453 3 |
21 | 16.68 | C6H12O2 | 己酸 | K+ | -8.091 0 | 155.045 6 | 155.046 9 |
22 | 16.68 | C9H8O | 4-甲氧基苯乙炔 | Na+ | -7.111 0 | 155.045 6 | 155.466 7 |
23 | 16.68 | C6H6N2O3 | 硝基酚 | H+ | 3.321 0 | 155.047 4 | 155.045 6 |
24 | 18.73 | C9H18N2O | 4-(4-piperidyl)morpholine | H+ | 6.252 0 | 171.150 3 | 171.149 2 |
25 | 23.49 | C16H32O2 | 棕榈酸 | NH4+ | -4.715 0 | 274.272 8 | 274.274 1 |
26 | 23.49 | C16H35NO2 | (2)- n-methylamino 3 7 11-trme- | H+ | -4.715 0 | 274.272 8 | 274.274 1 |
27 | 23.96 | C9H16O | 壬二烯醛类 | NH4+ | -7.653 0 | 158.152 7 | 158.153 9 |
28 | 23.96 | C9H19NO | 四甲基哌啶醇 | H+ | -7.953 0 | 158.152 7 | 158.153 9 |
29 | 23.96 | C7H17N4 | 1-(Diaminomethylene)-4-ethylpiperazin-1-ium | H+ | 0.837 0 | 158.152 7 | 158.152 6 |
30 | 25.86 | C14H28O2 | 肉豆蔻酸 | NH4+ | -0.777 0 | 246.242 8 | 246.242 6 |
31 | 27.36 | C19H47 N7O4 | 己二酸 | H+ | -3.471 0 | 483.374 7 | 483.376 2 |
32 | 31.85 | C6H12N4 | 乌洛托品 | H+ | -0.067 0 | 141.113 5 | 141.113 5 |
表4 汁液化学成分
Table 4 Compounds of juice
序号No | 保留时间tR/min | 分子式Formula | 化合物Compounds | 加和离子 Plus ion | 误差值Error/ppm | 实际值Experimental mass/(m/z) | 理论值Theoretical mass/(m/z) |
---|---|---|---|---|---|---|---|
1 | 1.16 | C12H20O4 | 延胡索酸丁二酯 | Na+ | -1.143 0 | 228.135 1 | 252.135 4 |
2 | 1.34 | C5H13NO | 缬氨醇 | H+ | -8.759 0 | 104.106 1 | 104.107 0 |
3 | 1.34 | C5H10O | 环戊醇 | NH4+ | -8.759 0 | 104.106 1 | 104.107 0 |
4 | 1.45 | C6H9N3O2 | 组氨酸 | H+ | -0.815 0 | 156.076 7 | 156.076 8 |
5 | 2.18 | C6H8O7 | 柠檬酸 | H+ | 6.500 0 | 193.035 5 | 193.034 3 |
6 | 2.28 | C5H7NO3 | D-5-Oxoproline | H+ | 9.141 0 | 130.051 1 | 130.049 9 |
7 | 9.95 | C12H26O7 | 六乙二醇 | NH4+ | -0.514 0 | 300.201 6 | 300.201 7 |
8 | 10.42 | C14H30O8 | 七聚乙二醇 | NH4+ | -7.189 0 | 344.225 4 | 344.257 9 |
9 | 10.42 | C12H28N3O7 | (1R,2R,3S,4R,6S)-4,6-Diammonio-2,3-dihydroxycyclohexyl2-ammonio-2-deoxy-α-D-glucopyranoside | NH4+ | -3.289 0 | 344.225 4 | 344.226 6 |
10 | 10.92 | C16H34O9 | 伸辛二醇 | NH4+ | -0.363 0 | 388.25 4 | 388.254 1 |
11 | 11.00 | C12H20O4 | 己二酸-3-甲基-1,5-戊二醇二酯 | Na+ | -1.143 0 | 251.125 1 | 251.125 4 |
12 | 11.33 | C12H19NO2 | DOM | NH4+ | -3.025 0 | 227.174 7 | 227.175 4 |
13 | 11.33 | C12H22N2O2 | 克罗乙胺 | H+ | -3.025 0 | 227.174 7 | 227.175 4 |
14 | 11.33 | C15H24 | 石竹烯 | Na+ | -10.145 0 | 227.174 7 | 227.177 0 |
15 | 11.43 | C18H38O10 | 酒甘醇 | NH4+ | 0.996 0 | 432.280 6 | 432.280 3 |
16 | 11.92 | C20H42O11 | 二甘醇 | NH4+ | -2.011 0 | 476.305 6 | 476.306 5 |
17 | 12.40 | C22H46O12 | 十一乙二醇 | NH4+ | 2.990 0 | 520.334 3 | 520.332 8 |
18 | 14.58 | C4H8O2 | 4-羟基-2-丁酮 | H+ | 5.896 0 | 89.060 2 | 89.059 7 |
19 | 14.62 | C8H18O3 | 原乙酸三乙酯 | H+ | 3.692 0 | 163.133 5 | 163.132 9 |
20 | 15.59 | C31H64O16 | 十六乙二醇单甲醚 | NH4+ | -1.671 0 | 710.452 1 | 710.453 3 |
21 | 16.68 | C6H12O2 | 己酸 | K+ | -8.091 0 | 155.045 6 | 155.046 9 |
22 | 16.68 | C9H8O | 4-甲氧基苯乙炔 | Na+ | -7.111 0 | 155.045 6 | 155.466 7 |
23 | 16.68 | C6H6N2O3 | 硝基酚 | H+ | 3.321 0 | 155.047 4 | 155.045 6 |
24 | 18.73 | C9H18N2O | 4-(4-piperidyl)morpholine | H+ | 6.252 0 | 171.150 3 | 171.149 2 |
25 | 23.49 | C16H32O2 | 棕榈酸 | NH4+ | -4.715 0 | 274.272 8 | 274.274 1 |
26 | 23.49 | C16H35NO2 | (2)- n-methylamino 3 7 11-trme- | H+ | -4.715 0 | 274.272 8 | 274.274 1 |
27 | 23.96 | C9H16O | 壬二烯醛类 | NH4+ | -7.653 0 | 158.152 7 | 158.153 9 |
28 | 23.96 | C9H19NO | 四甲基哌啶醇 | H+ | -7.953 0 | 158.152 7 | 158.153 9 |
29 | 23.96 | C7H17N4 | 1-(Diaminomethylene)-4-ethylpiperazin-1-ium | H+ | 0.837 0 | 158.152 7 | 158.152 6 |
30 | 25.86 | C14H28O2 | 肉豆蔻酸 | NH4+ | -0.777 0 | 246.242 8 | 246.242 6 |
31 | 27.36 | C19H47 N7O4 | 己二酸 | H+ | -3.471 0 | 483.374 7 | 483.376 2 |
32 | 31.85 | C6H12N4 | 乌洛托品 | H+ | -0.067 0 | 141.113 5 | 141.113 5 |
[25] | 薛梅真, 李瑞芳, 辛霞, 等. 玉米种子萌发初期可溶性糖代谢途径的调控研究[J]. 玉米科学, 2018, 26(4): 91-98. |
Xue MZ, Li RF, Xin X, et al. Research on soluble sugar metabolic regulation during the initial period of seed germination in maize[J]. J Maize Sci, 2018, 26(4): 91-98. | |
[26] | 杨浩娜, 周成言, 邬腊梅, 等. 植物化感物质的作用机理研究进展[J]. 湖南农业科学, 2022(3): 108-112. |
Yang HN, Zhou CY, Wu LM, et al. Research progress on the mechanism of plant allelochemicals mechanism[J]. Hunan Agric Sci, 2022(3): 108-112. | |
[27] | 邢素芝, 汪建飞, 蔡丹. 柠檬酸和苹果酸对小白菜种子萌发和细胞膜透性的影响[J]. 中国农学通报, 2007(9): 312-316. |
Xing SZ, Wang JF, Cai D. Effects of citrate and malate on the seed germination and memberane permeability of pakchoi[J]. Chin Agric Sci Bull, 2007, 23(9): 312-316. | |
[28] | 高欣欣, 于会泳, 张继光, 等. 烤烟根系分泌物的分离鉴定及对种子萌发的影响[J]. 中国烟草科学, 2012, 33(3): 87-91. |
Gao XX, Yu HY, Zhang JG, et al. Identification of chemical compositions of root exudates from flue-cured tobacco and their influence to seed germination[J]. Chin Tob Sci, 2012, 33(3): 87-91. | |
[29] | 陈锋, 孟永杰, 帅海威, 等. 植物化感物质对种子萌发的影响及其生态学意义[J]. 中国生态农业学报, 2017, 25(1): 36-46. |
Chen F, Meng YJ, Shuai HW, et al. Effect of plant allelochemicals on seed germination and its ecological significance[J]. Chin J Eco Agric, 2017, 25(1): 36-46. | |
[30] | 王慰亲. 种子引发促进直播早稻低温胁迫下萌发出苗的机理研究[D]. 武汉: 华中农业大学, 2019. |
[1] |
Cao MM, Li SJ, Deng Q, et al. Identification of a key major-effect QTL associated with pre-harvest sprouting in cucumber(Cucumis sativus L.) using the QTL-seq method[J]. BMC Genomics, 2021, 22(1): 249.
doi: 10.1186/s12864-021-07548-8 |
[2] | 莫雨杏, 王磊, 周祎, 等. 黄瓜种子胎萌生理特性及相关基因表达分析[J]. 南方农业学报, 2020, 51(9): 2090-2096. |
Mo YX, Wang L, Zhou Y, et al. Physiological characteristics and related gene expression of vivipary in cucumber seeds[J]. J South Agric, 2020, 51(9): 2090-2096. | |
[3] | 田晓卉, 辛明, 顾晨冉, 等. 黄瓜种质资源种子瓜内发芽性评价[J]. 北方园艺, 2021(17): 1-8. |
Tian XH, Xin M, Gu CR, et al. Evaluation of seed germination in cucumber germplasm resources[J]. North Hortic, 2021(17): 1-8. | |
[4] | Bewley JD, Bradford KJ, Hilhorst HWM, et al. Seeds: Physiology of development, germination and dormancy, 3rd Edition[M]. New York, NY: Springer New York, 2013. |
[5] | 宋松泉, 程红焱, 姜孝成. 种子生物学[M]. 北京: 科学出版社, 2008. |
Song SQ, Cheng HM, Jiang XC. Seed biology[M]. Beijing: Science Press, 2008. | |
[6] |
Steinbrecher T, Leubner-Metzger G. The biomechanics of seed germination[J]. J Exp Bot, 2017, 68(4): 765-783.
doi: 10.1093/jxb/erw428 pmid: 27927995 |
[7] |
Shen XL, Cho MJ. Factors affecting seed germination and establishment of an efficient germination method in sugar pine(Pinus lambertiana dougl.)[J]. HortScience, 2021, 56(3): 299-304.
doi: 10.21273/HORTSCI15562-20 URL |
[8] | 赵燕, 魏玉兰, 毛美琴, 等. 滇重楼种子内源抑制物质的活性研究[J]. 西北植物学报, 2017, 37(10): 2025-2032. |
[30] | Wang WQ. Study on mechanism of seed initiation promoting germination and emergence of direct seeded early rice under low temperature stress[D]. Wuhan: Huazhong Agricultural University, 2019. |
[31] | 胡琦娟. 杂交水稻穗萌抑制剂筛选及其抑制机理研究[D]. 杭州: 浙江大学, 2016. |
Hu QJ. Screening of inhibitors for pre-harvest germination of hybrid rice and its inhibition mechanism[D]. Hangzhou: Zhejiang University, 2016. | |
[32] |
Frey A, Audran C, Marin E, et al. Engineering seed dormancy by the modification of zeaxanthin epoxidase gene expression[J]. Plant Mol Biol, 1999, 39(6): 1267-1274.
pmid: 10380812 |
[33] |
Wang Y, Wu Y, Duan C, et al. The expression profiling of the CsPYL, CsPP2C2 and CsSnRK2 gene families during fruit development and drought stress in cucumber[J]. J Plant Physiol, 2012, 169(18): 1874-1882.
doi: 10.1016/j.jplph.2012.07.017 URL |
[34] |
Tan BC, Joseph LM, Deng WT, et al. Molecular characterization of the Arabidopsis 9-cis- epoxycarotenoid dioxygenase gene family[J]. Plant J, 2003, 35(1): 44-56.
doi: 10.1046/j.1365-313X.2003.01786.x URL |
[35] |
Kushiro T, Okamoto M, Nakabayashi K, et al. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8'-hydroxylases: key enzymes in ABA catabolism[J]. EMBO J, 2004, 23(7): 1647-1656.
doi: 10.1038/sj.emboj.7600121 pmid: 15044947 |
[36] | Skubacz A, Daszkowska-Golec A. Seed dormancy: The complex process regulated by abscisic acid, gibberellins, and other phytohormones that makes seed germination work[M]// Phytohormones-Signaling Mechanisms and Crosstalk in Plant Development and Stress Responses. Croatia: In Tech, 2017. |
[8] | Zhao Y, Wei YL, Mao MQ, et al. Activity of endogenous inhibitor substances in seeds of Paris polyphylla var. yunnanensis[J]. Acta Bot Boreali Occidentalia Sin, 2017, 37(10): 2025-2032. |
[9] | 燕志强, 谈晶, 郭凯, 等. 青蒿素对狗尾草和马齿苋种子萌发和幼苗生长的化感效应研究[J]. 植物生理学报, 2021, 57(5): 1163-1169. |
Yan ZQ, Tan J, Guo K, et al. Allelopathic effects of artemisinin on seed germination and seedling growth of Setaria viridis and Portulaca oleracea[J]. Plant Physiol J, 2021, 57(5): 1163-1169. | |
[10] | 郁万文, 曹福亮. 银杏外种皮汁液浸种对小麦萌发和幼苗生长的影响[J]. 林业科技开发, 2011(5): 75-77. |
Yu WW, Cao FL. Effects of seed soaking with juice of ginkgo episperm on germination and seedling growth of wheat[J]. China For Sci Technol, 2021(5): 75-77. | |
[11] | 孙佳, 郭江帆, 魏朔南. 植物种子萌发抑制物研究概述[J]. 种子, 2012, 31(4): 57-61. |
Sun J, Guo JF, Wei SN. Overview on inhibitors of plant seed germination[J]. Seed, 2012, 31(4): 57-61. | |
[12] | 韩海霞, 马圆, 张梦楠, 等. 香葱浸提液对草莓种子萌发及生长的影响[J]. 种子, 2021, 40(5): 45-51. |
Han HX, Ma Y, Zhang MN, et al. Effects of Allium ascalonicum extracts on seed germination and growth of strawberry[J]. Seed, 2021, 40(5): 45-51. | |
[13] | 许良政, 李坤新, 廖富林, 等. 少花龙葵种子萌发特性及其果汁对小白菜种子萌发的影响[J]. 西北植物学报, 2009, 29(10): 2109-2114. |
Xu LZ, Li KX, Liao FL, et al. Seeds germination and juice allelopathy of Solanum nigrum L. var pauciflorum liou[J]. Acta Bot Boreali Occidentalia Sin, 2009, 29(10): 2109-2114. | |
[14] | 沈伟云. 基于发展学生思维品质的课外拓展探究--以“种子的萌发”为例[J]. 生物学通报, 2016, 51(4): 36-38. |
Shen WY. Extra-curricular exploration based on developing students'thinking quality-a case study of “The germination of seeds”[J]. Biology Bulletin, 2016, 51(4): 36-38. | |
[15] | Barh D, Srivastava H, Mazumdar BC. Self fruit extract and vitamin-c-improves tomato seed germination[J]. J Appl Sci Res, 2008, 4(2): 156-165. |
[16] | 佐月, 许永华. 种子萌发过程中GA与ABA的作用机制研究进展[J]. 分子植物育种, 2021, 19(18): 6221-6226. |
Zuo Y, Xu YH. Research progress on the mechanism of GA and ABA during seed germination[J]. Mol Plant Breed, 2021, 19(18): 6221-6226. | |
[17] | 黎家, 李传友. 新中国成立70年来植物激素研究进展[J]. 中国科学: 生命科学, 2019, 49(10): 1227-1281. |
Li J, Li CY. research progress of plant hormones since the founding of New China 70 years ago[J]. Sci Sin Vitae, 2019, 49(10): 1227-1281. | |
[18] |
Artur MAS. Better to keep silent: Chromatin-mediated repression of ABA biosynthesis and signaling genes allows seed germination[J]. Plant Cell, 2022, 34(8): 2817-2818.
doi: 10.1093/plcell/koac144 URL |
[19] |
Park SY, Fung P, Nishimura N. ABA perception and signal transduction[J]. Science, 2009, 324: 1068-1071.
doi: 10.1126/science.1173041 URL |
[20] |
Wang YP, Wang Y, Ji K, et al. The role of abscisic acid in regulating cucumber fruit development and ripening and its transcriptional regulation[J]. Plant Physiol Biochem, 2013, 64(5): 70-79.
doi: 10.1016/j.plaphy.2012.12.015 URL |
[21] | 吴燕, 高青海. 黄瓜叶片水浸提液对黄瓜、黑籽南瓜种子萌发的影响[J]. 热带作物学报, 2010, 31(12): 2218-2223. |
Wu Y, Gao QH. Effects of aqueous extract from cucumber leaves on seed germination and physiological characteristics of cucumber and pumpkin[J]. Chin J Trop Crops, 2010, 31(12): 2218-2223. | |
[22] | 刘海英, 王华华, 崔长海, 等. 可溶性糖含量测定(蒽酮法)实验的改进[J]. 实验室科学, 2013, 16(2): 19-20. |
Liu HY, Wang HH, Cui CH, et al. Experiment improvement of the soluble sugar content determination by enthrone colorimetric method[J]. Lab Sci, 2013, 16(2): 19-20. | |
[23] | 王娜, 马绍英, 马蕾, 等. 肉桂酸和棕榈酸对豌豆种子萌发和幼苗生长的化感效应[J]. 植物生理学报, 2021, 57(8): 1657-1667. |
Wang N, Ma SY, Ma L, et al. Allelopathy effects of cinnamic acid and palmitic acid on seed germination and seedling growth of pea[J]. Plant Physiol J, 2021, 57(8): 1657-1667. | |
[24] | 向警, 黄倩, 鞠春燕, 等. 外源褪黑素对盐胁迫下水稻种子萌发与幼苗生长的影响[J]. 植物生理学报, 2021, 57(2): 393-401. |
Xiang J, Huang Q, Ju CY, et al. Effects of exogenous melatonin on seed germination and seedling growth of rice under salt stress[J]. Plant Physiol J, 2021, 57(2): 393-401.
doi: 10.1104/pp.57.3.393 URL |
[1] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[2] | 褚睿, 李昭轩, 张学青, 杨东亚, 曹行行, 张雪艳. 黄瓜枯萎病拮抗芽孢杆菌的筛选、鉴定及其生防潜力[J]. 生物技术通报, 2023, 39(8): 262-271. |
[3] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[4] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[5] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[6] | 罗义, 张丽娟, 黄伟, 王宁, 吾尔丽卡·买提哈斯木, 施宠, 王玮. 一株耐铀菌株的鉴定及其促生特性研究[J]. 生物技术通报, 2023, 39(5): 286-296. |
[7] | 谢洋, 邢雨蒙, 周国彦, 刘美妍, 银珊珊, 闫立英. 黄瓜二倍体及其同源四倍体果实转录组分析[J]. 生物技术通报, 2023, 39(3): 152-162. |
[8] | 王琪, 胡哲, 富薇, 李光哲, 郝林. 伯克霍尔德氏菌GD17对黄瓜幼苗耐干旱的调节[J]. 生物技术通报, 2023, 39(3): 163-175. |
[9] | 于世霞, 姜雨彤, 林文慧. 胚珠原基起始的信号与分子机制研究进展[J]. 生物技术通报, 2023, 39(2): 1-9. |
[10] | 杨东亚, 祁瑞雪, 李昭轩, 林薇, 马慧, 张雪艳. 黄瓜茄病镰刀菌拮抗芽孢杆菌的筛选、鉴定及促生效果[J]. 生物技术通报, 2023, 39(2): 211-220. |
[11] | 谢洋, 周国彦, 苏航, 邢雨蒙, 闫立英. PEG模拟干旱条件下黄瓜种子发芽前后转录组分析[J]. 生物技术通报, 2023, 39(12): 148-157. |
[12] | 张林林, 沈虎生, 杨冰, 何梦菡, 朴凤植, 申顺善. 生防细菌HK11-9对黄瓜棒孢叶斑病的防病能力及其鉴定[J]. 生物技术通报, 2023, 39(12): 209-218. |
[13] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[14] | 陈楚怡, 杨小梅, 陈胜艳, 陈斌, 岳莉然. ABA和干旱胁迫下菊花脑ZF-HD基因家族的表达分析[J]. 生物技术通报, 2023, 39(11): 270-282. |
[15] | 刘传和, 贺涵, 何秀古, 陈鑫, 刘开, 邵雪花, 赖多, 秦健, 庄庆礼, 匡石滋, 肖维强. 菠萝不同品种对低温胁迫响应差异的生理代谢机制[J]. 生物技术通报, 2023, 39(10): 219-230. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||