生物技术通报 ›› 2024, Vol. 40 ›› Issue (2): 183-196.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0726
苑馨予1,2(), 钟彩虹2, 张龙2, 郑浩2, 李吉涛1(), 张琼2()
收稿日期:
2023-07-30
出版日期:
2024-02-26
发布日期:
2024-03-13
通讯作者:
李吉涛,男,博士,讲师,研究方向:园艺植物分子生物学;E-mail: ljtyouth@foxmail.com;作者简介:
苑馨予,女,硕士研究生,研究方向:猕猴桃分子遗传;E-mail: yuanxinyu0618@foxmail.com
基金资助:
YUAN Xin-yu1,2(), ZHONG Cai-hong2, ZHANG Long2, ZHENG Hao2, LI Ji-tao1(), ZHANG Qiong2()
Received:
2023-07-30
Published:
2024-02-26
Online:
2024-03-13
摘要:
【目的】MYB转录因子在猕猴桃花青苷积累中发挥着重要作用,挖掘调控花青苷生物合成的MYB家族转录因子并验证其功能,可进一步明晰花青苷积累的分子机制。【方法】AcMYB110是猕猴桃花青苷生物合成的关键转录因子,通过系统发育树分析猕猴桃中97个MYB家族转录因子,筛选出与AcMYB110高度同源的12个MYB转录因子,采用生物信息学方法分析它们的理化性质、亲疏水性、蛋白磷酸化位点、蛋白质二级结构及其与其他物种的系统进化关系。【结果】12个MYB转录因子编码的氨基酸数目为200-423个;分子量范围为22.3-45.5 kD,均为定位于细胞核的亲水性蛋白。12个候选MYB蛋白的潜在磷酸化位点大多位于丝氨酸残基处;其二级结构以无规则卷曲为主,α-螺旋为辅。在12个候选MYB转录因子中筛选得到1个花青素积累相关的转录因子AcMYB88,在猕猴桃果实发育过程中AcMYB88基因与AcMYB110基因表达模式非常相似。【结论】烟草瞬时过表达研究表明,AcMYB88为花青苷积累的正向调控因子,且能与AcMYB110和AcbHLH42协同作用从而促进花青苷的积累。该研究为猕猴桃花青素生物合成以及育种研究等方面提供理论基础。
苑馨予, 钟彩虹, 张龙, 郑浩, 李吉涛, 张琼. 猕猴桃AcMYB88的鉴定及功能研究[J]. 生物技术通报, 2024, 40(2): 183-196.
YUAN Xin-yu, ZHONG Cai-hong, ZHANG Long, ZHENG Hao, LI Ji-tao, ZHANG Qiong. Identification and Function Analysis of AcMYB88 in Kiwifruit (Actinidia chinensis)[J]. Biotechnology Bulletin, 2024, 40(2): 183-196.
基因名称 Gene name | 正向引物 Forward primer(5'-3') | 反向引物 Reverse primer(5'-3') | 备注 Note |
---|---|---|---|
Actin | TGAGAGATTCCGTTGCCCAGAAGT | TTCCTTACTCATGCGGTCTGCGAT | 实时荧光定量PCR分析所用引物 Primers for real-time RT-qPCR analysis |
Achn033551 | GCATCCATGACATCACCAGC | AGCATAACCGGTGTCCCAAC | |
Achn036201 | TGACCGGTGGTACAATGTGG | CCTGATGGTTCACCCACTCC | |
Achn141271 | GGGCTCTCGCGATATACGAC | TCTCCAACGTGAACGACGAG | |
Achn145641 | TCCATGACATCACCAGCGTC | AGGAAGCATAACTGGCGTCC | |
Achn154591 | ACGACATCACCACCGTCAAT | GCCGGTCCTTCACTTGGTAG | |
Achn172831 | GGAGTGCTCCTCGGATTGTC | CCACTTTCTGCCACCGATCA | |
Achn207851 | CTGTGGTACCCAGAATGCCT | ATGTCGTGGATGCTTGACCG | |
Achn212251 | AAGGCCAACCGTGAATCTCC | AGGCAATCCGACATGGGTTC | |
Achn218481 | AGAAGTACTTCATCCGGCAGC | GGAATTGCGTTCTTGGATTGG | |
Achn258201 | CCCTGGCAACTTATCCCGAG | CTTGCGTCGCTCCTGATCTA | |
Achn365361 | ACGACGGCAGTGATTATCGG | CTTGTCCTCGAACCTCGTCC | |
Achn371351 | ATTGGAGGAGCATATCGCGG | TGGATGCTTGAACGTCTCCC | |
Acc00493(AcMYB10) | GCCATCACCACCATCCAACA | TTCCCCAAAATTGGCTCCTCA | |
Acc19563(AcbHLH42) | TCGTTTAGGGCCGAGTCTAC | TTGAGAGTAGTGCGTGTCGT | |
pSAK-Achn365361 | ACTAGTGGATCCAAAGAATTCATGTATGGCGACGACGGC | AGAAGTACTCTCGAGAAGCTTTACATGGGATAGTTGAAGTTTTGGTACCC | 过表达载体构建所用引物 Primers used for overexpression vector construction |
pSAK-AcMYB10 | ACTAGTGGATCCAAAGAATTCATGGAAAGTGTTACTTTAGGAGTGAGAAAGG | AGAAGTACTCTCGAGAAGCTTTAATCATCACCTAAGAGATCCCAAAGGTTAACA | |
pSAK-AcbHLH42 | ACTAGTGGATCCAAAGAATTCATGGCGGCTCCCCCT | AGAAGTACTCTCGAGAAGCTTCAGGGTATGATTTGGTGTATTGCTCTCT | |
NtActin | AATGGAACTGGAATGGTCAAGGC | TGCCAGATCTTCTCCATGTCATCCCA | 烟草RT-qPCR分析所用引物 Primers for real-time RT-qPCR analysis in tobacco |
AcMYB88 | ACGACGGCAGTGATTATCGG | CTTGTCCTCGAACCTCGTCC | |
AcMYB10 | GCCATCACCACCATCCAACA | TTCCCCAAAATTGGCTCCTCA | |
AcbHLH42 | TCGTTTAGGGCCGAGTCTAC | TTGAGAGTAGTGCGTGTCGT | |
NtC4H | ACAACCCGGATCACTGGAAG | ACTGTCCACCTTTCTCCGTG | |
NtCHS | TTGTTCGAGCTTGTCTCTGC | AGCCCAGGAACATCTTTGAG | |
NtPAL | TTACGCCCTTCGAACATCCC | GAGGCAAGTGCAAGCCTAGT | |
Nt4CL | ACTGCCGAAAGGTGTGATGT | AAATCGCTGCTCCGACTCTC | |
NtCHI | GTCAGGCCATTGAAAAGCTC | CTAATCGTCAATGCCCCAAC | |
NtF3H | CAAGGCATGTGTGGATATGG | TGTGTCGTTTCAGTCCAAGG | |
NtDFR | AACCAACAGTCAGGGGAATG | TTGGACATCGACAGTTCCAG | |
NtANS | TATCCCAAATGCCCCCAACC | ATCTTCTCCTTTGGCGGCTC | |
NtANR | TTCCATCTCTCATGGCTGGTC | ATATGGGCGCGACAAACATC |
表1 试验用到的引物序列
Table 1 Primer sequences used in the experiment
基因名称 Gene name | 正向引物 Forward primer(5'-3') | 反向引物 Reverse primer(5'-3') | 备注 Note |
---|---|---|---|
Actin | TGAGAGATTCCGTTGCCCAGAAGT | TTCCTTACTCATGCGGTCTGCGAT | 实时荧光定量PCR分析所用引物 Primers for real-time RT-qPCR analysis |
Achn033551 | GCATCCATGACATCACCAGC | AGCATAACCGGTGTCCCAAC | |
Achn036201 | TGACCGGTGGTACAATGTGG | CCTGATGGTTCACCCACTCC | |
Achn141271 | GGGCTCTCGCGATATACGAC | TCTCCAACGTGAACGACGAG | |
Achn145641 | TCCATGACATCACCAGCGTC | AGGAAGCATAACTGGCGTCC | |
Achn154591 | ACGACATCACCACCGTCAAT | GCCGGTCCTTCACTTGGTAG | |
Achn172831 | GGAGTGCTCCTCGGATTGTC | CCACTTTCTGCCACCGATCA | |
Achn207851 | CTGTGGTACCCAGAATGCCT | ATGTCGTGGATGCTTGACCG | |
Achn212251 | AAGGCCAACCGTGAATCTCC | AGGCAATCCGACATGGGTTC | |
Achn218481 | AGAAGTACTTCATCCGGCAGC | GGAATTGCGTTCTTGGATTGG | |
Achn258201 | CCCTGGCAACTTATCCCGAG | CTTGCGTCGCTCCTGATCTA | |
Achn365361 | ACGACGGCAGTGATTATCGG | CTTGTCCTCGAACCTCGTCC | |
Achn371351 | ATTGGAGGAGCATATCGCGG | TGGATGCTTGAACGTCTCCC | |
Acc00493(AcMYB10) | GCCATCACCACCATCCAACA | TTCCCCAAAATTGGCTCCTCA | |
Acc19563(AcbHLH42) | TCGTTTAGGGCCGAGTCTAC | TTGAGAGTAGTGCGTGTCGT | |
pSAK-Achn365361 | ACTAGTGGATCCAAAGAATTCATGTATGGCGACGACGGC | AGAAGTACTCTCGAGAAGCTTTACATGGGATAGTTGAAGTTTTGGTACCC | 过表达载体构建所用引物 Primers used for overexpression vector construction |
pSAK-AcMYB10 | ACTAGTGGATCCAAAGAATTCATGGAAAGTGTTACTTTAGGAGTGAGAAAGG | AGAAGTACTCTCGAGAAGCTTTAATCATCACCTAAGAGATCCCAAAGGTTAACA | |
pSAK-AcbHLH42 | ACTAGTGGATCCAAAGAATTCATGGCGGCTCCCCCT | AGAAGTACTCTCGAGAAGCTTCAGGGTATGATTTGGTGTATTGCTCTCT | |
NtActin | AATGGAACTGGAATGGTCAAGGC | TGCCAGATCTTCTCCATGTCATCCCA | 烟草RT-qPCR分析所用引物 Primers for real-time RT-qPCR analysis in tobacco |
AcMYB88 | ACGACGGCAGTGATTATCGG | CTTGTCCTCGAACCTCGTCC | |
AcMYB10 | GCCATCACCACCATCCAACA | TTCCCCAAAATTGGCTCCTCA | |
AcbHLH42 | TCGTTTAGGGCCGAGTCTAC | TTGAGAGTAGTGCGTGTCGT | |
NtC4H | ACAACCCGGATCACTGGAAG | ACTGTCCACCTTTCTCCGTG | |
NtCHS | TTGTTCGAGCTTGTCTCTGC | AGCCCAGGAACATCTTTGAG | |
NtPAL | TTACGCCCTTCGAACATCCC | GAGGCAAGTGCAAGCCTAGT | |
Nt4CL | ACTGCCGAAAGGTGTGATGT | AAATCGCTGCTCCGACTCTC | |
NtCHI | GTCAGGCCATTGAAAAGCTC | CTAATCGTCAATGCCCCAAC | |
NtF3H | CAAGGCATGTGTGGATATGG | TGTGTCGTTTCAGTCCAAGG | |
NtDFR | AACCAACAGTCAGGGGAATG | TTGGACATCGACAGTTCCAG | |
NtANS | TATCCCAAATGCCCCCAACC | ATCTTCTCCTTTGGCGGCTC | |
NtANR | TTCCATCTCTCATGGCTGGTC | ATATGGGCGCGACAAACATC |
对照组 Control group | 试验组 Experimental group |
---|---|
EV | OE10 |
OE88 | |
EV:OE10 : OE42(1:1:1) | OE88:OE10:OE42(1:1:1) |
EV:OE10(1:1) | OE88:OE10(1:1) |
表2 农杆菌瞬时转化烟草组合
Table 2 Agrobacterium combinations for tobacco transient transformation
对照组 Control group | 试验组 Experimental group |
---|---|
EV | OE10 |
OE88 | |
EV:OE10 : OE42(1:1:1) | OE88:OE10:OE42(1:1:1) |
EV:OE10(1:1) | OE88:OE10(1:1) |
蛋白名称 Protein name | 拟南芥同源蛋白 Homologous protein of Arabidopsis thaliana | 氨基酸数 Number of amino acids | 分子量 Molecular weight/Da | 等电点 pI | 带负电荷残基Asp+GIu | 带正电荷残基 Arg+Lys | 不稳定指数Instability | 脂肪指数 Aliphatic index | 亲水性 GRAVY | 亚细胞定位Subcellular localization |
---|---|---|---|---|---|---|---|---|---|---|
Achn033551 | AT1G49010.1 | 288 | 31 272.05 | 6.67 | 31 | 28 | 57.11 | 66.81 | -0.54 | 细胞核Nucleus |
Achn036201 | AT2G38090.1 | 294 | 33 491.45 | 8.99 | 31 | 35 | 51.55 | 59.69 | -0.79 | 细胞核Nucleus |
Achn141271 | AT2G38090.1 | 269 | 30 463.48 | 8.27 | 31 | 33 | 46.22 | 68.10 | -0.58 | 细胞核Nucleus |
Achn145641 | AT1G49010.1 | 303 | 32 847.73 | 6.88 | 31 | 29 | 59.61 | 63.43 | -0.61 | 细胞核Nucleus |
Achn154591 | AT2G38090.1 | 298 | 33 813.85 | 8.77 | 33 | 36 | 52.52 | 59.60 | -0.81 | 细胞核Nucleus |
Achn172831 | AT5G58900.1 | 290 | 33 039.98 | 7.24 | 35 | 35 | 65.34 | 58.14 | -0.87 | 细胞核Nucleus |
Achn207851 | AT5G08520.1 | 200 | 22 325.81 | 5.97 | 26 | 22 | 51.90 | 70.65 | -0.62 | 细胞核Nucleus |
Achn212251 | AT2G38090.1 | 273 | 30 842.68 | 8.99 | 32 | 36 | 48.13 | 70.73 | -0.69 | 细胞核Nucleus |
Achn218481 | AT5G58900.1 | 286 | 32 870.57 | 9.22 | 34 | 39 | 59.06 | 53.22 | -1.02 | 细胞核Nucleus |
Achn258201 | AT5G08520.1 | 423 | 45 538.79 | 5.84 | 54 | 45 | 52.14 | 71.18 | -0.54 | 细胞核Nucleus |
Achn365361 | AT5G04760.1 | 212 | 24 232.82 | 6.07 | 30 | 26 | 42.43 | 62.97 | -0.81 | 细胞核Nucleus |
Achn371351 | AT5G08520.1 | 279 | 31 022.69 | 8.46 | 31 | 33 | 62.22 | 65.02 | -0.67 | 细胞核Nucleus |
表3 12个猕猴桃MYB转录因子理化性质分析
Table 3 Analysis of the physicochemical properties of 12 kiwifruit MYB transcription factors
蛋白名称 Protein name | 拟南芥同源蛋白 Homologous protein of Arabidopsis thaliana | 氨基酸数 Number of amino acids | 分子量 Molecular weight/Da | 等电点 pI | 带负电荷残基Asp+GIu | 带正电荷残基 Arg+Lys | 不稳定指数Instability | 脂肪指数 Aliphatic index | 亲水性 GRAVY | 亚细胞定位Subcellular localization |
---|---|---|---|---|---|---|---|---|---|---|
Achn033551 | AT1G49010.1 | 288 | 31 272.05 | 6.67 | 31 | 28 | 57.11 | 66.81 | -0.54 | 细胞核Nucleus |
Achn036201 | AT2G38090.1 | 294 | 33 491.45 | 8.99 | 31 | 35 | 51.55 | 59.69 | -0.79 | 细胞核Nucleus |
Achn141271 | AT2G38090.1 | 269 | 30 463.48 | 8.27 | 31 | 33 | 46.22 | 68.10 | -0.58 | 细胞核Nucleus |
Achn145641 | AT1G49010.1 | 303 | 32 847.73 | 6.88 | 31 | 29 | 59.61 | 63.43 | -0.61 | 细胞核Nucleus |
Achn154591 | AT2G38090.1 | 298 | 33 813.85 | 8.77 | 33 | 36 | 52.52 | 59.60 | -0.81 | 细胞核Nucleus |
Achn172831 | AT5G58900.1 | 290 | 33 039.98 | 7.24 | 35 | 35 | 65.34 | 58.14 | -0.87 | 细胞核Nucleus |
Achn207851 | AT5G08520.1 | 200 | 22 325.81 | 5.97 | 26 | 22 | 51.90 | 70.65 | -0.62 | 细胞核Nucleus |
Achn212251 | AT2G38090.1 | 273 | 30 842.68 | 8.99 | 32 | 36 | 48.13 | 70.73 | -0.69 | 细胞核Nucleus |
Achn218481 | AT5G58900.1 | 286 | 32 870.57 | 9.22 | 34 | 39 | 59.06 | 53.22 | -1.02 | 细胞核Nucleus |
Achn258201 | AT5G08520.1 | 423 | 45 538.79 | 5.84 | 54 | 45 | 52.14 | 71.18 | -0.54 | 细胞核Nucleus |
Achn365361 | AT5G04760.1 | 212 | 24 232.82 | 6.07 | 30 | 26 | 42.43 | 62.97 | -0.81 | 细胞核Nucleus |
Achn371351 | AT5G08520.1 | 279 | 31 022.69 | 8.46 | 31 | 33 | 62.22 | 65.02 | -0.67 | 细胞核Nucleus |
蛋白名称Protein name | 丝氨酸Ser | 苏氨酸Thr | 酪氨酸Tyr |
---|---|---|---|
Achn033551 | 21 | 7 | 1 |
Achn036201 | 19 | 15 | 1 |
Achn141271 | 15 | 12 | 1 |
Achn145641 | 27 | 7 | 1 |
Achn154591 | 22 | 11 | 1 |
Achn172831 | 19 | 10 | 2 |
Achn207851 | 16 | 7 | 2 |
Achn212251 | 18 | 11 | 2 |
Achn218481 | 19 | 13 | 6 |
Achn258201 | 38 | 11 | 1 |
Achn365361 | 11 | 9 | 3 |
Achn371351 | 29 | 14 | 4 |
表4 猕猴桃MYB蛋白的磷酸化位点
Table 4 Phosphorylation sites of MYB proteins in kiwifruit
蛋白名称Protein name | 丝氨酸Ser | 苏氨酸Thr | 酪氨酸Tyr |
---|---|---|---|
Achn033551 | 21 | 7 | 1 |
Achn036201 | 19 | 15 | 1 |
Achn141271 | 15 | 12 | 1 |
Achn145641 | 27 | 7 | 1 |
Achn154591 | 22 | 11 | 1 |
Achn172831 | 19 | 10 | 2 |
Achn207851 | 16 | 7 | 2 |
Achn212251 | 18 | 11 | 2 |
Achn218481 | 19 | 13 | 6 |
Achn258201 | 38 | 11 | 1 |
Achn365361 | 11 | 9 | 3 |
Achn371351 | 29 | 14 | 4 |
蛋白名称 Protein name | α-螺旋 α-helix | 延伸链 Extended stran | β-转角 β-turn | 无规则卷曲 Random coil |
---|---|---|---|---|
Achn033551 | 22.22 | 12.50 | 3.47 | 61.81 |
Achn036201 | 22.79 | 10.88 | 3.40 | 62.93 |
Achn141271 | 24.16 | 11.52 | 2.97 | 61.34 |
Achn145641 | 19.80 | 12.54 | 3.96 | 63.70 |
Achn154591 | 23.83 | 11.74 | 2.68 | 61.74 |
Achn172831 | 24.14 | 15.17 | 3.79 | 56.90 |
Achn207851 | 25.50 | 13.00 | 5.00 | 56.50 |
Achn212251 | 23.81 | 13.55 | 3.66 | 58.97 |
Achn218481 | 20.63 | 15.03 | 3.15 | 61.19 |
Achn258201 | 27.19 | 13.95 | 4.49 | 54.37 |
Achn365361 | 26.89 | 11.32 | 5.19 | 56.60 |
Achn371351 | 21.51 | 12.54 | 2.15 | 63.80 |
表5 12个猕猴桃MYBs蛋白的二级结构数量统计
Table 5 Secondary structure statistics of 12 AcMYBs %
蛋白名称 Protein name | α-螺旋 α-helix | 延伸链 Extended stran | β-转角 β-turn | 无规则卷曲 Random coil |
---|---|---|---|---|
Achn033551 | 22.22 | 12.50 | 3.47 | 61.81 |
Achn036201 | 22.79 | 10.88 | 3.40 | 62.93 |
Achn141271 | 24.16 | 11.52 | 2.97 | 61.34 |
Achn145641 | 19.80 | 12.54 | 3.96 | 63.70 |
Achn154591 | 23.83 | 11.74 | 2.68 | 61.74 |
Achn172831 | 24.14 | 15.17 | 3.79 | 56.90 |
Achn207851 | 25.50 | 13.00 | 5.00 | 56.50 |
Achn212251 | 23.81 | 13.55 | 3.66 | 58.97 |
Achn218481 | 20.63 | 15.03 | 3.15 | 61.19 |
Achn258201 | 27.19 | 13.95 | 4.49 | 54.37 |
Achn365361 | 26.89 | 11.32 | 5.19 | 56.60 |
Achn371351 | 21.51 | 12.54 | 2.15 | 63.80 |
图5 ‘东红’果实不同发育时期14个MYB基因表达聚类热图 DAF:花后天数。每个基因用一行表示,每个发育时期用一列表示。数字表示该基因相对表达量。暗红色表示相对表达量较高,而相对表达量较低的基因用深蓝色表示
Fig. 5 Expression heatmap of 14 MYB genes during different development stage of ‘Donghong’ DAF: The day after flower. Each gene is indicated by a row and each developmental period is indicated by a column. The figure represents relative expression level of genes. Dark red color indicates high relative expression, while genes with low relative expression are indicated in dark blue
图7 过表达AcMYB10和AcMYB88促进烟草花青苷积累及相关基因表达 A:过表达AcMYB10、AcMYB88和EV烟草叶片的表型;B:转基因烟草叶片中花青苷含量;C:花青苷相关结构基因在转基因烟草叶片中的表达水平; EV:空载;OE88:过表达- AcMYB88;OE10:过表达-AcMYB10;PAL:苯丙氨酸裂解酶;C4H:肉桂酸-4-羟化酶;4CL:4-香豆酸辅酶 A 连接酶;CHS:查尔酮合成酶;CHI:查尔酮异构酶;F3H:黄烷酮-3-羟化酶;DFR:二氢黄酮醇-4-还原酶;LDOX:无色花青苷双加氧酶;ANR:花青苷还原酶;ANS:无色花青苷合成酶;所有图表均采用独立样本t检验。*:P < 0.05;**:P < 0.01。下同
Fig. 7 Overexpression of AcMYB10 and AcMYB88 promotes tobacco anthocyanin accumulation and related gene expression A: Phenotypes of tobacco leaves overexpressing AcMYB10, AcMYB88 and EV. B: Anthocyanin content in transgenic tobacco leaves. C: Expression levels of anthocyanin-related structural genes in transgenic tobacco leaves. EV: Empty vector. OE88: Overexpression-AcMYB88. OE10: Overexpressive-AcMYB10. PAL: Phenylalaninammo-nialyase. C4H: cinnamate-4-hydroxylase. 4CL: 4-coumaryl. CoA: Ligase. CHS: Chalcone synthase. CHI: Chalcone isomerase. F3H: Flavonol-3-hydroxylase. DFR: Dihydroflavonol reductase. LDOX: Leucoanthocyanidin dioxygenase. ANR: Anthocyanidin reductase. ANS: Anthocyanidin synthase. All graphs are based on independent samples t test. *: P < 0.05; **: P < 0.01. The same below
图8 过表达EV+OE10+OE42和OE88+OE10+OE42促进烟草花青苷积累及相关基因表达 A:过表达EV+OE10+OE42和OE88+OE10+OE42烟草叶片的表型;B:转基因烟草叶片中花青苷含量;C:花青苷相关结构基因在转基因烟草叶片中的表达水平; EV+OE10 +OE42:空载+过表达-AcMYB10+过表达-bHLH42(1:1:1);OE88+OE10+OE42:过表达-AcMYB88+过表达-AcMYB10+过表达-bHLH42(1:1:1)
Fig. 8 Overexpression of EV+OE10+OE42 and OE88+OE10+OE42 promotes tobacco anthocyanin accumulation and related gene expression A: Phenotypes of tobacco leaves overexpressing EV+OE10+OE42 and OE88+OE10+OE42. B: Anthocyanin content in transgenic tobacco leaves. C: Expression levels of anthocyanin-related structural genes in transgenic tobacco leaves. Achn365361:AcMYB88;EV+OE10 +OE42: Empty vector+Overexpression-AcMYB10+Overexpression-bHLH42(1:1:1). OE88+OE10+OE42: Overexpression-AcMYB88+Overexpression-AcMYB10+Overexpression-bHLH42(1:1:1)
图9 过表达EV+10和88+10促进烟草花青苷积累及相关基因表达 A:过表达EV+10和88+10烟草叶片的表型;B:转基因烟草叶片中花青苷含量;C:花青苷相关结构基因在转基因烟草叶片中的表达水平;EV+10:空载+过表达-AcMYB10(1:1);88+10:过表达-AcMYB88+过表达-AcMYB10(1:1) A: Phenotypes of tobacco leaves overexpressing EV+10和88+10. B: Anthocyanin content in transgenic tobacco leaves. C: Expression levels of anthocyanin-related structural genes in transgenic tobacco leaves. Achn365361: AcMYB88; EV+10: Empty vector+Overexpression-AcMYB10(1:1). OE88+10: Overexpression-AcMYB88+Overexpression-AcMYB10(1:1)
Fig. 9 Overexpression of EV+10 and 88+10 promotes tobacco anthocyanin accumulation and related gene expression
[1] |
Yuan XY, Zheng H, Fan JT, et al. Comparative study on physicochemical and nutritional qualities of kiwifruit varieties[J]. Foods, 2023, 12(1): 108.
doi: 10.3390/foods12010108 URL |
[2] |
Kim M, Park Y, Yun SK, et al. The anatomical differences and physiological responses of sunburned satsuma mandarin(Citrus unshiu Marc.)fruits[J]. Plants, 2022, 11(14): 1801.
doi: 10.3390/plants11141801 URL |
[3] | Zheng W, Shen F, Wang W, et al. Quantitative trait loci-based genomics-assisted prediction for the degree of apple fruit cover color[J]. Plant Genome, 2020, 13(3): 1940-3372. |
[4] |
Ma QS, Suo JT, Huber DJ, et al. Effect of hot water treatments on chilling injury and expression of a new C-repeat binding factor(CBF)in ‘Hongyang’ kiwifruit during low temperature storage[J]. Postharvest Biol Technol, 2014, 97: 102-110.
doi: 10.1016/j.postharvbio.2014.05.018 URL |
[5] |
Ma TT, Sun XY, Zhao JM, et al. Nutrient compositions and antioxidant capacity of kiwifruit(Actinidia)and their relationship with flesh color and commercial value[J]. Food Chem, 2017, 218: 294-304.
doi: 10.1016/j.foodchem.2016.09.081 URL |
[6] |
He J, Giusti MM. Anthocyanins: Natural colorants with health-promoting properties[J]. Annu Rev Food Sci Technol, 2010, 1(1): 163-187.
doi: 10.1146/food.2010.1.issue-1 URL |
[7] |
Jaeger SR, Harker FR. Consumer evaluation of novel kiwifruit: Willingness to pay[J]. J Sci Food Agric, 2005, 85(15): 2519-2526.
doi: 10.1002/jsfa.v85:15 URL |
[8] | Li WS, Shi L, Wang BG, et al. Comparison of nutritional qualities of different flesh kiwifruit[J]. Food Sci Technol, 2012(37): 47-48. |
[9] | 韩飞, 李大卫, 刘小莉, 等. 红心猕猴桃新品种‘东玫’[J]. 园艺学报, 2022, 47(S2): 2911-2912. |
Han F, Li DW, Liu XL, et al. A new red-fleshed kiwifruit cultivar ‘Dongmei’[J]. Acta Hortic Sin, 2022, 47(S2): 2911-2912. | |
[10] | 刘颖, 赵长竹, 吴丰魁. 红肉猕猴桃花色苷组成及浸提研究[J]. 果树学报, 2012, 29(3): 493-497. |
Liu Y, Zhao CZ, Wu FK, et al. Indentification and extraction of anthocyanins in red-fleshed kiwifruit[J]. J Fruit Sci, 2012, 29(3): 493-497. | |
[11] | 苏全胜, 王爽, 孙玉强, 等. 植物原花青苷生物合成及调控研究进展[J]. 中国细胞生物学学报, 2021, 43(1): 219-229. |
Su QS, Wang S, Sun YQ, et al. Advances in biosynthesis and regulation of plant proanthocyanidins[J]. Chinese J Cell Biol, 2021, 43(1): 219-229. | |
[12] | 牛义岭, 姜秀明, 许向阳. 植物转录因子MYB基因家族的研究进展[J]. 分子植物育种, 2016, 14(8): 2050-2059. |
Niu YL, Jiang XM, Xu XY. Reaserch advances on transcription factor MYB gene family in plant[J]. Mol Plant Breed, 2016, 14(8): 2050-2059. | |
[13] |
Riechmann JL, Heard J, Martin G, et al. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290(5499): 2105-2110.
doi: 10.1126/science.290.5499.2105 pmid: 11118137 |
[14] | 冯发玉, 王毅, 王丽娟, 等. 竹叶花椒MYB基因家族的鉴定及其表达特性的分析[J]. 经济林研究, 2021, 39(4): 148-157. |
Feng FY, Wang Y, Wang LJ, et al. Identification and expression analysis of MYB gene family in Zanthoxylum armatum[J]. Non wood For Res, 2021, 39(4): 148-157. | |
[15] |
Herath D, Wang TC, Peng YY, et al. An improved method for transformation of Actinidia arguta utilized to demonstrate a central role for MYB110 in regulating anthocyanin accumulation in kiwiberry[J]. Plant Cell Tiss Organ Cult, 2020, 143(2): 291-301.
doi: 10.1007/s11240-020-01915-1 |
[16] |
Wang WQ, Moss SMA, Zeng L, et al. The red flesh of kiwifruit is differentially controlled by specific activation-repression systems[J]. New Phytol, 2022, 235(2): 630-645.
doi: 10.1111/nph.v235.2 URL |
[17] | 余敏. 猕猴桃花青苷着色-MYB调节基因的鉴定及其功能解析[D]. 武汉: 中国科学院大学, 2020. |
Yu M. Mechanisms underlying the regulation of anthocyanin coloration synthesis in kiwifruit-Identification and functional characterization of AcMYB10[D]. Wuhan: Chinese Academy of Sciences, 2020. | |
[18] | 刘丹, 李然红, 陈鑫, 等. 狗枣猕猴桃AkSAP蛋白的生物信息学分析[J]. 河南农业科学, 2019, 48(12): 103-108. |
Liu D, Li RH, Chen X, et al. Bioinformatics analysis of AkSAP protein from Actinidia kolomikta[J]. J Henan Agric Sci, 2019, 48(12): 103-108. | |
[19] | 谷佳, 王童欣, 饶英, 等. 基于三色堇(Viola × wittrikianan Gams.)全长转录组的MYB基因家族的鉴定[J]. 江苏农业科学, 2022, 50(22): 1-9. |
Gu J, Wang TX, Rao Y, et al. Identification of MYB gene family based on the full-length transcriptome of pansy(Viola×wittrikianan Gams.)[J]. Jiangsu Agric Sci, 2022, 50(22): 1-9. | |
[20] |
Yu CS, Lin CJ, Hwang JK. Predicting subcellular localization of proteins for Gram negative bacteria by support vector machinesbased on n-peptide compositions[J]. Protein Sci, 2004, 13(5): 1402-1406.
doi: 10.1110/ps.03479604 URL |
[21] |
Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionarygenetics analysis version 11[J]. Mol Biol Evol, 2021, 38(7): 3022-3027.
doi: 10.1093/molbev/msab120 URL |
[22] |
Chen CJ, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8): 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[23] |
毛可欣, 安淼, 王海荣, 等. 猕猴桃MYB家族成员鉴定及其低温表达分析[J]. 园艺学报, 2023, 50(3): 534-548.
doi: 10.16420/j.issn.0513-353x.2022-0003 |
Mao KX, An M, Wang HR, et al. Identification and low temperature expression analysis of MYB transcription factor family in kiwifruit[J]. Acta Hortic Sin, 2023, 50(3): 534-548.
doi: 10.16420/j.issn.0513-353x.2022-0003 |
|
[24] |
Luan AP, Zhang W, Yang MZ, et al. Unveiling the molecular mechanism involving anthocyanins in pineapple peel discoloration during fruit maturation[J]. Food Chem, 2023, 412: 135482.
doi: 10.1016/j.foodchem.2023.135482 URL |
[25] | 冯盼盼, 陈鹏, 洪文杰, 等. 拟南芥MYB转录因子家族研究进展[J]. 生命科学研究, 2016, 20(6): 555-560. |
Feng PP, Chen P, Hong WJ, et al. Research progress of MYB transcription factor family in Arabidopsis thaliana[J]. Life Sci Res, 2016, 20(6): 555-560. | |
[26] |
居利香, 雷欣, 赵成志, 等. 辣椒MYB基因家族的鉴定及与辣味关系分析[J]. 园艺学报, 2020, 47(5): 875-892.
doi: 10.16420/j.issn.0513-353x.2019-0735 |
Ju LX, Lei X, Zhao CZ, et al. Identification of MYB family genes and its relationship with pungency of pepper[J]. Acta Hortic Sin, 2020, 47(5): 875-892.
doi: 10.16420/j.issn.0513-353x.2019-0735 |
|
[27] | 刘淑君. 番茄MYB转录因子的鉴定及其表达分析[D]. 金华: 浙江师范大学, 2012. |
Liu SJ. Identification and expression analysis of MYB transcription factors in Solanum lycopersicum[D]. Jinhua: Zhejiang Normal University, 2012. | |
[28] | 阙秋霞, 赖恭梯, 潘若, 等. 刺葡萄MYB基因家族鉴定及其在不同光质下的表达模式分析[J]. 农业生物技术学报, 2023, 30(2): 298-310. |
Que QX, Lai GT, Pan R, et al. Identification of MYB gene family and its expression pattern analysis under different light quality in spine grape(Vitis davidii)[J]. J Agric Biotechnol, 2023, 30(2): 298-310. | |
[29] |
Baudry A, Heim MA, Dubreucq B, et al. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana[J]. Plant J, 2004, 39(3): 366-380.
doi: 10.1111/tpj.2004.39.issue-3 URL |
[30] |
Spelt C, Quattrocchio F, Mol JN, et al. anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes[J]. Plant Cell, 2000, 12(9): 1619-1632.
doi: 10.1105/tpc.12.9.1619 pmid: 11006336 |
[31] |
Espley RV, Hellens RP, Putterill J, et al. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10[J]. Plant J, 2010, 49(3): 414-427.
doi: 10.1111/tpj.2007.49.issue-3 URL |
[32] |
Takos AM, Jaffé FW, Jacob SR, et al. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples[J]. Plant Physiol, 2006, 142(3): 1216-1232.
doi: 10.1104/pp.106.088104 pmid: 17012405 |
[33] |
Cutanda-Perez MC, Ageorges A, Gomez C, et al. Ectopic expression of VlMYBA1 in grapevine activates a narrow set of genes involved in anthocyanin synthesis and transport[J]. Plant Mol Biol, 2009, 69(6): 633-648.
doi: 10.1007/s11103-008-9446-x pmid: 19096760 |
[34] | Wei T, Wang CZ, Qi TH, et al. Effect of natural light on the phenolic compounds contents and coloration in the peel of ‘Xiyanghong’(Pyrus bretschneideri × Pyrus communis)[J]. Sci Hortic, 2020, 226(10): 109052. |
[35] |
Li J, Zhou L, Chen H. Combined transcriptomic and proteomic analysis constructs a new model for light-induced anthocyanin biosynthesis in eggplant(Solanum melongena L.)[J]. Plant Cell Environ, 2017, 40(3): 3069-3087.
doi: 10.1111/pce.v40.12 URL |
[1] | 路喻丹, 刘晓驰, 冯新, 陈桂信, 陈义挺. 猕猴桃BBX基因家族成员鉴定与转录特征分析[J]. 生物技术通报, 2024, 40(2): 172-182. |
[2] | 任延靖, 张鲁刚, 赵孟良, 李江, 邵登魁. 白菜种子cDNA酵母文库的构建及BrTTG1互作蛋白的筛选及分析[J]. 生物技术通报, 2024, 40(2): 223-232. |
[3] | 周会汶, 吴兰花, 韩德鹏, 郑伟, 余跑兰, 吴杨, 肖小军. 甘蓝型油菜种子硫苷含量全基因组关联分析[J]. 生物技术通报, 2024, 40(1): 222-230. |
[4] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[5] | 赖瑞联, 冯新, 高敏霞, 路喻丹, 刘晓驰, 吴如健, 陈义挺. 猕猴桃过氧化氢酶基因家族全基因组鉴定与表达分析[J]. 生物技术通报, 2023, 39(4): 136-147. |
[6] | 胡明月, 杨宇, 郭仰东, 张喜春. 低温胁迫下番茄SlMYB96的功能分析[J]. 生物技术通报, 2023, 39(4): 236-245. |
[7] | 毛可欣, 王海荣, 安淼, 刘腾飞, 王世金, 李健, 李国田. 中华猕猴桃GRAS基因家族鉴定及低温胁迫表达分析[J]. 生物技术通报, 2023, 39(11): 297-307. |
[8] | 位欣欣, 兰海燕. 植物MYB转录因子调控次生代谢及逆境响应的研究进展[J]. 生物技术通报, 2022, 38(8): 12-23. |
[9] | 赖恭梯, 阙秋霞, 潘若, 刘雨轩, 王琦, 赖谱富, 高慧颖, 赖呈纯. 刺葡萄查尔酮合成酶基因CHS对不同光质的响应及转录因子调控分析[J]. 生物技术通报, 2022, 38(11): 129-139. |
[10] | 骆鹰, 谭智, 王帆, 刘晓霞, 罗小芳, 何福林. 银杏GbR2R3-MYB1基因的克隆及非生物胁迫应答分析[J]. 生物技术通报, 2022, 38(10): 184-194. |
[11] | 黎猛, 陈跃, 胡凤荣. miR159-GAMYB途径调控植物生长发育的研究进展[J]. 生物技术通报, 2021, 37(9): 234-247. |
[12] | 李琦, 王怡超, 刘畅, 谭何新. 黄花蒿R2R3-MYB转录因子全基因组鉴定及生物信息学分析[J]. 生物技术通报, 2021, 37(8): 65-74. |
[13] | 朱海云, 马瑜, 柯杨, 李勃. 猕猴桃溃疡病菌拮抗菌的筛选、鉴定及其对植物病原真菌的抗性[J]. 生物技术通报, 2021, 37(6): 66-72. |
[14] | 林艳丽, 覃建兵, 伍翔, 王岩岩, 潘佑找, 柳忠玉. 虎杖PcMYB1启动子的克隆及其活性分析[J]. 生物技术通报, 2021, 37(5): 48-55. |
[15] | 孙小倩, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子FtMYBF的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2021, 37(3): 10-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||