生物技术通报 ›› 2024, Vol. 40 ›› Issue (4): 110-121.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1102
娄银1(), 高浩竣1, 王茜1, 牛景萍2, 王敏1, 杜维俊1, 岳爱琴1()
收稿日期:
2023-12-03
出版日期:
2024-04-26
发布日期:
2024-04-30
通讯作者:
岳爱琴,女,博士,教授,研究方向:大豆遗传与种质创新;E-mail: yueaiqinnd@126.com作者简介:
娄银,女,硕士研究生,研究方向:大豆遗传与种质创新;E-mail: louyin1124@163.com
基金资助:
LOU Yin1(), GAO Hao-jun1, WANG Xi1, NIU Jing-ping2, WANG Min1, DU Wei-jun1, YUE Ai-qin1()
Received:
2023-12-03
Published:
2024-04-26
Online:
2024-04-30
摘要:
【目的】3-羟基-3-甲基戊二酰辅酶A合酶(HMGS)是甲羟戊酸途径中的一个关键酶,在植物生长发育和萜类化合物的合成中起着重要作用。对GmHMGS基因进行生物信息学和表达模式分析,为探究GmHMGS基因的功能奠定基础。【方法】运用生物信息学方法对该基因进行鉴定和分析,采用实时荧光定量PCR(RT-qPCR)对该基因表达模式进行分析。【结果】GmHMGS基因具有6个家族成员,命名为GmHMGS1-GmHMG6。理化性质和基因结构分析表明,GmHMGS3、GmHMG4、GmHMGS5、GmHMGS6为稳定的亲水性蛋白,GmHMGS都具有HMG-CoA合酶的保守结构域。启动子序列分析发现GmHMGS具有激素及逆境胁迫相关作用元件。组织表达模式分析发现,GmHMGS在根、茎、叶、花、籽粒、荚皮,根瘤中均有表达,GmHMGS1、GmHMG2、GmHMG3、GmHMG5、GmHMG6在叶片中的相对表达量较高,GmHMGS4在根中的相对表达量最高。非生物胁迫和不同外源激素诱导条件下表达分析表明,GmHMGS基因对PEG6000、NaCl、H2O2胁迫以及MeJA、ABA外源激素均有响应,且GmHMGS1和GmHMGS6在多种逆境胁迫下的相对表达量较高。【结论】GmHMGS基因家族可能参与大豆抗旱、耐盐和抗氧化胁迫的应答。
娄银, 高浩竣, 王茜, 牛景萍, 王敏, 杜维俊, 岳爱琴. 大豆GmHMGS基因的鉴定及表达模式分析[J]. 生物技术通报, 2024, 40(4): 110-121.
LOU Yin, GAO Hao-jun, WANG Xi, NIU Jing-ping, WANG Min, DU Wei-jun, YUE Ai-qin. Identification and Expression Pattern Analysis of GmHMGS Gene in Soybean[J]. Biotechnology Bulletin, 2024, 40(4): 110-121.
基因名称Gene name | 登录号Gene ID | 正向引物Forward primer(5'-3') | 反向引物Reverse primer(5'-3') |
---|---|---|---|
GmActing | XM_003552652 | GGTGGTTCTATCTTGGCATC | CTTTCGCTTCAATAACCCTA |
GmHMGS1 | Glyma.01G215500.1 | GGAGGAACTGCTGCTCTGTT | GGGCAGGTCCTTCAGCATAG |
GmHMGS2 | Glyma.05G050300.1 | TCCAGTGGTTGATGGGAAGC | CCTCATCCACAAAACTGGCAT |
GmHMGS3 | Glyma.09G148500.1 | GAGTAGCTCATGGGATGGACG | TAGGAGCATCTGGCCCTACA |
GmHMGS4 | Glyma.11G027000.1 | AACATGTACACGGCGTCTCT | ATGGTGGCAGTTAAGCCACT |
GmHMGS5 | Glyma.16G200200.1 | ATGCTATGGAGGAACGGCTG | ATCTGGCCCTACAAGCATGG |
GmHMGS6 | Glyma.17G132300.1 | CCAGCAAGTTGCAAAGCCTC | GATGCGGTGTACATGTTGCC |
表1 实时荧光定量引物序列
Table 1 Primers sequences for real-time quantitative PCR
基因名称Gene name | 登录号Gene ID | 正向引物Forward primer(5'-3') | 反向引物Reverse primer(5'-3') |
---|---|---|---|
GmActing | XM_003552652 | GGTGGTTCTATCTTGGCATC | CTTTCGCTTCAATAACCCTA |
GmHMGS1 | Glyma.01G215500.1 | GGAGGAACTGCTGCTCTGTT | GGGCAGGTCCTTCAGCATAG |
GmHMGS2 | Glyma.05G050300.1 | TCCAGTGGTTGATGGGAAGC | CCTCATCCACAAAACTGGCAT |
GmHMGS3 | Glyma.09G148500.1 | GAGTAGCTCATGGGATGGACG | TAGGAGCATCTGGCCCTACA |
GmHMGS4 | Glyma.11G027000.1 | AACATGTACACGGCGTCTCT | ATGGTGGCAGTTAAGCCACT |
GmHMGS5 | Glyma.16G200200.1 | ATGCTATGGAGGAACGGCTG | ATCTGGCCCTACAAGCATGG |
GmHMGS6 | Glyma.17G132300.1 | CCAGCAAGTTGCAAAGCCTC | GATGCGGTGTACATGTTGCC |
基因名称 Gene name | 基因ID Gene ID | 基因全长 Gene length/bp | CDS序列 CDS sequence/bp | 氨基酸数 Amino acid amounts | 分子式 Molecular formula | 分子量 Mw/kD | 等电点 PI | 不稳定系数 Instability index | 亲水性平均值 GRAVY |
---|---|---|---|---|---|---|---|---|---|
GmHMGS1 | Glyma.01G215500.1 | 5 336 | 1 416 | 471 | C2340H3604N606O707S23 | 72.80 | 6.20 | 40.17 | -0.231 |
GmHMGS2 | Glyma.05G050300.1 | 4 665 | 882 | 293 | C1433H2223N377O433S12 | 44.78 | 6.08 | 41.69 | -0.178 |
GmHMGS3 | Glyma.09G148500.1 | 6 211 | 1 374 | 457 | C2266H3488N584O682S25 | 70.45 | 5.90 | 39.37 | -0.163 |
GmHMGS4 | Glyma.11G027000.1 | 6 456 | 1 428 | 475 | C2344H3625N605O718S22 | 73.14 | 5.77 | 39.33 | -0.224 |
GmHMGS5 | Glyma.16G200200.1 | 6 465 | 1 365 | 454 | C2238H3440N578O680S25 | 69.61 | 5.78 | 36.97 | -0.174 |
GmHMGS6 | Glyma.17G132300.1 | 4 760 | 1 383 | 460 | C2287H3534N588O694S22 | 71.25 | 5.98 | 39.33 | -0.246 |
表2 GmHMGS基因序列信息和理化性质分析
Table 2 Analysis of GmHMGS gene sequence information and physicochemical properties
基因名称 Gene name | 基因ID Gene ID | 基因全长 Gene length/bp | CDS序列 CDS sequence/bp | 氨基酸数 Amino acid amounts | 分子式 Molecular formula | 分子量 Mw/kD | 等电点 PI | 不稳定系数 Instability index | 亲水性平均值 GRAVY |
---|---|---|---|---|---|---|---|---|---|
GmHMGS1 | Glyma.01G215500.1 | 5 336 | 1 416 | 471 | C2340H3604N606O707S23 | 72.80 | 6.20 | 40.17 | -0.231 |
GmHMGS2 | Glyma.05G050300.1 | 4 665 | 882 | 293 | C1433H2223N377O433S12 | 44.78 | 6.08 | 41.69 | -0.178 |
GmHMGS3 | Glyma.09G148500.1 | 6 211 | 1 374 | 457 | C2266H3488N584O682S25 | 70.45 | 5.90 | 39.37 | -0.163 |
GmHMGS4 | Glyma.11G027000.1 | 6 456 | 1 428 | 475 | C2344H3625N605O718S22 | 73.14 | 5.77 | 39.33 | -0.224 |
GmHMGS5 | Glyma.16G200200.1 | 6 465 | 1 365 | 454 | C2238H3440N578O680S25 | 69.61 | 5.78 | 36.97 | -0.174 |
GmHMGS6 | Glyma.17G132300.1 | 4 760 | 1 383 | 460 | C2287H3534N588O694S22 | 71.25 | 5.98 | 39.33 | -0.246 |
蛋白名称Protein name | α螺旋Alpha helix/% | 延伸链Extended strand/% | 无规则卷曲Random coil/% | 染色体Chr. | 亚细胞定位Subcellular localization |
---|---|---|---|---|---|
GmHMGS1 | 25.05 | 22.29 | 52.65 | 01 | 细胞核Nucleus |
GmHMGS2 | 25.26 | 22.53 | 52.22 | 05 | 细胞核Nucleus |
GmHMGS3 | 22.32 | 19.91 | 57.77 | 09 | 叶绿体Chloroplast |
GmHMGS4 | 23.37 | 21.89 | 54.74 | 11 | 细胞核Nucleus |
GmHMGS5 | 21.81 | 21.59 | 56.61 | 16 | 叶绿体Chloroplast |
GmHMGS6 | 31.09 | 20.87 | 48.04 | 17 | 细胞核Nucleus |
表3 GmHMGS的二级结构预测及亚细胞定位预测
Table 3 Prediction of secondary structure and subcellular localization of GmHMGS
蛋白名称Protein name | α螺旋Alpha helix/% | 延伸链Extended strand/% | 无规则卷曲Random coil/% | 染色体Chr. | 亚细胞定位Subcellular localization |
---|---|---|---|---|---|
GmHMGS1 | 25.05 | 22.29 | 52.65 | 01 | 细胞核Nucleus |
GmHMGS2 | 25.26 | 22.53 | 52.22 | 05 | 细胞核Nucleus |
GmHMGS3 | 22.32 | 19.91 | 57.77 | 09 | 叶绿体Chloroplast |
GmHMGS4 | 23.37 | 21.89 | 54.74 | 11 | 细胞核Nucleus |
GmHMGS5 | 21.81 | 21.59 | 56.61 | 16 | 叶绿体Chloroplast |
GmHMGS6 | 31.09 | 20.87 | 48.04 | 17 | 细胞核Nucleus |
图3 GmHMGS保守基序分析 A:GmHMGS保守元件分析,Motif 1-6为不同颜色代表的基序组成;B:GmHMGS蛋白的保守基序序列
Fig. 3 Motif composition of the CmHMGS gene A: GmHMGS conserved element analysis, Motif 1-6 in different colored blocks indicate the motif composition, B: Sequence of conserved structural elements of GmHMGS proteins
图4 GmHMGS 基因的启动子顺式作用元件分析 ABRE:脱落酸响应元件;ARFs:生长素响应元件;GARE-motif:赤霉素响应元件;G-box:光响应元件;TCA-element:水杨酸响应元件; MBS:干旱胁迫响应元件;ARE:厌氧诱导元件;LTR:低温响应元件;HSE:胁迫响应元件
Fig. 4 Analysis of promoter cis-acting elements of the GmHMGS gene ABRE: Abscisic acid response element; ARFs: growth factor response elements; GARE-motif: gibberellin response element; G-box: light-responsive element; TCA-element: salicylic acid response element; MBS: Drought stress response element; ARE: anaerobic recovery element; LTR: low temperature response element; HSE: stress response element
图5 GmHMGS蛋白系统进化分析 黄芪(Astragalus membranaceus, Am);籼稻(Oryza sativa, Os);小米(Setaria italica, Si);玉米(Zea mays, Zm);二穗短柄草(Brachypodium distachyon, Bd);拟南芥(Arabidopsis thaliana, At);芥菜(Brassica juncea, Bj);雷蒙德氏棉(Gossypium raimondii, Gr);烟草(Nicotiana sylvestris, Ns);番茄(Solanum lycopersicum, Sl);朗氏烟草(Nicotiana sanderae, Ns);芝麻(Sesamum indicum, Si);丹参(Salvia miltiorrhiza, Sm);薰衣草(Lavandula angustifolia, La);桔梗(Platycodon grandifloras, Pg);三七(Panax notoginseng, Pn);黄花蒿(Artemisia annua, Aa);橡胶树(Hevea brasiliensis, Hb);蓖麻(Ricinus communis, Rc);苹果(Malus domestica, Md);桃(Prunus persica, Pp);红豆杉(Taxus media, Tm);轮藻(Chara vulgaris, Cv)
Fig. 5 Analysis of the phylogenetic evolution of GmHMGS proteins
图6 GmHMGS基因家族在不同组织中的表达分析 不同字母表示 P <0.05 水平上有显著差异
Fig. 6 Expression analysis of the GmHMGS gene family in different tissues Different letters indicate significant differences at the P <0.05 level
图7 非生物胁迫下大豆GmHMGS基因的表达模式分析 A:PEG6000 处理;B:NaCl 胁迫;C:H2O2 胁迫;对照组为处理后0 h GmHMGS基因表达水平设定为1,相应地计算处理GmHMGS的基因表达水平; 数据为 3 个重复的平均值 ± SE; 不同字母表示在 P <0.05 水平上有显著差异
Fig. 7 Expression patterns of GmHMGS gene in response to abiotic stress in soybean A: PEG6000 treatment; B: NaCl stress; C: H2O2 stress. The gene expression level of GmHMGS of the control at 0 h post-treatment was set to 1, and those of GmHMGS of the treatments were accordingly accounted and presented as the relative fold changes. The data indicate the mean ± SE of three replicates. Different letters indicate significant differences at the P <0.05 level
图8 激素处理后大豆GmHMGS基因的表达模式分析 A:MeJA处理;B:ABA处理;对照组为处理后0 h GmHMGS基因表达水平设定为1,相应地计算处理GmHMGS的基因表达水平; 数据为3 个重复的平均值 x ± SE;不同字母表示在 P <0.05 水平上有显著差异
Fig. 8 Expression patterns of GmHMGS gene in response to hormone treatment in soybean A: MeJA treatment; B: ABA treatment. the gene expression level of GmHMGS of the control at 0 h post-treatment was set to 1, and those of GmHMGS of the treatments were accordingly accounted and presented as the relative fold changes. The data indicate the mean x±SE of three replicates. Different letters indicate significant differences at the P <0.05 level
[1] | 杨文钰, 雍太文, 任万军, 等. 发展套作大豆, 振兴大豆产业[J]. 大豆科学, 2008, 27(1): 1-7. |
Yang WY, Yong TW, Ren WJ, et al. Develop relay-planting soybean, revitalize soybean industry[J]. Soybean Sci, 2008, 27(1): 1-7. | |
[2] | 张曼. 大豆萜类非甲羟戊酸代谢途径关键酶基因的克隆及功能鉴定[D]. 南京: 南京农业大学, 2008. |
Zhang M. Identification and characterization of genes encoding key enzymes in soybean non-mevalonate pathway[D]. Nanjing: Nanjing Agricultural University, 2008. | |
[3] |
Hemmerlin A, Harwood JL, Bach TJ. A raison d'être for two distinct pathways in the early steps of plant isoprenoid biosynthesis?[J]. Prog Lipid Res, 2012, 51(2): 95-148.
doi: 10.1016/j.plipres.2011.12.001 pmid: 22197147 |
[4] |
Papadopoulou K, Melton RE, Leggett M, et al. Compromised disease resistance in saponin-deficient plants[J]. Proc Natl Acad Sci USA, 1999, 96(22): 12923-12928.
doi: 10.1073/pnas.96.22.12923 pmid: 10536024 |
[5] |
Kuzina V, Ekstrøm CT, Andersen SB, et al. Identification of defense compounds in Barbarea vulgaris against the herbivore Phyllotreta nemorum by an ecometabolomic approach[J]. Plant Physiol, 2009, 151(4): 1977-1990.
doi: 10.1104/pp.109.136952 pmid: 19819983 |
[6] |
Vranová E, Coman D, Gruissem W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis[J]. Annu Rev Plant Biol, 2013, 64: 665-700.
doi: 10.1146/annurev-arplant-050312-120116 pmid: 23451776 |
[7] |
Pulido P, Perello C, Rodriguez-Concepcion M. New insights into plant isoprenoid metabolism[J]. Mol Plant, 2012, 5(5): 964-967.
doi: 10.1093/mp/sss088 pmid: 22972017 |
[8] |
Laule O, Fürholz A, Chang HS, et al. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2003, 100(11): 6866-6871.
doi: 10.1073/pnas.1031755100 URL |
[9] |
Rodríguez-Concepción M. Early steps in isoprenoid biosynthesis: multilevel regulation of the supply of common precursors in plant cells[J]. Phytochem Rev, 2006, 5(1): 1-15.
doi: 10.1007/s11101-005-3130-4 URL |
[10] |
Caelles C, Ferrer A, Balcells L, et al. Isolation and structural characterization of a cDNA encoding Arabidopsis thaliana 3-hydroxy-3-methylglutaryl coenzyme A reductase[J]. Plant Mol Biol, 1989, 13(6): 627-638.
doi: 10.1007/BF00016018 pmid: 2491679 |
[11] | 余函纹, 刘梦丽, 李景, 等. 桔梗PgHMGS和PgHMGR基因克隆与原核表达分析[J]. 中成药, 2022, 44(9): 3062-3068. |
Yu HW, Liu ML, Li J, et al. Cloning and prokaryotic expression analysis of PgHMGS and PgHMGR genes from platycodon grandiflorum[J]. Chin Tradit Pat Med, 2022, 44(9): 3062-3068. | |
[12] | 金楠, 阚夏月, 严雅洁, 等. 水芹萜类合成相关OjHMGS基因克隆与表达分析[J]. 植物生理学报, 2022, 58(11): 2079-2087. |
Jin N, Kan XY, Yan YJ, et al. Cloning and expression analysis of OjHMGS gene related to terpenoid biosynthesis in Oenanthe javanica[J]. Plant Physiology Journal, 2022, 58(11): 2079-2087. | |
[13] | 张成阁, 戈瑶瑶, 刘换换, 等. 北美鹅掌楸LtuHMGS基因的克隆与生物信息学分析[J]. 中南林业科技大学学报, 2022, 42(1): 146-155. |
Zhang CG, Ge YY, Liu HH, et al. Cloning and bioinformatics analysis of LtuHMGS in Liriodendron tulipifera[J]. J Cent South Univ For Technol, 2022, 42(1): 146-155. | |
[14] | 吴康靖. 四年生黄精主要化学成分研究化HMGS基因的克隆[D]. 杭州: 浙江理工大学, 2021. |
Wu KJ. Study on the the main chemical contents of 4-year-old Polygonatum sibiricum and clone the HMGS gene[D]. Hangzhou: Zhejiang Sci-Tech University, 2021. | |
[15] | 邵慧慧, 王少杰, 韩嘉宁, 等. 金鱼草AmHMGS基因的克隆及表达特征分析[J]. 基因组学与应用生物学, 2021, 40(4): 1778-1785. |
Shao HH, Wang SJ, Han JN, et al. Cloning and characterization of AmHMGS gene from Antirrhinum majus[J]. Genom Appl Biol, 2021, 40(4): 1778-1785. | |
[16] | 陈林波, 刘本英, 汪云刚, 等. 茶树HMGS基因的克隆与序列分析[J]. 西北农业学报, 2013, 22(5): 72-76. |
Chen LB, Liu BY, Wang YG, et al. Cloning and sequence analysis of HMGS gene from tea plant[Camellia sinensis(L.) O.Kuntz[J]. Acta Agric Boreali Occidentalis Sin, 2013, 22(5): 72-76. | |
[17] | 孙婷婷, 刘增才, 王世新, 等. 桑黄HMGS基因克隆、分子特性及差异表达分析[J]. 中草药, 2019, 50(23): 5823-5829. |
Sun TT, Liu ZC, Wang SX, et al. Cloning, molecular properties and differential expression analysis of HMGS gene from Sanghuangporus baumii[J]. Chin Tradit Herb Drugs, 2019, 50(23): 5823-5829. | |
[18] |
刘娟, 徐艳红, 杨勇, 等. 白木香3-羟基-3-甲基戊二酰辅酶A合酶(AsHMGS)基因的克隆与表达分析[J]. 植物研究, 2014, 34(1): 75-84.
doi: 10.7525/j.issn.1673-5102.2014.01.011 |
Liu J, Xu YH, Yang Y, et al. Cloning and gene expression of 3-hydroxy-3-methylglutaryl-CoA synthase gene(AsHMGS)from Aquilaria sinensis(lour.) gilg[J]. Bull Bot Res, 2014, 34(1): 75-84. | |
[19] | 王淋, 乌云塔娜, 叶生晶. 杜仲EuHMGS基因鉴定及生物信息学分析[J]. 经济林研究, 2014, 32(1): 13-20. |
Wang L, Wuyun TN, Ye SJ. Identifi cation and bioinformatics analysis of EuHMGS in Eucommia ulmoides[J]. Nonwood For Res, 2014, 32(1): 13-20. | |
[20] | 任昂, 欧阳翔, 师亮, 等. 灵芝羟甲基戊二酰辅酶A合酶基因的克隆及其表达特性[J]. 菌物研究, 2013, 11(2): 142. |
Ren A, Ouyang X, Shi L, et al. Cloning and expression characteristics of hydroxymethylglutaryl coenzyme A synthase gene from Ganoderma lucidum[J]. J Fungal Res, 2013, 11(2): 142. | |
[21] | 朱畇昊, 爼梦航, 苏秀红, 等. 冬凌草HMGS基因的克隆与表达分析[J]. 作物杂志, 2016(5): 25-30. |
Zhu YH, Zu MH, Su XH, et al. Molecular cloning and expression analysis of a gene encoding 3-hydroxy-3-methylglutaryl-CoA synthase from Isodon rubescen[J]. Crops, 2016(5): 25-30. | |
[22] | Liu W, Zhang ZQ, Zhu W, et al. Evolutionary conservation and divergence of genes encoding 3-hydroxy-3-methylglutaryl coenzyme A synthase in the allotetraploid cotton species Gossypium hirsutum[J]. Cells, 2019, 8(5): 412. |
[23] |
Tao TT, Chen QW, Meng XX, et al. Molecular cloning, characterization, and functional analysis of a gene encoding 3-hydroxy-3-methylglutaryl-coenzyme A synthase from Matricaria chamomilla[J]. Genes Genom, 2016, 38(12): 1179-1187.
doi: 10.1007/s13258-016-0463-x URL |
[24] | Niu MY, Yan HF, Xiong YP, et al. Cloning, characterization, and functional analysis of acetyl-CoA C-acetyltransferase and 3-hydroxy-3-methylglutaryl-CoA synthase genes in Santalum album[J]. Sci Rep, 2021, 11(1): 1082. |
[25] | Meng XX, Xu F, Song QL, et al. Isolation, characterization and functional analysis of a novel 3-hydroxy-3-methylglutaryl-coenzyme A synthase gene(GbHMGS2)from Ginkgo biloba[J]. Acta Physiol Plant, 2018, 40(4): 72. |
[26] |
Pu XJ, Dong XM, Li Q, et al. An update on the function and regulation of methylerythritol phosphate and mevalonate pathways and their evolutionary dynamics[J]. J Integr Plant Biol, 2021, 63(7): 1211-1226.
doi: 10.1111/jipb.13076 |
[27] | 李秋杰, 张竹南. 不同营养液浓度对鹅掌柴生长的影响[J]. 长江大学学报: 自科版, 2017, 14(18): 18-21, 3-4. |
Li QJ, Zhang ZN. Influence of various nutrient concentrations on the growth of Schefflera(Schefflera octophylla(lour.)harms)[J]. J Yangtze Univ Nat Sci Ed, 2017, 14(18): 18-21,3-4. | |
[28] |
王帅, 冯宇梅, 白苗, 等. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142.
doi: 10.13560/j.cnki.biotech.bull.1985.2023-0015 |
Wang S, Feng YM, Bai M, et al. Functional analysis of soybean gene GmHMGR responding to exogenous hormones and abiotic stresses[J]. Biotechnol Bull, 2023, 39(7): 131-142. | |
[29] | Bochar DA, Freisen J, Stauffacher CV, et al. Biosynthesis of mevalonic acid from acetyl-CoA[M]// Comprehensive Natural Products Chemistry. Amsterdam: Elsevier, 1999: 15-44. |
[30] | 邓小敏, 陈莹, 于洁, 等. 橡胶树HMGS编码基因的分离鉴定[J]. 热带作物学报, 2018, 39(10): 1963-1973. |
Deng XM, Chen Y, Yu J, et al. Identification of HMGS-coding genes from Hevea brasiliensis[J]. Chin J Trop Crops, 2018, 39(10): 1963-1973. | |
[31] |
Lipko A, Pączkowski C, Perez-Fons L, et al. Divergent contribution of the MVA and MEP pathways to the formation of polyprenols and dolichols in Arabidopsis[J]. Biochem J, 2023, 480(8): 495-520.
doi: 10.1042/BCJ20220578 URL |
[32] | 李清, 李标, 郭顺星. 金钗石斛中3-羟基-3-甲基戊二酰辅酶A合酶基因的克隆及特征分析[J]. 中草药, 2017, 48(12): 2502-2508. |
Li Q, Li B, Guo SX. Molecular characterization of 3-hydroxy-3-methylglutaryl-CoA synthase gene from Dendrobium nobile[J]. Chin Tradit Herb Drugs, 2017, 48(12): 2502-2508. | |
[33] | 李科, 何炎森, 陈晓静. 多花水仙HMGS基因的克隆[J]. 福建农林大学学报: 自然科学版, 2014, 43(3): 289-294. |
Li K, He YS, Chen XJ. Cloning of HMGS gene from flowers of Narcissus tazetta[J]. J Fujian Agric For Univ Nat Sci Ed, 2014, 43(3): 289-294. | |
[34] |
王淋, 杜红岩, 乌云塔娜. 杜仲MVA和MEP途径相关基因的亚细胞定位与表达分析[J]. 植物研究, 2017, 37(1): 52-62.
doi: 10.7525/j.issn.1673-5102.2017.01.008 |
Wang L, Du HY, Wuyun TN. Subcellular localization and expression analysis of genes from Eucommia ulmoides involved in MVA and MEP pathway[J]. Bull Bot Res, 2017, 37(1): 52-62. | |
[35] | Cheng SY, Wang XH, Xu F, et al. Cloning, expression profiling and functional analysis of CnHMGS, a gene encoding 3-hydroxy-3-methylglutaryl coenzyme A synthase from Chamaemelum nobile[J]. Molecules, 2016, 21(3): 316. |
[36] |
Zhang L, Yan XM, Wang J, et al. Molecular cloning and expression analysis of a new putative gene encoding 3-hydroxy-3-methylglutaryl-CoA synthase from Salvia miltiorrhiza[J]. Acta Physiol Plant, 2011, 33(3): 953-961.
doi: 10.1007/s11738-010-0627-2 URL |
[37] | Villano C, D'Amelia V, Esposito S, et al. Genome-wide HMG family investigation and its role in glycoalkaloid accumulation in wild Tuber-bearing Solanum commersonii[J]. Life, 2020, 10(4): 37. |
[38] |
Ren A, Ouyang X, Shi L, et al. Molecular characterization and expression analysis of GlHMGS, a gene encoding hydroxymethylglutaryl-CoA synthase from Ganoderma lucidum(Ling-Zhi)in ganoderic acid biosynthesis pathway[J]. World J Microbiol Biotechnol, 2013, 29(3): 523-531.
doi: 10.1007/s11274-012-1206-z URL |
[1] | 陈春林, 李白雪, 李金玲, 杜清洁, 李猛, 肖怀娟. 甜瓜CmEPF基因家族的鉴定及表达分析[J]. 生物技术通报, 2024, 40(4): 130-138. |
[2] | 肖雅茹, 贾婷婷, 罗丹, 武喆, 李丽霞. 黄瓜CsERF025L转录因子的克隆及表达分析[J]. 生物技术通报, 2024, 40(4): 159-166. |
[3] | 杨伟成, 孙岩, 杨倩, 王壮琳, 马菊花, 薛金爱, 李润植. 陆地棉FAX家族的全基因组鉴定及GhFAX1的功能分析[J]. 生物技术通报, 2024, 40(3): 155-169. |
[4] | 杨艳, 胡洋, 刘霓如, 殷璐, 杨锐, 王鹏飞, 穆霄鹏, 张帅, 程春振, 张建成. ‘红满堂’苹果MbbZIP43基因的克隆与功能研究[J]. 生物技术通报, 2024, 40(2): 146-159. |
[5] | 任延靖, 张鲁刚, 赵孟良, 李江, 邵登魁. 白菜种子cDNA酵母文库的构建及BrTTG1互作蛋白的筛选及分析[J]. 生物技术通报, 2024, 40(2): 223-232. |
[6] | 谢宏, 周丽莹, 李舒文, 王梦迪, 艾晔, 晁跃辉. 蒺藜苜蓿MtCIM基因结构和功能分析[J]. 生物技术通报, 2024, 40(1): 262-269. |
[7] | 唐伟林, 康琴, 汪霞, 谌明洋, 孙欣江, 王棵, 侯凯, 吴卫, 徐东北. 薄荷茉莉酸受体McCOI1a基因的克隆与表达模式分析[J]. 生物技术通报, 2024, 40(1): 270-280. |
[8] | 王佳蕊, 孙培媛, 柯瑾, 冉彬, 李洪有. 苦荞糖基转移酶基因FtUGT143的克隆及表达分析[J]. 生物技术通报, 2023, 39(8): 204-212. |
[9] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[10] | 李文辰, 刘鑫, 康越, 李伟, 齐泽铮, 于璐, 王芳. TRV病毒诱导大豆基因沉默体系优化及应用[J]. 生物技术通报, 2023, 39(7): 143-150. |
[11] | 孙明慧, 吴琼, 刘丹丹, 焦小雨, 王文杰. 茶树CsTMFs的克隆与表达分析[J]. 生物技术通报, 2023, 39(7): 151-159. |
[12] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[13] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[14] | 翟莹, 李铭杨, 张军, 赵旭, 于海伟, 李珊珊, 赵艳, 张梅娟, 孙天国. 异源表达大豆转录因子GmNF-YA19提高转基因烟草抗旱性[J]. 生物技术通报, 2023, 39(5): 224-232. |
[15] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||