生物技术通报 ›› 2024, Vol. 40 ›› Issue (5): 120-130.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1120
收稿日期:
2023-11-27
出版日期:
2024-05-26
发布日期:
2024-06-13
通讯作者:
孔小平,女,博士,研究员,研究方向:蔬菜种质资源创新及育种;E-mail: xnsc_kong@126.com。作者简介:
孔小平,女,博士,研究员,研究方向:蔬菜种质资源创新及育种;E-mail: xnsc_kong@126.com。
基金资助:
KONG Xiao-ping(), CHEN Li-wen, LIU Si-si, YAN Xiang-ping
Received:
2023-11-27
Published:
2024-05-26
Online:
2024-06-13
摘要:
【目的】胡萝卜受低温及长日照的影响易发生先期抽薹现象,挖掘与胡萝卜抽薹性状相关联的SNP位点及候选基因,有利于胡萝卜耐抽薹新品种的选育。【方法】以240份胡萝卜种质资源为材料,分别在2021年及2022年调查胡萝卜抽薹(抽薹时间、抽薹率、薹高、抽薹速度)性状,基于质控得到的高质量SNP位点进行抽薹相关性状的GWAS分析。【结果】240份胡萝卜种质资源的抽薹性状具有丰富的遗传多样性,对2年的数据进行分析发现各性状表型均有较大的变异,抽薹率的变异系数最大为144.32%、187.89%,抽薹时间的变异系数同比最小为94.89%和74.63%,BLUE值降低了环境所带来的误差,其变异系数最小为22.53%。相关性分析结果表明,2021年抽薹率与2022年的抽薹性状呈显著正相关,与BLUE值为极显著相关,BLUE值除与2021年的抽薹时间无显著相关外,与其它性状均为极显著相关。GWAS分析共检测到与抽薹性状显著相关的344 个SNP 标记位点,其中有20个多效位点,根据注释信息筛选出29个与抽薹相关的候选基因,主要与光周期途径、春化途径和开花整合子有关。【结论】通过GWAS分析获得多个与抽薹性状相关联的SNP位点,并挖掘到相关候选基因。
孔小平, 陈利文, 刘思思, 严湘萍. 胡萝卜抽薹相关性状全基因组关联分析[J]. 生物技术通报, 2024, 40(5): 120-130.
KONG Xiao-ping, CHEN Li-wen, LIU Si-si, YAN Xiang-ping. Genome-wide Association Study of Bolting Related Traits in Carrot[J]. Biotechnology Bulletin, 2024, 40(5): 120-130.
性状Trait | 最小值Min | 最大值Max | 均值Mean | 标准偏差SD | 变异系数CV% | 广义遗传率H2 |
---|---|---|---|---|---|---|
2021抽薹时间2021 Bolting time/d | 0 | 165 | 57.73 | 54.78 | 94.89 | 19.47 |
2022抽薹时间2022 Bolting time/d | 0 | 129 | 55.65 | 41.53 | 74.63 | |
2021抽薹率2021 Bolting rate/% | 0 | 56.67 | 6.24 | 11.72 | 187.89 | 95.04 |
2022抽薹率2022 Bolting rate/% | 0 | 97.5 | 13.75 | 19.83 | 144.22 | |
2021薹高2021 Bolt height/cm | 0 | 140.63 | 45.24 | 46.85 | 103.55 | 94.86 |
2022薹高2022 Bolt height/cm | 0 | 148.5 | 65.32 | 50.58 | 77.43 | |
2021抽薹速度2021 Bolting speed/(cm·d-1) | 0 | 1.80 | 0.47 | 0.52 | 110.50 | 96.91 |
2022抽薹速度2022 Bolting speed/(cm·d-1) | 0 | 2.01 | 0.81 | 0.66 | 81.78 | |
BLUE | 26 | 148.50 | 90.01 | 20.28 | 22.53 | 100 |
表1 胡萝卜抽薹性状的年度统计分析
Table 1 Annual statistical analysis of carrot bolting traits
性状Trait | 最小值Min | 最大值Max | 均值Mean | 标准偏差SD | 变异系数CV% | 广义遗传率H2 |
---|---|---|---|---|---|---|
2021抽薹时间2021 Bolting time/d | 0 | 165 | 57.73 | 54.78 | 94.89 | 19.47 |
2022抽薹时间2022 Bolting time/d | 0 | 129 | 55.65 | 41.53 | 74.63 | |
2021抽薹率2021 Bolting rate/% | 0 | 56.67 | 6.24 | 11.72 | 187.89 | 95.04 |
2022抽薹率2022 Bolting rate/% | 0 | 97.5 | 13.75 | 19.83 | 144.22 | |
2021薹高2021 Bolt height/cm | 0 | 140.63 | 45.24 | 46.85 | 103.55 | 94.86 |
2022薹高2022 Bolt height/cm | 0 | 148.5 | 65.32 | 50.58 | 77.43 | |
2021抽薹速度2021 Bolting speed/(cm·d-1) | 0 | 1.80 | 0.47 | 0.52 | 110.50 | 96.91 |
2022抽薹速度2022 Bolting speed/(cm·d-1) | 0 | 2.01 | 0.81 | 0.66 | 81.78 | |
BLUE | 26 | 148.50 | 90.01 | 20.28 | 22.53 | 100 |
性状 Trait | 21抽薹时间 21 Bolting time | 21抽薹率 21 Bolting rate | 21薹高 21 Bolt height | 21抽薹速度 21 Bolting speed | 22抽薹时间 22 Bolting time | 22抽薹率 22 Bolting rate | 22薹高 22 Bolt height | 22抽薹速度 22 Bolting speed | BLUE |
---|---|---|---|---|---|---|---|---|---|
21抽薹时间 21 Bolting time | 1 | ||||||||
21抽薹率 21 Bolting rate | .359** | 1 | |||||||
21薹高 21 Bolt height | .711** | .587** | 1 | ||||||
21抽薹速度 21 Bolting speed | .629** | .629** | .989** | 1 | |||||
22抽薹时间 22 Bolting time | 0.052 | .276* | .242* | .268* | 1 | ||||
22抽薹率 22 Bolting rate | 0.124 | .235* | 0.161 | 0.174 | .357** | 1 | |||
22薹高 22 Bolt height | 0.11 | .288* | .326** | .358** | .838** | .580** | 1 | ||
22抽薹速度 22 Bolting speed | 0.117 | .261* | .310** | .340** | .752** | .655** | .983** | 1 | |
BLUE | 0.175 | .432** | .651** | .704** | .311** | .462** | .707** | .745** | 1 |
表2 抽薹性状的相关性分析
Table 2 Correlation analysis of bolting traits
性状 Trait | 21抽薹时间 21 Bolting time | 21抽薹率 21 Bolting rate | 21薹高 21 Bolt height | 21抽薹速度 21 Bolting speed | 22抽薹时间 22 Bolting time | 22抽薹率 22 Bolting rate | 22薹高 22 Bolt height | 22抽薹速度 22 Bolting speed | BLUE |
---|---|---|---|---|---|---|---|---|---|
21抽薹时间 21 Bolting time | 1 | ||||||||
21抽薹率 21 Bolting rate | .359** | 1 | |||||||
21薹高 21 Bolt height | .711** | .587** | 1 | ||||||
21抽薹速度 21 Bolting speed | .629** | .629** | .989** | 1 | |||||
22抽薹时间 22 Bolting time | 0.052 | .276* | .242* | .268* | 1 | ||||
22抽薹率 22 Bolting rate | 0.124 | .235* | 0.161 | 0.174 | .357** | 1 | |||
22薹高 22 Bolt height | 0.11 | .288* | .326** | .358** | .838** | .580** | 1 | ||
22抽薹速度 22 Bolting speed | 0.117 | .261* | .310** | .340** | .752** | .655** | .983** | 1 | |
BLUE | 0.175 | .432** | .651** | .704** | .311** | .462** | .707** | .745** | 1 |
图5 2021年抽薹相关性状的GWAS分析结果 A:抽薹时间;B:抽薹率;C:薹高;D:抽薹速度。(a)曼哈顿图;(b)分数位-分数位图。下同
Fig. 5 GWAS results of bolting related traits in 2021 A: Bolting time. B: Bolting rate. C: Lichen height. D: Bolting speed.(a)Manhattan map.(b)Quantile-Quantile plot, The same below
性状 Trait | 染色体 Chromosome | 位置 Position | P-value |
---|---|---|---|
21BH与21BS | NC_030385.1 | 247837 | 5.062605543 |
5.181618171 | |||
21BH与21BR | NC_030387.1 | 25943860 | 7.130938393 |
5.003944095 | |||
21BH与21BS | NC_030384.1 | 29157915 | 5.963621455 |
5.720245476 | |||
21BH与21BR与21BS | NC_030387.1 | 25945005 | 5.352303062 |
7.088379728 | |||
5.108446375 | |||
BLUE与21BH与21BS | NC_030389.1 | 24736160 | 5.106787027 |
5.557113408 | |||
5.461533219 | |||
BLUE与22BH与22BS | NC_030381.1 | 33254067 | 6.324538791 |
5.49099208 | |||
5.222840507 | |||
22BH与22BS与22BT | NC_030381.1 | 14821077 | 6.593913937 |
6.227883017 | |||
6.232284515 | |||
22BH与22BT | NC_030388.1 | 11132733 | 5.378648581 |
6.444345564 | |||
NC_030388.1 | 11137259 | 5.371916716 | |
5.150990441 | |||
NC_030388.1 | 11137567 | 6.154995778 | |
5.457724322 | |||
NC_030388.1 | 11138809 | 5.441207818 | |
5.942054091 | |||
NC_030388.1 | 11138870 | 6.319788809 | |
5.838568206 | |||
NC_030388.1 | 11140265 | 5.265788906 | |
5.356182472 | |||
NC_030388.1 | 11140360 | 5.709912163 | |
5.090512864 | |||
22BH与22BS | NC_030389.1 | 13789203 | 5.401099457 |
5.039460825 | |||
NC_030387.1 | 16775792 | 5.520533385 | |
5.067802628 | |||
NC_030389.1 | 20543833 | 5.662274653 | |
5.049698785 | |||
NC_030389.1 | 29589257 | 5.819082274 | |
5.128142531 | |||
NC_030381.1 | 51260915 | 5.693448241 | |
5.339222243 | |||
22BR与22BS | NC_030387.1 | 16759553 | 5.061021806 |
5.137172756 |
表3 不同抽薹性状相同SNP位点
Table 3 The same SNP sites in different bolting traits
性状 Trait | 染色体 Chromosome | 位置 Position | P-value |
---|---|---|---|
21BH与21BS | NC_030385.1 | 247837 | 5.062605543 |
5.181618171 | |||
21BH与21BR | NC_030387.1 | 25943860 | 7.130938393 |
5.003944095 | |||
21BH与21BS | NC_030384.1 | 29157915 | 5.963621455 |
5.720245476 | |||
21BH与21BR与21BS | NC_030387.1 | 25945005 | 5.352303062 |
7.088379728 | |||
5.108446375 | |||
BLUE与21BH与21BS | NC_030389.1 | 24736160 | 5.106787027 |
5.557113408 | |||
5.461533219 | |||
BLUE与22BH与22BS | NC_030381.1 | 33254067 | 6.324538791 |
5.49099208 | |||
5.222840507 | |||
22BH与22BS与22BT | NC_030381.1 | 14821077 | 6.593913937 |
6.227883017 | |||
6.232284515 | |||
22BH与22BT | NC_030388.1 | 11132733 | 5.378648581 |
6.444345564 | |||
NC_030388.1 | 11137259 | 5.371916716 | |
5.150990441 | |||
NC_030388.1 | 11137567 | 6.154995778 | |
5.457724322 | |||
NC_030388.1 | 11138809 | 5.441207818 | |
5.942054091 | |||
NC_030388.1 | 11138870 | 6.319788809 | |
5.838568206 | |||
NC_030388.1 | 11140265 | 5.265788906 | |
5.356182472 | |||
NC_030388.1 | 11140360 | 5.709912163 | |
5.090512864 | |||
22BH与22BS | NC_030389.1 | 13789203 | 5.401099457 |
5.039460825 | |||
NC_030387.1 | 16775792 | 5.520533385 | |
5.067802628 | |||
NC_030389.1 | 20543833 | 5.662274653 | |
5.049698785 | |||
NC_030389.1 | 29589257 | 5.819082274 | |
5.128142531 | |||
NC_030381.1 | 51260915 | 5.693448241 | |
5.339222243 | |||
22BR与22BS | NC_030387.1 | 16759553 | 5.061021806 |
5.137172756 |
[1] | 洪丽萍, 黄青云, 张庆美, 等. 胡萝卜育种研究[J]. 亚热带植物科学, 2011, 40(2): 79-82. |
Hong LP, Huang QY, Zhang QM, et al. A review of research on carrot breeding[J]. Subtrop Plant Sci, 2011, 40(2): 79-82. | |
[2] | 却枫, 黄莹, 王枫, 等. 胡萝卜中DcDofD1转录因子的克隆及其对非生物逆境胁迫的响应分析[J]. 植物遗传资源学报, 2015, 16(5): 1073-1079. |
Que F, Huang Y, Wang F, et al. Cloning and expression analysis of a transcription factor, DcDofD1 related to abiotic stress reaction in carrot[J]. J Plant Genet Resour, 2015, 16(5): 1073-1079. | |
[3] |
刘星, 黄建新, 等. 胡萝卜根色及其色素组分的遗传和育种研究进展[J]. 植物遗传资源学报, 2022, 23(5): 1241-1248.
doi: 10.13430/j.cnki.jpgr.20220317001 |
Liu X, Huang JX, et al. Current advances on inheritance and breeding of carrot root color and its pigment components[J]. J Plant Genet Resour, 2022, 23(5): 1241-1248. | |
[4] | 马振国. 胡萝卜种质资源多样性及耐抽薹鉴定方法研究[D]. 北京: 中国农业科学院, 2015. |
Ma ZG. Genetic diversity of carrot germplasm and method of bolting tolerance identification[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. | |
[5] | 毛笈华, 庄飞云, 欧承刚, 等. 胡萝卜FLC同源基因对低温及光周期响应[J]. 园艺学报, 2013, 40(12): 2453-2462. |
Mao JH, Zhuang FY, Ou CG, et al. Expression analysis of FLC homologues responding to low temperature and photoperiod in carrot[J]. Acta Hortic Sin, 2013, 40(12): 2453-2462. | |
[6] | 鲍生有. 胡萝卜(Daucus carota L.)先期抽薹遗传模型及QTL研究[D]. 南京: 南京农业大学,20013. |
Bao SY. Genetic model and QTL study on early bolting of carrots(Daucus carota L.)[D]. Nanjing: Nanjing Agricultural University, 20013. | |
[7] |
马娟, 王利锋, 曹言勇, 等. 玉米出籽率全基因组关联分析[J]. 植物遗传资源学报, 2021, 22(2): 448-454.
doi: 10.13430/j.cnki.jpgr.20200822001 |
Ma J, Wang LF, Cao YY, et al. Genome-wide association studies for kernel ratio in maize[J]. J Plant Genet Resour, 2021, 22(2): 448-454. | |
[8] | 李洪超, 王晓楠, 李紫薇, 等. 工业大麻中全基因组关联分析研究进展[J]. 植物遗传资源学报, 2023, 24(5): 1257-1266. |
Li HC, Wang XN, Li ZW, et al. Advances in genome-wide association study in industrial hemp[J]. J Plant Genet Resour, 2023, 24(5): 1257-1266.
doi: 10.13430/j.cnki.jpgr.20230322002 |
|
[9] | Li YX, Li CH, et al. Identification of genetic variants associated with maize flowering time using an extremely large multi-genetic background population[J]. Plant J, 2016, 86(5): 391-402. |
[10] | Zhang JP, Song QJ, Cregan PB, et al. Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean(Glycine max)germplasm[J]. BMC Genomics, 2015, 16(1): 217. |
[11] | 龚振平. 大白菜抗病和晚抽薹性状的GWAS分析及其优异资源发掘[D]. 北京: 中国农业科学院, 2016. |
Gong ZP. Genome wide association study(GWAS)on disease resistance and late bolting and mining excellent germplasms in Brassica rapa L.[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. | |
[12] | 汪精磊, 邱杨, 程锋, 等. 萝卜全基因组抽薹开花相关基因的鉴定及比较基因组学分析[C]. 中国园艺学会2015年学术年会论文摘要集:《园艺学报》编辑部, 2015, 42(S1):2654. |
Wang JL, Qiu Y, Cheng F, et al. Identification and comparative genomic analysis of genes related to whole genome bolting and flowering in radish[C]. Proceedings of the 2015 Academic Annual Meeting of the Chinese Horticultural Society:Editorial Department of the Journal of Horticulture, 2015, 42(S1): 2654. | |
[13] |
陈贵菊, 靳义荣, 等. 普通小麦根系建成相关性状的全基因组关联分析[J]. 植物遗传资源学报, 2020, 21(4): 975-983.
doi: 10.13430/j.cnki.jpgr.20191126002 |
Chen GJ, Jin YR, et al. Genome-wide association study of root system architecture related traits in common wheat(Triticum aes-tivum L.)[J]. J Plant Genet Resour, 2020, 21(4): 975-983. | |
[14] | 康从彬. 玉米耐盐基因主效位点挖掘及连锁分子标记的开发[D]. 泰安: 山东农业大学, 2021. |
Kang CB. Mining of major loci of maize salt tolerance genes and development of linked molecular markers[D]. Tai'an: Shandong Agricultural University, 2021. | |
[15] | Yang N, Lu YL, Yang XH, et al. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel[J]. PLoS Genet, 2014, 10(9): e1004573. |
[16] | 高炯浩, 段海洋, 熊雪航. 玉米雄穗相关性状的全基因组关联分析及候选基因筛选[J/OL]. 分子植物育种:1-14. http://kns.cnki.net/kcms/detail/46.1068.s.20221215.1612.006.html. |
Gao JH, Duan HY, Xiong XH, et al. Genome wide association analysis and candidate gene screening of maize tassel related traits[J/OL]. Molecular Plant Breeding: 1-14. http://kns.cnki.net/kcms/detail/46.1068.s.20221215.1612.006.html. | |
[17] |
史大坤, 姚天茏, 刘楠楠, 等. 玉米叶绿素含量的全基因组关联分析[J]. 中国农业科学, 2019, 52(11): 1839-1857.
doi: 10.3864/j.issn.0578-1752.2019.11.001 |
Shi DK, Yao TL, Liu NN, et al. Genome-wide association study of chlorophyll content in maize[J]. Sci Agric Sin, 2019, 52(11): 1839-1857.
doi: 10.3864/j.issn.0578-1752.2019.11.001 |
|
[18] |
白鼎臣, 赵支飞, 等. 贵州栽培型地方茶树叶片气孔性状全基因组关联分析[J]. 浙江农业学报, 2023, 35(7): 1550-1563.
doi: 10.3969/j.issn.1004-1524.20230261 |
Bai DC, Zhao ZF, et al. Genome-wide association analysis of stomatal characters of cultivated local tea plants in Guizhou, China[J]. Acta Agric Zhejiangensis, 2023, 35(7): 1550-1563.
doi: 10.3969/j.issn.1004-1524.20230261 |
|
[19] |
Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies[J]. Nat Genet, 2012, 44(7): 821-824.
doi: 10.1038/ng.2310 pmid: 22706312 |
[20] | 李敏. 胡萝卜FT基因的克隆及遗传转化体系优化[D]. 北京: 中国农业科学院, 2021. |
Li M. Cloning and genetic transformation system optimization of FT gene in carrot[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. | |
[21] | 尹淑英. 紫花苜蓿的种子功能性状及SSR分子标记的遗传多样性[D]. 兰州: 兰州大学, 2018. |
Yin SY. Genetic diversity of seed functional traits and SSR markers in alfalfa germplasm resources[D]. Lanzhou: Lanzhou University, 2018. | |
[22] | 谢刘勇. 玉米茎秆强度相关性状全基因组关联分析与重要基因挖掘[D]. 泰安: 山东农业大学, 2021. |
Xie LY. Genome-wide association studies and important gene mining of maize stalk strength related traits[D]. Tai'an: Shandong Agricultural University, 2021. | |
[23] |
王姣梅, 汪磊, 等. 蓖麻种质资源遗传多样性与群体结构的SSR分析[J]. 中国油料作物学报, 2022, 44(1): 87-93.
doi: 10.19802/j.issn.1007-9084.2020262 |
Wang JM, Wang L, et al. Genetic diversity and population structure analysis of castor bean accessions based on SSR markers[J]. Chin J Oil Crop Sci, 2022, 44(1): 87-93. | |
[24] | 陈坚剑, 张慧, 王婷甄, 等. 甜玉米自交系遗传多样性和群体结构分析[J]. 分子植物育种, 2022, 20(19): 6559-6565. |
Chen JJ, Zhang H, Wang TZ, et al. Genetic diversity and population genetic structure analysis of sweet corn inbred lines[J]. Mol Plant Breed, 2022, 20(19): 6559-6565. | |
[25] |
孙倩, 邹枚伶, 张辰笈, 等. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49.
doi: 10.3724/SP.J.1006.2021.04067 |
Sun Q, Zou ML, Zhang CJ, et al. Genetic diversity and population structure analysis by SNP and InDel markers of cassava in Brazil[J]. Acta Agron Sin, 2021, 47(1): 42-49.
doi: 10.3724/SP.J.1006.2021.04067 |
|
[26] | Ou CG, Mao JH, Liu LJ, et al. Characterising genes associated with flowering time in carrot(Daucus carota L.) using transcriptome analysis[J]. Plant Biol, 2017, 19(2): 286-297. |
[27] | Liu LJ, Ou CG, Chen SM, et al. The response of COL and FT homologues to photoperiodic regulation in carrot(Daucus carota L.)[J]. Sci Rep, 2020, 10: 9984. |
[28] | López-González L, Mouriz A, Narro-Diego L, et al. Chromatin-dependent repression of the Arabidopsis floral integrator genes involves plant specific PHD-containing proteins[J]. Plant Cell, 2014, 26(10): 3922-3938. |
[29] |
Piñeiro M, Gómez-Mena C, Schaffer R, et al. EARLY BOLTING IN SHORT DAYS is related to chromatin remodeling factors and regulates flowering in Arabidopsis by repressing FT[J]. Plant Cell, 2003, 15(7): 1552-1562.
pmid: 12837946 |
[30] |
Chen MJ, Ni M. RFI2, a RING-domain zinc finger protein, negatively regulates CONSTANS expression and photoperiodic flowering[J]. Plant J, 2006, 46(5): 823-833.
pmid: 16709197 |
[31] | Xu YF, Gan ES, Zhou J, et al. Arabidopsis MRG domain proteins bridge two histone modifications to elevate expression of flowering genes[J]. Nucleic Acids Res, 2014, 42(17): 10960-10974. |
[32] | Ellis CM, Nagpal P, Young JC, et al. Auxin response factor1 and auxin response factor2 regulate senescence and floral organ abscission in Arabidopsis thaliana[J]. Development, 2005, 132(20): 4563-4574. |
[33] | Bu ZY, Yu Y, Li ZP, et al. Regulation of Arabidopsis flowering by the histone mark readers MRG1/2 via interaction with CONSTANS to modulate FT expression[J]. PLoS Genet, 2014, 10(9): e1004617. |
[1] | 吴迪, 游小凤, 郑亦铮, 林楠, 张燕燕, 魏艺聪. 草珊瑚中类胡萝卜素合成的内源激素调控机制分析[J]. 生物技术通报, 2024, 40(5): 203-214. |
[2] | 周会汶, 吴兰花, 韩德鹏, 郑伟, 余跑兰, 吴杨, 肖小军. 甘蓝型油菜种子硫苷含量全基因组关联分析[J]. 生物技术通报, 2024, 40(1): 222-230. |
[3] | 吴巧茵, 施友志, 李林林, 彭政, 谭再钰, 刘利平, 张娟, 潘勇. 类胡萝卜素降解菌株的原位筛选及其在雪茄提质增香中的应用[J]. 生物技术通报, 2023, 39(9): 192-201. |
[4] | 叶云芳, 田清尹, 施婷婷, 王亮, 岳远征, 杨秀莲, 王良桂. 植物中β-紫罗兰酮生物合成及调控研究进展[J]. 生物技术通报, 2023, 39(8): 91-105. |
[5] | 谢田朋, 张佳宁, 董永骏, 张建, 景明. 早期抽薹对当归根际土壤微环境的影响[J]. 生物技术通报, 2023, 39(7): 206-218. |
[6] | 崔学强, 黄昌艳, 邓杰玲, 李先民, 李秀玲, 张自斌. 基于SLAF-seq技术的石斛兰SNP标记开发及亲缘关系分析[J]. 生物技术通报, 2023, 39(6): 141-148. |
[7] | 张和臣, 袁欣, 高杰, 王校晨, 王慧娟, 李艳敏, 王利民, 符真珠, 李保印. 植物花瓣呈色机理及花色分子育种[J]. 生物技术通报, 2023, 39(5): 23-31. |
[8] | 肖小军, 陈明, 韩德鹏, 余跑兰, 郑伟, 肖国滨, 周庆红, 周会汶. 甘蓝型油菜每角果粒数全基因组关联分析[J]. 生物技术通报, 2023, 39(3): 143-151. |
[9] | 张志霞, 李天培, 曾虹, 朱稀贤, 杨天雄, 马斯楠, 黄磊. 冰冷杆菌PG-2的基因组测序及生物信息学分析[J]. 生物技术通报, 2023, 39(3): 290-300. |
[10] | 蔡梦鲜, 高作敏, 胡利娟, 冯群, 王洪程, 朱斌. 天然甘蓝型油菜C染色体组C1,C2缺体的创建及遗传分析[J]. 生物技术通报, 2023, 39(3): 81-88. |
[11] | 余世洲, 曹领改, 王世泽, 刘勇, 边文杰, 任学良. 烟草种质基因分型核心SNP标记的开发[J]. 生物技术通报, 2023, 39(3): 89-100. |
[12] | 黄文莉, 李香香, 周炆婷, 罗莎, 姚维嘉, 马杰, 张芬, 沈钰森, 顾宏辉, 王建升, 孙勃. 利用CRISPR/Cas9技术靶向编辑青花菜BoZDS[J]. 生物技术通报, 2023, 39(2): 80-87. |
[13] | 任丽, 乔舒婷, 葛晨辉, 魏梓桐, 徐晨曦. 菠菜PSY基因家族的鉴定与表达分析[J]. 生物技术通报, 2023, 39(12): 169-178. |
[14] | 陆育生, 彭程, 常晓晓, 邱继水, 陈喆, 陈慧琼. 基于SSR标记的广东黄皮种质资源遗传多样性分析及分子身份证构建[J]. 生物技术通报, 2023, 39(12): 187-199. |
[15] | 周琳, 梁轩铭, 赵磊. 天然类胡萝卜素的生物合成研究进展[J]. 生物技术通报, 2022, 38(7): 119-127. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||