生物技术通报 ›› 2023, Vol. 39 ›› Issue (2): 80-87.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0823
黄文莉1(), 李香香1, 周炆婷1, 罗莎1, 姚维嘉1, 马杰1,2, 张芬1, 沈钰森3, 顾宏辉3, 王建升3, 孙勃1()
收稿日期:
2022-07-04
出版日期:
2023-02-26
发布日期:
2023-03-07
作者简介:
黄文莉,女,硕士研究生,研究方向:蔬菜生理与分子生物学;E-mail: 基金资助:
HUANG Wen-li1(), LI Xiang-xiang1, ZHOU Wen-ting1, LUO Sha1, YAO Wei-jia1, MA Jie1,2, ZHANG Fen1, SHEN Yu-sen3, GU Hong-hui3, WANG Jian-sheng3, SUN Bo1()
Received:
2022-07-04
Published:
2023-02-26
Online:
2023-03-07
摘要:
ζ-胡萝卜素脱氢酶(ζ-carotene desaturase, ZDS)是类胡萝卜素合成的限速酶。本试验以青花菜多代自交系‘ZN09’为试材,以BoZDS为目标基因,在其第1个外显子上选取2个靶位点,分别构建CRISPR/Cas9载体进行稳定遗传转化。1号靶位点转化效率为0.80%,突变率为15.79%,共获得3株突变体,均为杂合突变;2号靶位点转化效率为0.84%,突变率为36.84%,共获得7株突变体,其中纯合突变2株,杂合突变2株,嵌合突变3株。突变体均出现白化或斑驳表型,突变体L*值和a*值均显著高于野生型植株,b*值均下降。本试验建立了青花菜CRISPR/Cas9基因编辑稳定遗传体系,并对BoZDS基因进行有效编辑,研究结果为利用基因编辑技术进行青花菜基因功能研究与优异性状材料创制提供了技术支撑。
黄文莉, 李香香, 周炆婷, 罗莎, 姚维嘉, 马杰, 张芬, 沈钰森, 顾宏辉, 王建升, 孙勃. 利用CRISPR/Cas9技术靶向编辑青花菜BoZDS[J]. 生物技术通报, 2023, 39(2): 80-87.
HUANG Wen-li, LI Xiang-xiang, ZHOU Wen-ting, LUO Sha, YAO Wei-jia, MA Jie, ZHANG Fen, SHEN Yu-sen, GU Hong-hui, WANG Jian-sheng, SUN Bo. Targeted Editing of BoZDS in Broccoli by CRISPR/Cas9 Technology[J]. Biotechnology Bulletin, 2023, 39(2): 80-87.
用途 Purpose | 引物名称 Primer name | 引物序列 Sequence of primer(5'-3') | 产物大小 Product size/bp |
---|---|---|---|
合成靶位点序列 Synthetic target site | BoZDS-CRISPR-F1 | ATTGAGGAGAGGAACGCAGTAGC | 23 |
BoZDS-CRISPR-R1 | AAACGCTACTGCGTTCCTCTCCT | 23 | |
BoZDS-CRISPR-F2 | ATTGACCTAACATGAAACCTCCG | 23 | |
BoZDS-CRISPR-R2 | AAACCGGAGGTTTCATGTTAGGT | 23 | |
潮霉素抗性基因检测 Hygromycin resistance gene detection | Hyg-F | CGATTGCGTCGCATCGACC | 558 |
Hyg-R | TTCTACAACCGGTCGCGGAG | ||
Cas9基因检测Cas9 gene detection | Cas9-F | GGCAGATCACAAAGCACGTG | 661 |
Cas9-R | ACCAGCACAGAATAGGCCAC | ||
检测转基因突变Detection of mutations in transgenic plants | BoZDS-CRISPR test-F | ATCCCACTGGCCATAGTTAGGC | 744 |
BoZDS-CRISPR test-R | CAAGTCCAGCTCCAATGATAGCTAC |
表1 本研究中所用的引物
Table 1 Primers used in this study
用途 Purpose | 引物名称 Primer name | 引物序列 Sequence of primer(5'-3') | 产物大小 Product size/bp |
---|---|---|---|
合成靶位点序列 Synthetic target site | BoZDS-CRISPR-F1 | ATTGAGGAGAGGAACGCAGTAGC | 23 |
BoZDS-CRISPR-R1 | AAACGCTACTGCGTTCCTCTCCT | 23 | |
BoZDS-CRISPR-F2 | ATTGACCTAACATGAAACCTCCG | 23 | |
BoZDS-CRISPR-R2 | AAACCGGAGGTTTCATGTTAGGT | 23 | |
潮霉素抗性基因检测 Hygromycin resistance gene detection | Hyg-F | CGATTGCGTCGCATCGACC | 558 |
Hyg-R | TTCTACAACCGGTCGCGGAG | ||
Cas9基因检测Cas9 gene detection | Cas9-F | GGCAGATCACAAAGCACGTG | 661 |
Cas9-R | ACCAGCACAGAATAGGCCAC | ||
检测转基因突变Detection of mutations in transgenic plants | BoZDS-CRISPR test-F | ATCCCACTGGCCATAGTTAGGC | 744 |
BoZDS-CRISPR test-R | CAAGTCCAGCTCCAATGATAGCTAC |
靶位点编号 Target site No. | 靶位点序列 Target site sequence | sgRNA GC含量 sgRNA GC content/% | 靶位点得分 Target site score |
---|---|---|---|
1 | CCAGCTACTGC- GTTCCTCTCCTC | 61 | 0.021 1 |
2 | CCTCGGAGGTT- TCATGTTAGGTC | 52 | 0.586 5 |
表2 靶位点GC含量和得分情况
Table 2 GC content and scores of target sites
靶位点编号 Target site No. | 靶位点序列 Target site sequence | sgRNA GC含量 sgRNA GC content/% | 靶位点得分 Target site score |
---|---|---|---|
1 | CCAGCTACTGC- GTTCCTCTCCTC | 61 | 0.021 1 |
2 | CCTCGGAGGTT- TCATGTTAGGTC | 52 | 0.586 5 |
图2 青花菜稳定遗传转化的过程 A:播种;B:无菌苗;C:预培养;D:共培养;E:延迟筛选;F:抗性筛选
Fig. 2 Process of stable genetic transformation of broccoli A: Sowing; B: sterile seedlings; C: pre-culture; D: co-culture; E: delayed selection;F: resistance selection
图3 潮霉素抗性基因和Cas9基因检测 A:1号靶位点Hyg抗性检测(上图)和Cas9基因检测(下图);B:2号靶位点Hyg抗性检测(上图)和Cas9基因检测(下图)。M:DL2000 marker;N:水;W:野生型;V:空载体;P:阳性质粒。1-20:1号靶位点的抗性植株编号;21-41:2号靶位点的抗性植株编号
Fig. 3 Detection of the hygromycin-resistant gene and Cas9 gene A: Hyg resistance test of target 1(above)and Cas9 gene detection(below); B: Hyg resistance test of target 2(above)and Cas9 gene detection(below). M: DL2000 marker; N: water as negative control; W: wild type; V: empty vector; P: positive plasmid. 1-20: the number of target 1 resistant plants; 21-41: the number of target 2 resistant plants
图4 CRISPR/Cas9介导的青花菜BoZDS基因突变类型 A:1号靶位点突变情况;B:2号靶位点突变情况。蓝色字表示靶序列,红色下划线表示PAM序列,红色字表示突变碱基,·表示省略碱基之间的间距。d代表碱基缺失,i代表碱基插入,r代表碱基替换,序列后数字代表缺失、插入或替换的碱基数
Fig. 4 Type of CRISPR/Cas9 system-mediated BoZDS mutation in broccoli A: Mutation of target 1; B: mutation of target 2. Target sequence is indicated in blue, PAM sequence(NGG)is underlined in red, mutated bases were indicated in red font, and the points indicate the spacing between bases. d indicate the number of bases deletion. i indicate the number of bases insertion. r indicate the number of bases replacement
突变类型 Mutation type | 植株 Plant line | 亮度值 L* | 红绿值 a* | 黄蓝值 b* | |||
---|---|---|---|---|---|---|---|
野生型Wild-type | WT | 46.33 | c | -12.67 | e | 23.78 | a |
空载Empty vector | EV | 46.73 | c | -11.65 | e | 23.47 | a |
纯合突变 Homozygous | 2-19 | 79.71 | a | 1.64 | cd | 10.38 | bc |
2-23 | 77.41 | a | 4.48 | bc | 11.80 | bc | |
杂合突变 Heterozygote | 1-1 | 79.86 | a | 1.33 | cd | 11.95 | bc |
1-5 | 67.69 | b | 8.31 | a | 23.76 | a | |
1-19 | 79.60 | a | 5.76 | ab | 21.97 | a | |
2-2 | 68.26 | b | 8.46 | a | 19.19 | ab | |
2-16 | 80.19 | a | 1.21 | cd | 12.14 | bc | |
嵌合突变 Chimera | 2-1 | 80.47 | a | 1.15 | cd | 11.09 | bc |
2-7 | 77.86 | a | 2.88 | d | 7.24 | c | |
2-12 | 80.27 | a | 0.95 | cd | 12.47 | bc |
表3 BoZDS突变体及野生型(WT)和空载植株(EV)的颜色参数
Table 3 Color parameters of BoZDS mutants, wild-type(WT), and transgenic plant with empty vector(EV)
突变类型 Mutation type | 植株 Plant line | 亮度值 L* | 红绿值 a* | 黄蓝值 b* | |||
---|---|---|---|---|---|---|---|
野生型Wild-type | WT | 46.33 | c | -12.67 | e | 23.78 | a |
空载Empty vector | EV | 46.73 | c | -11.65 | e | 23.47 | a |
纯合突变 Homozygous | 2-19 | 79.71 | a | 1.64 | cd | 10.38 | bc |
2-23 | 77.41 | a | 4.48 | bc | 11.80 | bc | |
杂合突变 Heterozygote | 1-1 | 79.86 | a | 1.33 | cd | 11.95 | bc |
1-5 | 67.69 | b | 8.31 | a | 23.76 | a | |
1-19 | 79.60 | a | 5.76 | ab | 21.97 | a | |
2-2 | 68.26 | b | 8.46 | a | 19.19 | ab | |
2-16 | 80.19 | a | 1.21 | cd | 12.14 | bc | |
嵌合突变 Chimera | 2-1 | 80.47 | a | 1.15 | cd | 11.09 | bc |
2-7 | 77.86 | a | 2.88 | d | 7.24 | c | |
2-12 | 80.27 | a | 0.95 | cd | 12.47 | bc |
[1] | Orlando P, Nartea A, Silvestri S, et al. Bioavailability study of isothiocyanates and other bioactive compounds of Brassica oleracea L. var. italica boiled or steamed: functional food or dietary supplement?[J]. Antioxidants(Basel), 2022, 11(2): 209. |
[2] |
Ares AM, Nozal MJ, Bernal J. Extraction, chemical characterization and biological activity determination of broccoli health promoting compounds[J]. J Chromatogr A, 2013, 1313: 78-95.
doi: 10.1016/j.chroma.2013.07.051 pmid: 23899380 |
[3] |
Ilahy R, Tlili I, Pék Z, et al. Pre- and post-harvest factors affecting glucosinolate content in broccoli[J]. Front Nutr, 2020, 7: 147.
doi: 10.3389/fnut.2020.00147 pmid: 33015121 |
[4] |
Yan P, Gao XZ, Shen WT, et al. Erratum to: Cloning and expression analysis of phytoene desaturase and ζ-carotene desaturase genes in Carica Papaya[J]. Mol Biol Rep, 2012, 39(10): 9839.
doi: 10.1007/s11033-012-1878-3 URL |
[5] | 张冠华, 刁倩楠. 类胡萝卜素研究进展[J]. 现代农业, 2021(4): 46-49. |
Zhang GH, Diao QN. Research progress in carotenoids[J]. Mod Agric, 2021(4): 46-49. | |
[6] | 吴川, 崔浩楠, 丁卓, 等. 西瓜ζ-胡萝卜素脱氢酶基因ZDS的克隆和序列分析[J]. 分子植物育种, 2021, 19(5): 1436-1441. |
Wu C, Cui HN, Ding Z, et al. Cloning and sequence analysis of ζ-carotene desaturase gene from watermelon(Citrullus lanatus L.)[J]. Mol Plant Breed, 2021, 19(5): 1436-1441. | |
[7] | 梁敏华, 杨震峰, 苏新国, 等. 桃果实ζ-胡萝卜素脱氢酶基因克隆及表达分析[J]. 南方农业学报, 2018, 49(5): 825-831. |
Liang MH, Yang ZF, Su XG, et al. Cloning and expression analysis of ζ-carotene desaturase gene in peach fruit[J]. J South Agric, 2018, 49(5): 825-831. | |
[8] |
McQuinn RP, Gapper NE, Gray AG, et al. Manipulation of ZDS in tomato exposes carotenoid- and ABA-specific effects on fruit development and ripening[J]. Plant Biotechnol J, 2020, 18(11): 2210-2224.
doi: 10.1111/pbi.13377 URL |
[9] |
Ding X, Liu JX, Li T, et al. AgZDS, a gene encoding ζ-carotene desaturase, increases lutein and β-carotene contents in transgenic Arabidopsis and celery[J]. Plant Sci, 2021, 312: 111043.
doi: 10.1016/j.plantsci.2021.111043 URL |
[10] |
Sun B, Zhang F, Xue SL, et al. Molecular cloning and expression analysis of the ζ-carotene desaturase gene in Chinese kale(Bra-ssica oleracea var. alboglabra bailey)[J]. Hortic Plant J, 2018, 4(3): 94-102.
doi: 10.1016/j.hpj.2018.03.005 URL |
[11] |
Fang YX, Hou LL, Zhang XQ, et al. Disruption of ζ-carotene desaturase protein ALE1 leads to chloroplast developmental defects and seedling lethality[J]. J Agric Food Chem, 2019, 67(42): 11607-11615.
doi: 10.1021/acs.jafc.9b05051 URL |
[12] |
郑爱红, 张芬, 江敏, 等. 利用CRISPR/Ca9技术靶向编辑芥蓝BoaZDS[J]. 园艺学报, 2019, 46(1): 57-64.
doi: 10.16420/j.issn.0513-353x.2018-0426 |
Zheng AH, Zhang F, Jiang M, et al. Targeted editing of BoaZDS by CRISPR/Ca9 technology in Chinese kale[J]. Acta Hortic Sin, 2019, 46(1): 57-64. | |
[13] |
Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends Biotechnol, 2013, 31(7): 397-405.
doi: 10.1016/j.tibtech.2013.04.004 pmid: 23664777 |
[14] |
Li JF, Aach J, Norville JE, et al. Multiplex and homologous recombination-mediated plant genome editing via guide RNA/Cas9[J]. Nature Biotechnology, 2013, 31(8): 688-691.
doi: 10.1038/nbt.2654 URL |
[15] |
Fauser F, Schiml S, Puchta H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana[J]. Plant J, 2014, 79(2): 348-359.
doi: 10.1111/tpj.12554 URL |
[16] |
Jiang WZ, Zhou HB, Bi HH, et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, Sorghum and rice[J]. Nucleic Acids Res, 2013, 41(20): e188.
doi: 10.1093/nar/gkt780 URL |
[17] |
Gao JP, Wang GH, Ma SY, et al. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum[J]. Plant Mol Biol, 2015, 87(1-2): 99-110.
doi: 10.1007/s11103-014-0263-0 URL |
[18] | Butler NM, Atkins PA, Voytas DF, et al. Generation and inheritance of targeted mutations in potato(Solanum tuberosum L.)using the CRISPR/cas system[J]. PLoS One, 2015, 10(12): e0144591. |
[19] |
Rodríguez-Leal D, Lemmon ZH, Man J, et al. Engineering quantitative trait variation for crop improvement by genome editing[J]. Cell, 2017, 171(2): 470-480.e8.
doi: S0092-8674(17)30988-1 pmid: 28919077 |
[20] |
Ito Y, Nishizawa-Yokoi A, Endo M, et al. CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening[J]. Biochem Biophys Res Commun, 2015, 467(1): 76-82.
doi: 10.1016/j.bbrc.2015.09.117 URL |
[21] |
Chandrasekaran J, Brumin M, Wolf D, et al. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology[J]. Mol Plant Pathol, 2016, 17(7): 1140-1153.
doi: 10.1111/mpp.12375 pmid: 26808139 |
[22] |
Hu BW, Li DW, Liu X, et al. Engineering non-transgenic gynoecious cucumber using an improved transformation protocol and optimized CRISPR/Cas9 system[J]. Mol Plant, 2017, 10(12): 1575-1578.
doi: S1674-2052(17)30268-X pmid: 28919533 |
[23] |
Lawrenson T, Shorinola O, Stacey N, et al. Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease[J]. Genome Biol, 2015, 16: 258.
doi: 10.1186/s13059-015-0826-7 pmid: 26616834 |
[24] |
Ma CF, Liu MC, Li QF, et al. Efficient BoPDS gene editing in cabbage by the CRISPR/Cas9 system[J]. Hortic Plant J, 2019, 5(4): 164-169.
doi: 10.1016/j.hpj.2019.04.001 URL |
[25] |
Lin CS, Hsu CT, Yang LH, et al. Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration[J]. Plant Biotechnol J, 2018, 16(7): 1295-1310.
doi: 10.1111/pbi.12870 URL |
[26] | 宋立晓, 侯忠乐, 任一鸣, 等. 利用PEI-SWNT介导的瞬时转化检测青花菜基因编辑效率[J]. 江苏农业科学, 2021, 49(13): 56-59. |
Song LX, Hou ZL, Ren YM, et al. Detection of gene editing efficiency in broccoli by PEI-SWNT mediated transient transformation[J]. Jiangsu Agric Sci, 2021, 49(13): 56-59. | |
[27] |
Gerszberg A, Hnatuszko-Konka K, Kowalczyk T. In vitro regeneration of eight cultivars of Brassica oleracea var. capitata[J]. In Vitro Cell Dev Biol Plant, 2015, 51(1): 80-87.
doi: 10.1007/s11627-014-9648-7 URL |
[28] |
Zhang H, Zhang JS, Wei PL, et al. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation[J]. Plant Biotechnol J, 2014, 12(6): 797-807.
doi: 10.1111/pbi.12200 pmid: 24854982 |
[29] |
Ibrahim S, Saleem B, Rehman N, et al. CRISPR/Cas9 mediated disruption of Inositol Pentakisphosphate 2-Kinase 1(TaIPK1)reduces phytic acid and improves iron and zinc accumulation in wheat grains[J]. J Adv Res, 2021, 37: 33-41.
doi: 10.1016/j.jare.2021.07.006 URL |
[30] |
Sun B, Jiang M, Zheng H, et al. Color-related chlorophyll and carotenoid concentrations of Chinese kale can be altered through CRISPR/Cas9 targeted editing of the carotenoid isomerase gene BoaCRTISO[J]. Hortic Res, 2020, 7(1): 161.
doi: 10.1038/s41438-020-00379-w URL |
[31] |
Zhang B, Yang X, Yang CP, et al. Exploiting the CRISPR/Cas9 system for targeted genome mutagenesis in Petunia[J]. Sci Rep, 2016, 6: 20315.
doi: 10.1038/srep20315 pmid: 26837606 |
[32] |
Ma XL, Zhang QY, Zhu QL, et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants[J]. Mol Plant, 2015, 8(8): 1274-1284.
doi: 10.1016/j.molp.2015.04.007 pmid: 25917172 |
[33] |
Pan CT, Ye L, Qin L, et al. CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations[J]. Sci Rep, 2016, 6: 24765.
doi: 10.1038/srep24765 pmid: 27097775 |
[34] |
Grochowska E, Borys B, Mroczkowski S. Effects of intronic SNPs in the myostatin gene on growth and carcass traits in colored Polish merino sheep[J]. Genes, 2019, 11(1): 2.
doi: 10.3390/genes11010002 URL |
[1] | 陈小玲, 廖东庆, 黄尚飞, 陈英, 芦志龙, 陈东. 利用CRISPR/Cas9系统改造酿酒酵母的研究进展[J]. 生物技术通报, 2023, 39(8): 148-158. |
[2] | 杨玉梅, 张坤晓. 应用CRISPR/Cas9技术建立ERK激酶相分离荧光探针定点整合的稳定细胞株[J]. 生物技术通报, 2023, 39(8): 159-164. |
[3] | 石佳鑫, 刘凯, 朱金洁, 祁显涛, 谢传晓, 刘昌林. 基因编辑技术改良玉米株型增加杂交种产量[J]. 生物技术通报, 2023, 39(8): 62-69. |
[4] | 施炜涛, 姚春鹏, 魏文康, 王蕾, 房元杰, 仝钰洁, 马晓姣, 蒋文, 张晓爱, 邵伟. 利用CRISPR/Cas9技术构建MDH2敲除细胞株及抗呕吐毒素效应研究[J]. 生物技术通报, 2023, 39(7): 307-315. |
[5] | 刘晓燕, 祝振亮, 史广宇, 华梓宇, 杨晨, 张涌, 刘军. 乳腺生物反应器的表达优化策略[J]. 生物技术通报, 2023, 39(5): 77-91. |
[6] | 程静雯, 曹磊, 张艳敏, 叶倩, 陈敏, 谭文松, 赵亮. CHO细胞多基因工程改造策略的建立及应用[J]. 生物技术通报, 2023, 39(2): 283-291. |
[7] | 王兵, 赵会纳, 余婧, 陈杰, 骆梅, 雷波. 利用CRISPR/Cas9系统研究REVOLUTA参与烟草叶芽发育的调控[J]. 生物技术通报, 2023, 39(10): 197-208. |
[8] | 李双喜, 华进联. 抗猪繁殖与呼吸障碍综合征基因编辑猪研究进展[J]. 生物技术通报, 2023, 39(10): 50-57. |
[9] | 林蓉, 郑月萍, 徐雪珍, 李丹丹, 郑志富. 拟南芥ACOL8基因在乙烯合成与响应中的功能分析[J]. 生物技术通报, 2023, 39(1): 157-165. |
[10] | 赖昕彤, 王柯岚, 由雨欣, 谭俊杰. 基于CRISPR/Cas系统的DNA碱基编辑研究进展[J]. 生物技术通报, 2022, 38(6): 1-12. |
[11] | 刘静静, 刘晓蕊, 李琳, 王盈, 杨海元, 戴一凡. 利用CRISPR/Cas9技术建立OXTR基因敲除猪胎儿成纤维细胞系[J]. 生物技术通报, 2022, 38(6): 272-278. |
[12] | 张豪, 李哲, 郭凯, 黄艳华, 郝永任. 绿色木霉Tv-1511组蛋白乙酰化酶编码基因TvGCN5的功能分析[J]. 生物技术通报, 2022, 38(5): 136-148. |
[13] | 陈映丹, 张扬, 夏嫱, 孙虹霞. CRISPR/Cas基因编辑技术及其在微藻研究中的应用[J]. 生物技术通报, 2022, 38(5): 257-268. |
[14] | Olalekan Amoo, 胡利民, 翟云孤, 范楚川, 周永明. 利用基因编辑技术研究BRANCHED1参与油菜分枝过程的调控[J]. 生物技术通报, 2022, 38(4): 97-105. |
[15] | 丁亚群, 丁宁, 谢深民, 黄梦娜, 张昱, 张勤, 姜力. Vps28基因敲除小鼠模型的构建及其对泌乳和免疫性状影响的研究[J]. 生物技术通报, 2022, 38(3): 164-172. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||