生物技术通报 ›› 2024, Vol. 40 ›› Issue (5): 225-236.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1088
孔德婷(), 齐笑含, 刘兴蕾, 李丽萍, 胡凤益, 黄立钰, 秦世雯()
收稿日期:
2023-11-20
出版日期:
2024-05-26
发布日期:
2024-06-13
通讯作者:
秦世雯,女,博士,副教授,研究方向:植物病原物与寄主互作;E-mail: shiwenqin@ynu.edu.cn作者简介:
孔德婷,女,硕士,研究方向:植物病害生物防治;E-mail: kdt7798@163.com
基金资助:
KONG De-ting(), QI Xiao-han, LIU Xing-lei, LI Li-ping, HU Feng-yi, HUANG Li-yu, QIN Shi-wen()
Received:
2023-11-20
Published:
2024-05-26
Online:
2024-06-13
摘要:
【目的】为了解多年生稻内生细菌微生态的结构和潜在功能,探究多年生稻内生细菌与寄主优良性状的关系。【方法】通过16S rRNA扩增子测序技术比较分析了不同多年生稻品种(PR23、PR25和PR107)内生细菌多样性、物种组成和代谢功能。【结果】不同基因型的多年生稻具有不同的内生细菌群落,三者β多样性存在显著差异。多年生稻地下和地上部组织分化形成了不同的内生细菌群落,其地下部内生细菌主要由变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)等组成,而地上部内生细菌主要由变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)等组成。不同多年生稻内生细菌特有扩增子序列变体(amplicon sequence variants, ASVs)数量较多,且具有不同的优势内生细菌属和生物标记物种类。多年生稻内生细菌的代谢功能主要为生物合成、生物降解与利用、解毒、代谢产物前体和能量的产生、甘氨酸途径、大分子修饰和代谢簇。品种间内生细菌的差异代谢功能主要涉及酯类、醇类、糖类等物质的生物合成和降解。【结论】寄主基因型和组织分化影响了多年生稻内生细菌的群落结构、物种组成和代谢功能。
孔德婷, 齐笑含, 刘兴蕾, 李丽萍, 胡凤益, 黄立钰, 秦世雯. 不同多年生稻品种内生细菌群落多样性比较分析[J]. 生物技术通报, 2024, 40(5): 225-236.
KONG De-ting, QI Xiao-han, LIU Xing-lei, LI Li-ping, HU Feng-yi, HUANG Li-yu, QIN Shi-wen. Comparison and Analysis of Endophytic Bacterial Communities in Different Perennial Rice Varieties[J]. Biotechnology Bulletin, 2024, 40(5): 225-236.
图1 多年生稻品种地上和地下部分内生细菌群落α和β多样性
Fig. 1 α and β diversity of endophytic bacterial communities in the aboveground and the underground compartments of perennial rice varieties PR23 and PR25 are japonica subspecies, and PR107 is indica subspecies
图2 多年生稻品种地上和地下部分内生细菌在门水平下的物种组成(A)以及共有和特有内生细菌分类单元(ASV)(B)
Fig. 2 Composition of endophytic bacteria at phyla level in the aboveground and the underground compartments(A)of perennial rice varieties as well as the common and variety-specific endophytic bacterial ASVs in perennial rice(B)
图3 多年生稻品种地上和地下部分相对丰度在Top 20的内生细菌属(A)和标志性内生细菌(B)
Fig. 3 Endophytic bacterial genera(A)and biomarking endophytic bacteria(B)with top 20 of relative abundances in the aboveground and the underground compartments of perennial rice varieties
图4 多年生稻品种地上和地下部分内生细菌的MetaCyc代谢通路
Fig. 4 MetaCyc pathways of endophytic bacteria in the aboveground and the background compartments of perennial rice varieties
图5 多年生稻品种地上和地下部分内生细菌的差异MetaCyc代谢通路
Fig. 5 Significantly differential MetaCyc pathways enriched in the aboveground and the belowground compartments of perennial rice
[1] |
张石来, 黄光福, 张玉娇, 等. 多年生稻育种进展及展望[J]. 中国稻米, 2022, 28(5): 39-43.
doi: 10.3969/j.issn.1006-8082.2022.05.006 |
Zhang SL, Huang GF, Zhang YJ, et al. Breeding progress and prospect of perennial rice[J]. China Rice, 2022, 28(5): 39-43.
doi: 10.3969/j.issn.1006-8082.2022.05.006 |
|
[2] | Zhang SL, Huang GF, Zhang YJ, et al. Sustained productivity and agronomic potential of perennial rice[J]. Nat Sustain, 2023, 6: 28-38. |
[3] |
Cordovez V, Dini-Andreote F, Carrión VJ, et al. Ecology and evolution of plant microbiomes[J]. Annu Rev Microbiol, 2019, 73: 69-88.
doi: 10.1146/annurev-micro-090817-062524 pmid: 31091418 |
[4] |
White JF, Kingsley KL, Zhang QW, et al. Review: Endophytic microbes and their potential applications in crop management[J]. Pest Manag Sci, 2019, 75(10): 2558-2565.
doi: 10.1002/ps.5527 pmid: 31228333 |
[5] | Liu D, Lin L, Zhang T, et al. Wild Panax plants adapt to their thermal environment by harboring abundant beneficial seed endophytic bacteria[J]. Front Ecol Evol, 2022, 10: 967692. |
[6] | Kim H, Lee YH. The rice microbiome: a model platform for crop holobiome[J]. Phytobiomes J, 2020, 4(1): 5-18. |
[7] |
Wani ZA, Ashraf N, Mohiuddin T, et al. Plant-endophyte symbiosis, an ecological perspective[J]. Appl Microbiol Biotechnol, 2015, 99(7): 2955-2965.
doi: 10.1007/s00253-015-6487-3 pmid: 25750045 |
[8] |
Afzal I, Shinwari ZK, Sikandar S, et al. Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants[J]. Microbiol Res, 2019, 221: 36-49.
doi: S0944-5013(18)30459-2 pmid: 30825940 |
[9] |
Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda MD, et al. Plant growth-promoting bacterial endophytes[J]. Microbiol Res, 2016, 183: 92-99.
doi: 10.1016/j.micres.2015.11.008 pmid: 26805622 |
[10] |
Kumar V, Nautiyal CS. Plant abiotic and biotic stress alleviation: from an endophytic microbial perspective[J]. Curr Microbiol, 2022, 79(10): 311.
doi: 10.1007/s00284-022-03012-2 pmid: 36088388 |
[11] | Sharma P, Kumar S. Bioremediation of heavy metals from industrial effluents by endophytes and their metabolic activity: recent advances[J]. Bioresour Technol, 2021, 339: 125589. |
[12] | Otlewska A, Migliore M, Dybka-Stępień K, et al. When salt meddles between plant, soil, and microorganisms[J]. Front Plant Sci, 2020, 11: 553087. |
[13] |
Wang Q, Ma LY, Zhou QY, et al. Inoculation of plant growth promoting bacteria from hyperaccumulator facilitated non-host root development and provided promising agents for elevated phytoremediation efficiency[J]. Chemosphere, 2019, 234: 769-776.
doi: S0045-6535(19)31373-6 pmid: 31238273 |
[14] | Mushtaq S, Shafiq M, Tariq MR, et al. Interaction between bacterial endophytes and host plants[J]. Front Plant Sci, 2023, 13: 1092105. |
[15] | Tang R, Tian QL, Liu S, et al. Endophytic bacteria in different tissue compartments of African wild rice(Oryza longistaminata)promote perennial rice growth[J]. J Integr Agric, 2023:1-23. |
[16] |
Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nat Biotechnol, 2019, 37(8): 852-857.
doi: 10.1038/s41587-019-0209-9 pmid: 31341288 |
[17] | Douglas GM, Maffei VJ, Zaneveld J, et al. PICRUSt2: an improved and customizable approach for metagenome inference[J]. bioRxiv, 2020. DOI: 10.1101/672295. |
[18] | Xie J, Wang XQ, Xu JW, et al. Strategies and structure feature of the aboveground and belowground microbial community respond to drought in wild rice(Oryza longistaminata)[J]. Rice, 2021, 14(1): 79. |
[19] | Chang JJ, Tian L, Leite MFA, et al. Nitrogen, manganese, iron, and carbon resource acquisition are potential functions of the wild rice Oryza rufipogon core rhizomicrobiome[J]. Microbiome, 2022, 10(1): 196. |
[20] | Xu SQ, Chang JJ, Chang CL, et al. Rhizospheric microbiomes help Dongxiang common wild rice(Oryza rufipogon Griff.) rather than Leersia hexandra Swartz survive under cold stress[J]. Arch Agron Soil Sci, 2022, 68(1): 76-88. |
[21] | Lin GY, Lin CY, Chang SJ, et al. The dynamics of endophytic bacterial community structure in rice roots under different field management systems[J]. Agronomy, 2020, 10(11): 1623. |
[22] | Peng XJ, Xie J, Li WZ, et al. Comparison of wild rice(Oryza longistaminata)tissues identifies rhizome-specific bacterial and archaeal endophytic microbiomes communities and network structures[J]. PLoS One, 2021, 16(2): e0246687. |
[23] | Wang P, Kong X, Chen HS, et al. Exploration of intrinsic microbial community modulators in the rice endosphere indicates a key role of distinct bacterial taxa across different cultivars[J]. Front Microbiol, 2021, 12: 629852. |
[24] | Yin Y, Wang YF, Cui HL, et al. Distinctive structure and assembly of phyllosphere microbial communities between wild and cultivated rice[J]. Microbiol Spectr, 2023, 11(1): e0437122. |
[25] | Wang ZS, Zhu YQ, Jing RX, et al. High-throughput sequencing-based analysis of the composition and diversity of endophytic bacterial community in seeds of upland rice[J]. Arch Microbiol, 2021, 203(2): 609-620. |
[26] |
Singha KM, Singh B, Pandey P. Host specific endophytic microbiome diversity and associated functions in three varieties of scented black rice are dependent on growth stage[J]. Sci Rep, 2021, 11(1): 12259.
doi: 10.1038/s41598-021-91452-4 pmid: 34112830 |
[27] | Oyserman BO, Cordovez V, Flores SS, et al. Extracting the GEMs: genotype, environment, and microbiome interactions shaping host phenotypes[J]. Front Microbiol, 2021, 11: 574053. |
[28] |
Kumar J, Babele PK, Singh D, et al. UV-B radiation stress causes alterations in whole cell protein profile and expression of certain genes in the rice phyllospheric bacterium Enterobacter cloacae[J]. Front Microbiol, 2016, 7: 1440.
doi: 10.3389/fmicb.2016.01440 pmid: 27672388 |
[29] | Pattnaik S, Dash D, Mohapatra S, et al. Improvement of rice plant productivity by native Cr(VI)reducing and plant growth promoting soil bacteria Enterobacter cloacae[J]. Chemosphere, 2020, 240: 124895. |
[30] | Wang X, Xu Q, Hu K, et al. A coculture of Enterobacter and Comamonas species reduces cadmium accumulation in rice[J]. Mol Plant Microbe Interact, 2023, 36(2): 95-108. |
[31] | Nouha K, Kumar RS, Tyagi RD. Heavy metals removal from wastewater using extracellular polymeric substances produced by Cloacibacterium normanense in wastewater sludge supplemented with crude glycerol and study of extracellular polymeric substances extraction by different methods[J]. Bioresour Technol, 2016, 212: 120-129. |
[32] | He DX, Singh SK, Peng L, et al. Flavonoid-attracted Aeromonas sp. from the Arabidopsis root microbiome enhances plant dehydration resistance[J]. ISME J, 2022, 16(11): 2622-2632. |
[33] | Silveira Alves LP, Plucani do Amaral F, Kim D, et al. Importance of poly-3-hydroxybutyrate metabolism to the ability of Herbaspirillum seropedicae to promote plant growth[J]. Appl Environ Microbiol, 2019, 85(6): e02586-18. |
[34] | Stahl A, Pletzer D, Mehmood A, et al. Marinobacter adhaerens HP15 harbors two CzcCBA efflux pumps involved in zinc detoxification[J]. Antonie Van Leeuwenhoek, 2015, 108(3): 649-658. |
[35] | Luo X, Guo JY, Lan Y, et al. Toxic response of antimony in the Comamonas testosteroni and its application in soil antimony bioremediation[J]. Environ Int, 2023, 178: 108040. |
[36] | Gureeva MV, Gureev AP. Molecular mechanisms determining the role of bacteria from the genus Azospirillum in plant adaptation to damaging environmental factors[J]. Int J Mol Sci, 2023, 24(11): 9122. |
[37] | Hung SH W, Chiu MC, Huang CC, et al. Complete genome sequence of Curtobacterium sp. C1, a beneficial endophyte with the potential for In-plant salinity stress alleviation[J]. Mol Plant Microbe Interact, 2022, 35(8): 731-735. |
[38] | Wang F, Wei YL, Yan TZ, et al. Sphingomonas sp. Hbc-6 alters physiological metabolism and recruits beneficial rhizosphere bacteria to improve plant growth and drought tolerance[J]. Front Plant Sci, 2022, 13: 1002772. |
[39] | Kim K, Yim W, Trivedi P, et al. Synergistic effects of inoculating arbuscular mycorrhizal fungi and Methylobacterium oryzae strains on growth and nutrient uptake of red pepper(Capsicum annuum L.)[J]. Plant Soil, 2010, 327(1): 429-440. |
[40] | Yao F, Hu QY, Yu YZ, et al. Regeneration pattern and genome-wide transcription profile of rhizome axillary buds after perennial rice harvest[J]. Front Plant Sci, 2022, 13: 1071038. |
[41] | Dhungana SA, Itoh K. Effects of co-inoculation of indole-3-acetic acid-producing and-degrading bacterial endophytes on plant growth[J]. Horticulturae, 2019, 5(1): 17. |
[42] | Khan AL, Waqas M, Kang SM, et al. Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth[J]. J Microbiol, 2014, 52(8): 689-695. |
[43] |
施继芳, 黄光福, 张玉娇, 等. 不同海拔地区多年生稻稻米品质分析[J]. 中国稻米, 2020, 26(4): 40-43.
doi: 10.3969/j.issn.1006-8082.2020.04.009 |
Shi JF, Huang GF, Zhang YJ, et al. Quality analysis of perennial rice in different altitude regions[J]. China Rice, 2020, 26(4): 40-43.
doi: 10.3969/j.issn.1006-8082.2020.04.009 |
|
[44] | Reinauer KM, Popovic J, Weber CD, et al. Hydrogenophaga carboriunda sp. nov., a tertiary butyl alcohol-oxidizing, psychrotolerant aerobe derived from granular-activated carbon(GAC)[J]. Curr Microbiol, 2014, 68(4): 510-517. |
[45] |
何奕霏, 秦世雯, 张石来, 等. 多年生稻稻瘟病抗性评价[J]. 中国稻米, 2021, 27(1): 9-13.
doi: 10.3969/j.issn.1006-8082.2021.01.003 |
He YF, Qin SW, Zhang SL, et al. Evaluation of rice blast resistance in perennial rice[J]. China Rice, 2021, 27(1): 9-13.
doi: 10.3969/j.issn.1006-8082.2021.01.003 |
|
[46] | Ogunyemi SO, Chen J, Zhang MC, et al. Identification and characterization of five new OP2-related Myoviridae bacteriophages infecting different strains of Xanthomonas oryzae pv. oryzae[J]. J Plant Pathol, 2019, 101(2): 263-273. |
[47] | Yang RH, Shi Q, Huang TT, et al. The natural pyrazolotriazine pseudoiodinine from Pseudomonas mosselii 923 inhibits plant bacterial and fungal pathogens[J]. Nat Commun, 2023, 14(1): 734. |
[48] | Tian QL, Gong YR, Liu S, et al. Endophytic bacterial communities in wild rice(Oryza officinalis)and their plant growth-promoting effects on perennial rice[J]. Front Plant Sci, 2023, 14: 1184489. |
[49] | 马永海, 田青霖, 龚禹瑞, 等. 普通野生稻内生细菌的分离鉴定及其对多年生稻的促生效果[J]. 云南大学学报:自然科学版, 2023, 45(3): 768-778. |
Ma YH, Tian QL, Gong YR, et al. Screening and identification of endophytic bacteria from Oryza rufipogon and their effect on perennial rice growth[J]. Journal of Yunnan University Natural Sciences, 2023, 45(3): 768-778. | |
[50] |
杨立凡, 田青霖, 龚禹瑞, 等. 小粒野生稻内生细菌的分离鉴定和促生功能分析[J]. 中国稻米, 2023, 29(4): 78-83.
doi: 10.3969/j.issn.1006-8082.2023.04.014 |
Yang LF, Tian QL, Gong YR, et al. Screening and identification of endophytic bacteria from Oryza minuta and their plant growth-promoting activities[J]. China Rice, 2023, 29(4): 78-83. | |
[51] | Marag PS, Suman A. Growth stage and tissue specific colonization of endophytic bacteria having plant growth promoting traits in hybrid and composite maize(Zea mays L.)[J]. Microbiol Res, 2018, 214: 101-113. |
[52] |
Beckers B, De Beeck MO, Weyens N, et al. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees[J]. Microbiome, 2017, 5(1): 25.
doi: 10.1186/s40168-017-0241-2 pmid: 28231859 |
[53] | Martins MR, Jantalia CP, Reis VM, et al. Impact of plant growth-promoting bacteria on grain yield, protein content, and urea-15N recovery by maize in a Cerrado Oxisol[J]. Plant Soil, 2018, 422(1): 239-250. |
[54] | Kuang WQ, Sanow S, Kelm JM, et al. N-dependent dynamics of root growth and nitrate and ammonium uptake are altered by the bacterium Herbaspirillum seropedicae in the cereal model Brachypodium distachyon[J]. J Exp Bot, 2022, 73(15): 5306-5321. |
[55] | Pereira NCM, Galindo FS, Gazola RPD, et al. Corn yield and phosphorus use efficiency response to phosphorus rates associated with plant growth promoting bacteria[J]. Front Environ Sci, 2020, 8: 40. |
[56] | Kumar P, Verma A, Sundharam SS, et al. Exploring diversity and polymer degrading potential of epiphytic bacteria isolated from marine macroalgae[J]. Microorganisms, 2022, 10(12): 2513. |
[57] | Pandey PK, Yadav SK, Singh A, et al. Cross-species alleviation of biotic and abiotic stresses by the endophyte Pseudomonas aeruginosa PW09[J]. J Phytopathol, 2012, 160(10): 532-539. |
[58] | Ali M, Ali Q, Sohail MA, et al. Diversity and taxonomic distribution of endophytic bacterial community in the rice plant and its prospective[J]. Int J Mol Sci, 2021, 22(18): 10165. |
[1] | 於莉军, 王桥美, 彭文书, 严亮, 杨瑞娟. 景迈山古茶园与现代有机茶园根际土壤微生物群落研究[J]. 生物技术通报, 2024, 40(5): 237-247. |
[2] | 高玉坤, 张建东, 杨溥原, 陈东明, 王志博, 田颐瑾, 崔江慧, 常金华. 高粱根际土壤细菌群落对盐胁迫的响应[J]. 生物技术通报, 2024, 40(4): 203-216. |
[3] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
[4] | 李怡君, 吴晨晨, 李睿, 王喆, 何山文, 韦善君, 张晓霞. 水稻内生细菌新资源分离培养方案探究[J]. 生物技术通报, 2023, 39(4): 201-211. |
[5] | 邹兰, 王茜, 李慕仪, 叶坤浩, 黄晶. 乌头内生细菌JY-3-1R的鉴定及其生防和促生能力研究[J]. 生物技术通报, 2023, 39(10): 246-255. |
[6] | 李颖, 龙长梅, 蒋标, 韩丽珍. 两株PGPR菌株的花生定殖及对根际细菌群落结构的影响[J]. 生物技术通报, 2022, 38(9): 237-247. |
[7] | 贺丽娜, 冯源, 石慧敏, 叶建仁. 具有杀线活性马尾松内生细菌的筛选与鉴定[J]. 生物技术通报, 2022, 38(8): 159-166. |
[8] | 王子夜, 王志刚, 阎爱华. 不同树龄桑根际土壤原生生物群落组成多样性[J]. 生物技术通报, 2022, 38(8): 206-215. |
[9] | 王子寅, 刘秉儒, 李子豪, 赵晓玉. 荒漠草原柠条灌丛堆不同发育阶段土壤细菌群落结构特征[J]. 生物技术通报, 2022, 38(7): 205-214. |
[10] | 高小宁, 刘睿, 吴自林, 吴嘉云. 宿根矮化病抗感甘蔗品种茎部内生真菌和细菌群落特征分析[J]. 生物技术通报, 2022, 38(6): 166-173. |
[11] | 王春艳, 腊贵晓, 苏秀红, 李萌, 董诚明. 地黄不同时期内生促生细菌的筛选及其促生特性分析[J]. 生物技术通报, 2022, 38(4): 242-252. |
[12] | 高惠惠, 贾晨波, 韩琴, 苏建宇, 徐春燕. 宁杞7号枸杞根腐病发生的微生物学机制[J]. 生物技术通报, 2022, 38(12): 244-251. |
[13] | 颜珲璘, 芦光新, 邓晔, 顾松松, 颜程良, 马坤, 赵阳安, 张海娟, 王英成, 周学丽, 窦声云. 高寒地区根瘤菌拌种对禾/豆混播土壤微生物群落的影响[J]. 生物技术通报, 2022, 38(10): 204-215. |
[14] | 刘传和, 贺涵, 何秀古, 刘开, 邵雪花, 赖多, 匡石滋, 肖维强. 不同连作年限菠萝园土壤差异代谢物和细菌群落结构分析[J]. 生物技术通报, 2021, 37(8): 162-175. |
[15] | 吕燕, 刘建利, 李靖宇, 候琳琳, 孙敏, 苟琪. 不同品种和产区宁夏枸杞根系AMF多样性[J]. 生物技术通报, 2021, 37(6): 36-48. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||