生物技术通报 ›› 2024, Vol. 40 ›› Issue (5): 237-247.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1104
於莉军1(), 王桥美2,3, 彭文书2,3, 严亮2,3(), 杨瑞娟1,2,3()
收稿日期:
2023-11-22
出版日期:
2024-05-26
发布日期:
2024-06-13
通讯作者:
杨瑞娟,女,博士,副研究员,研究方向:茶叶微生物与健康;E-mail: yangruijuan@pecxy.com;作者简介:
於莉军,男,硕士研究生,研究方向:食品微生物;E-mail: 1421547579@qq.com
基金资助:
YU Li-jun1(), WANG Qiao-mei2,3, PENG Wen-shu2,3, YAN Liang2,3(), YANG Rui-juan1,2,3()
Received:
2023-11-22
Published:
2024-05-26
Online:
2024-06-13
摘要:
【目的】研究不同生境茶园茶树根际土壤微生物群落的组成及多样性,识别影响茶树根际土壤微生物的主要驱动因素,为根际土壤微生物群落和茶树病虫害防治之间的关系研究以及土壤微生物的功能和开发利用提供理论依据。【方法】采用 Illumina-MiSeq 高通量测序技术对古茶园与现代有机茶园根际土壤微生物的群落组成和多样性进行探究,采用冗余分析对土壤养分与微生物之间关系进行探索。【结果】现代有机茶园根际土壤中阳离子交换量、有机质、腐殖质、氨氮、铵态氮、有效磷和水分高于古茶园,具有显著差异;不同茶园的优势细菌种群均为放线菌门、酸杆菌门和浮霉菌门,真菌种群均为子囊菌门、被孢霉门和担子菌门,除未明确分类地位的属以外,古茶园与现代有机茶园的优势菌属组成非常相似,但是每个菌属在不同茶园中的相对丰度都存在较大差异。冗余分析表明,阳离子交换量、有机质、腐殖质、氨氮和铵态氮是造成茶园根际土壤微生物群落结构与多样性差异的主要环境因子。【结论】现代有机茶园根际土壤养分与物种丰富度显著高于古茶园,不同茶园根际土壤中的优势菌属组成高度相似,但其丰度差异显著,与土壤养分呈现高度相关性。
於莉军, 王桥美, 彭文书, 严亮, 杨瑞娟. 景迈山古茶园与现代有机茶园根际土壤微生物群落研究[J]. 生物技术通报, 2024, 40(5): 237-247.
YU Li-jun, WANG Qiao-mei, PENG Wen-shu, YAN Liang, YANG Rui-juan. Study on the Microbial Community of Rhizosphere Soil in Ancient Tea Garden and Modern Organic Tea Garden in Jingmai Mountain[J]. Biotechnology Bulletin, 2024, 40(5): 237-247.
土壤养分Soil nutrients | GS | TS |
---|---|---|
阳离子交换量Cation exchange capacity/(mol·kg-1) | 22.50±0.69a | 24.60±0.98a |
有机质Soil organic matter /(g·kg-1) | 83.60±0.98a | 106.60±0.06b |
腐殖质Soil humus /(g·kg-1) | 43.00±0.46a | 54.40±0.46b |
氨氮Ammonia nitrogen /(mg·kg-1) | 418.90±3.00a | 513.00±1.33b |
铵态氮Ammonium nitrogen /(mg·kg-1) | 508.70±1.21a | 662.90±0.52b |
有效磷Available phosphorous /(mg·kg-1) | 0.90±0.02a | 66.40±0.52b |
速效钾Available K /(mg·kg-1) | 61.00±0.17a | 61.00±0.69a |
水分Moisture /% | 2.50±0.02a | 2.90±0.08b |
表1 不同茶园根际土壤养分特征
Table 1 Soil nutrient contents in different tea plantations
土壤养分Soil nutrients | GS | TS |
---|---|---|
阳离子交换量Cation exchange capacity/(mol·kg-1) | 22.50±0.69a | 24.60±0.98a |
有机质Soil organic matter /(g·kg-1) | 83.60±0.98a | 106.60±0.06b |
腐殖质Soil humus /(g·kg-1) | 43.00±0.46a | 54.40±0.46b |
氨氮Ammonia nitrogen /(mg·kg-1) | 418.90±3.00a | 513.00±1.33b |
铵态氮Ammonium nitrogen /(mg·kg-1) | 508.70±1.21a | 662.90±0.52b |
有效磷Available phosphorous /(mg·kg-1) | 0.90±0.02a | 66.40±0.52b |
速效钾Available K /(mg·kg-1) | 61.00±0.17a | 61.00±0.69a |
水分Moisture /% | 2.50±0.02a | 2.90±0.08b |
图1 基于 OTU 丰度的土壤样品微生物群落的稀释曲线 GS1-GS3:古茶园土壤样品 1-3;TS1-TS3:有机茶园土壤样品 1-3
Fig. 1 Rarefaction curves of microbial communities in the soil samples based on OTU richness GS1-GS3: Soil sample 1-3 in the Ancient Tea Garden. TS1-TS3: Soil sample 1-3 in the Organic Tea Garden
样品代号Sample | 丰富度指数Richness index | 多样性指数Diversity index | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ACE index | Chao 1 index | Simpson index | Shannon index | |||||||||
细菌Bacteria | 真菌Fungi | 细菌Bacteria | 真菌Fungi | 细菌Bacteria | 真菌Fungi | 细菌Bacteria | 真菌Fungi | |||||
GS | 800.63±34.61a | 259.06±25.78a | 806.52±32.86a | 261.17±27.19a | 0.10±0.03a | 0.07±0.05a | 4.20±0.33a | 3.99±0.61a | ||||
TS | 886.57±22.31a | 295.12±21.03a | 892.61±23.77a | 298.08±20.68a | 0.02±0.00b | 0.09±0.02a | 5.28±0.03b | 3.43±0.12a |
表2 根际土壤微生物Alpha多样性分析
Table 2 Microbial Alpha diversity analysis of rhizosphere soil
样品代号Sample | 丰富度指数Richness index | 多样性指数Diversity index | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ACE index | Chao 1 index | Simpson index | Shannon index | |||||||||
细菌Bacteria | 真菌Fungi | 细菌Bacteria | 真菌Fungi | 细菌Bacteria | 真菌Fungi | 细菌Bacteria | 真菌Fungi | |||||
GS | 800.63±34.61a | 259.06±25.78a | 806.52±32.86a | 261.17±27.19a | 0.10±0.03a | 0.07±0.05a | 4.20±0.33a | 3.99±0.61a | ||||
TS | 886.57±22.31a | 295.12±21.03a | 892.61±23.77a | 298.08±20.68a | 0.02±0.00b | 0.09±0.02a | 5.28±0.03b | 3.43±0.12a |
门Phylum | 科Family | 属Genus | OUT | GS/% | TS/% |
---|---|---|---|---|---|
Actinobacteria | Micrococcaceae | Arthrobacter | OTU1 | 30.08 | 8.54 |
Acidobacteria | uncultured_bacterium_o_Acidobacteriales | uncultured_bacterium_o_Acidobacteriales | OTU6 | - | 1.89 |
OTU13 | - | 1.79 | |||
OTU19 | - | 1.39 | |||
Solibacteraceae_Subgroup_3 | Candidatus_Solibacter | OTU37 | - | 1.45 | |
OTU174 | - | 1.37 | |||
OTU15 | - | 1.14 | |||
Bryobacter | OTU34 | - | 1.00 | ||
uncultured_bacterium_o_Subgroup_2 | uncultured_bacterium_o_Subgroup_2 | OTU9 | - | 1.20 | |
uncultured_bacterium_o_Subgroup_7 | OTU16 | 1.13 | - | ||
Streptomycetaceae | uncultured_bacterium_f_Streptomycetaceae | OTU8 | - | 1.22 | |
Bacteroidetes | Prevotellaceae | Prevotella_7 | OTU24 | 1.07 | - |
Chloroflexi | uncultured_bacterium_c_AD3 | uncultured_bacterium_c_AD3 | OTU3 | 7.49 | 1.68 |
OTU135 | 2.53 | - | |||
Proteobacteria | Xanthobacteraceae | uncultured_bacterium_f_Xanthobacteraceae | OTU7 | 3.25 | 4.13 |
OTU4 | - | 1.63 | |||
OTU11 | 1.31 | - | |||
Bradyrhizobium | OTU2 | 2.17 | 4.81 | ||
Unclassified | Acidibacter | OTU31 | - | 1.62 | |
Polyangiaceae | Pajaroellobacter | OTU28 | - | 1.27 | |
Unclassified | Acidibacter | OTU31 | 1.26 | - |
表3 两个茶园根际土壤细菌的优势物种(相对丰度 >1%)相对丰度
Table 3 Relative abundance of dominant species(relative abundance >1%)of bacteria in the rhizosphere soil of the two tea gardens
门Phylum | 科Family | 属Genus | OUT | GS/% | TS/% |
---|---|---|---|---|---|
Actinobacteria | Micrococcaceae | Arthrobacter | OTU1 | 30.08 | 8.54 |
Acidobacteria | uncultured_bacterium_o_Acidobacteriales | uncultured_bacterium_o_Acidobacteriales | OTU6 | - | 1.89 |
OTU13 | - | 1.79 | |||
OTU19 | - | 1.39 | |||
Solibacteraceae_Subgroup_3 | Candidatus_Solibacter | OTU37 | - | 1.45 | |
OTU174 | - | 1.37 | |||
OTU15 | - | 1.14 | |||
Bryobacter | OTU34 | - | 1.00 | ||
uncultured_bacterium_o_Subgroup_2 | uncultured_bacterium_o_Subgroup_2 | OTU9 | - | 1.20 | |
uncultured_bacterium_o_Subgroup_7 | OTU16 | 1.13 | - | ||
Streptomycetaceae | uncultured_bacterium_f_Streptomycetaceae | OTU8 | - | 1.22 | |
Bacteroidetes | Prevotellaceae | Prevotella_7 | OTU24 | 1.07 | - |
Chloroflexi | uncultured_bacterium_c_AD3 | uncultured_bacterium_c_AD3 | OTU3 | 7.49 | 1.68 |
OTU135 | 2.53 | - | |||
Proteobacteria | Xanthobacteraceae | uncultured_bacterium_f_Xanthobacteraceae | OTU7 | 3.25 | 4.13 |
OTU4 | - | 1.63 | |||
OTU11 | 1.31 | - | |||
Bradyrhizobium | OTU2 | 2.17 | 4.81 | ||
Unclassified | Acidibacter | OTU31 | - | 1.62 | |
Polyangiaceae | Pajaroellobacter | OTU28 | - | 1.27 | |
Unclassified | Acidibacter | OTU31 | 1.26 | - |
门Phylum | 科Family | 属Genus | OUT | GS/% | TS/% |
---|---|---|---|---|---|
Ascomycota | Chaetomiaceae | Unclassified | OTU9 | 4.01 | - |
OTU1 | - | 21.52 | |||
OTU13 | - | 2.16 | |||
Cladosporiaceae | Cladosporium | OTU17 | 1.42 | - | |
Clavicipitaceae | Metarhizium | OTU24 | 1.29 | - | |
Cordycipitaceae | Beauveria | OTU30 | 1.01 | - | |
Hypocreaceae | Trichoderma | OTU14 | - | 2.18 | |
OTU38 | - | 1.45 | |||
Nectriaceae | Unclassified | OTU5 | - | 4.34 | |
Ophiocordycipitaceae | Purpureocillium | OTU25 | - | 1.32 | |
Orbiliaceae | Arthrobotrys | OTU15 | 1.89 | - | |
Pseudeurotiaceae | Geomyces | OTU11 | 3.30 | - | |
Basidiomycota | Trimorphomycetaceae | Saitozyma | OTU6 | 1.70 | 3.75 |
Hygrophoraceae | Hygrocybe | OTU19 | 1.66 | - | |
Agaricaceae | Unclassified | OTU27 | 1.38 | - | |
Mortierellomycota | Mortierellaceae | Mortierella | OTU2 | 12.06 | 5.47 |
OTU3 | 7.80 | - | |||
OTU4 | 4.93 | - | |||
OTU1336 | 1.37 | - | |||
OTU213 | - | 9.83 | |||
OTU26 | - | 1.45 |
表4 两个茶园根际土壤真菌的优势物种(相对丰度 >1%)相对丰度
Table 4 Relative abundance of dominant species(relative abundance >1%)of fungi in the rhizosphere soil of the two tea gardens
门Phylum | 科Family | 属Genus | OUT | GS/% | TS/% |
---|---|---|---|---|---|
Ascomycota | Chaetomiaceae | Unclassified | OTU9 | 4.01 | - |
OTU1 | - | 21.52 | |||
OTU13 | - | 2.16 | |||
Cladosporiaceae | Cladosporium | OTU17 | 1.42 | - | |
Clavicipitaceae | Metarhizium | OTU24 | 1.29 | - | |
Cordycipitaceae | Beauveria | OTU30 | 1.01 | - | |
Hypocreaceae | Trichoderma | OTU14 | - | 2.18 | |
OTU38 | - | 1.45 | |||
Nectriaceae | Unclassified | OTU5 | - | 4.34 | |
Ophiocordycipitaceae | Purpureocillium | OTU25 | - | 1.32 | |
Orbiliaceae | Arthrobotrys | OTU15 | 1.89 | - | |
Pseudeurotiaceae | Geomyces | OTU11 | 3.30 | - | |
Basidiomycota | Trimorphomycetaceae | Saitozyma | OTU6 | 1.70 | 3.75 |
Hygrophoraceae | Hygrocybe | OTU19 | 1.66 | - | |
Agaricaceae | Unclassified | OTU27 | 1.38 | - | |
Mortierellomycota | Mortierellaceae | Mortierella | OTU2 | 12.06 | 5.47 |
OTU3 | 7.80 | - | |||
OTU4 | 4.93 | - | |||
OTU1336 | 1.37 | - | |||
OTU213 | - | 9.83 | |||
OTU26 | - | 1.45 |
图3 两个茶园根际土壤微生物群落物种 PCoA 分析、ANOSIM 分析及距离 heatmap 图 A:两个茶园根际土壤细菌群落物种PCoA分析; B:两个茶园根际土壤细菌群落物种ANOSIM 分析; C:两个茶园根际土壤细菌群落物种距离 heatmap 分析;D:两个茶园根际土壤真菌群落物种PCoA分析;E:两个茶园根际土壤真菌群落物种ANOSIM 分析;F:两个茶园根际土壤细菌群落物种距离 heatmap 分析
Fig. 3 PCoA analysis, ANOSIM analysis and distance heatmap of microbial communities in the rhizosphere soil of the two tea gardens A: PCoA analysis of rhizosphere soil bacterial community species in the two tea gardens; B: ANOSIM analysis of rhizosphere soil bacterial community species in the two tea gardens; C: heatmap analysis of rhizosphere soil bacterial community species distance in the two tea gardens; D: PCoA analysis of rhizosphere soil fungal community species in the two tea gardens; E: ANOSIM analysis of rhizosphere soil fungal community species in the two tea gardens; F: heatmap analysis of rhizosphere soil fungal community species in the two tea gardens; F: heatmap analysis of rhizosphere soil bacterial community species distance in the two tea gardens
细菌 Bacterium | 占比 Proportion/% | 真菌 Fungus | 占比 Proportion/% | |||
---|---|---|---|---|---|---|
GS | TS | GS | TS | |||
节杆菌属Arthrobacter | 30.08 | 8.54 | 被孢霉属Mortierella | 27.70 | 18.27 | |
uncultured_bacterium_c_AD3 | 13.53 | 3.71 | Saitozyma | 1.70 | 3.75 | |
uncultured_bacterium_o_Acidobacteriales | 2.72 | 10.27 | 青霉属Penicillium | 2.58 | 1.46 | |
uncultured_bacterium_f_Xanthobacteraceae | 5.32 | 6.59 | 木霉属Trichoderma | 0.30 | 3.73 | |
uncultured_bacterium_o_Subgroup_2 | 2.06 | 5.96 | 金孢霉属Geomyces | 3.39 | 0.47 | |
Candidatus_Solibacter | 1.47 | 6.01 | 紫孢霉属Purpureocillium | 1.22 | 1.40 | |
慢生根瘤菌属Bradyrhizobium | 2.17 | 4.81 | 节丛孢属Arthrobotrys | 1.89 | 0.28 | |
uncultured_bacterium_o_Elsterales | 1.23 | 4.46 | 湿伞属Hygrocybe | 1.82 | 0.18 | |
酸杆菌属Acidibacter | 1.69 | 3.24 | 绿僵菌属Metarhizium | 1.45 | 0.43 | |
uncultured_bacterium_p_WPS-2 | 2.07 | 2.27 | 枝孢菌属Cladosporium | 1.42 | 0.05 |
表5 根际土壤微生物在属水平上的组成(前 10 个属)
Table 5 Composition of microorganisms at genus level(Top 10 genera)in the rhizosphere soil
细菌 Bacterium | 占比 Proportion/% | 真菌 Fungus | 占比 Proportion/% | |||
---|---|---|---|---|---|---|
GS | TS | GS | TS | |||
节杆菌属Arthrobacter | 30.08 | 8.54 | 被孢霉属Mortierella | 27.70 | 18.27 | |
uncultured_bacterium_c_AD3 | 13.53 | 3.71 | Saitozyma | 1.70 | 3.75 | |
uncultured_bacterium_o_Acidobacteriales | 2.72 | 10.27 | 青霉属Penicillium | 2.58 | 1.46 | |
uncultured_bacterium_f_Xanthobacteraceae | 5.32 | 6.59 | 木霉属Trichoderma | 0.30 | 3.73 | |
uncultured_bacterium_o_Subgroup_2 | 2.06 | 5.96 | 金孢霉属Geomyces | 3.39 | 0.47 | |
Candidatus_Solibacter | 1.47 | 6.01 | 紫孢霉属Purpureocillium | 1.22 | 1.40 | |
慢生根瘤菌属Bradyrhizobium | 2.17 | 4.81 | 节丛孢属Arthrobotrys | 1.89 | 0.28 | |
uncultured_bacterium_o_Elsterales | 1.23 | 4.46 | 湿伞属Hygrocybe | 1.82 | 0.18 | |
酸杆菌属Acidibacter | 1.69 | 3.24 | 绿僵菌属Metarhizium | 1.45 | 0.43 | |
uncultured_bacterium_p_WPS-2 | 2.07 | 2.27 | 枝孢菌属Cladosporium | 1.42 | 0.05 |
图5 两个茶园根际土壤微生物与环境因子间的RDA分析 CEC、SOM、HE、AN和NH4+-N 分别表示阳离子交换量、有机质、腐殖质、氨氮和铵态氮
Fig. 5 RDA analysis between rhizosphere soil microorganisms and environmental factors in the two tea gardens CEC, SOM, HE, AN and NH4+-N refers to cation exchange, organic matter, humus, ammonia and ammonium nitrogen, respectively
[1] |
杨瑞娟, 王桥美, 彭文书, 等. 云南景迈山不同生境茶园根际土壤微生物群落多样性初步研究[J]. 热带作物学报, 2021, 42(4): 1182-1189.
doi: 10.3969/j.issn.1000-2561.2021.04.039 |
Yang RJ, Wang QM, Peng WS, et al. A preliminary study on the distribution diversity of rhizosphere soil microbial community in tea plantations with different habitats of jingmai mountain, Yunnan, China[J]. Chin J Trop Crops, 2021, 42(4): 1182-1189. | |
[2] |
Li YC, Li Z, Li ZW, et al. Variations of rhizosphere bacterial communities in tea(Camellia sinensis L.) continuous cropping soil by high-throughput pyrosequencing approach[J]. J Appl Microbiol, 2016, 121(3): 787-799.
doi: 10.1111/jam.13225 pmid: 27377624 |
[3] | 俞慎, 何振立, 陈国潮, 等. 不同树龄茶树根层土壤化学特性及其对微生物区系和数量的影响[J]. 土壤学报, 2003, 40(3): 433-439. |
Yu S, He ZL, Chen GC, et al. Soil chemical characteristics and their impacts on soil microflora in the root layer of tea plants with different cultivating ages[J]. Acta Pedol Sin, 2003, 40(3): 433-439. | |
[4] | 浦滇, 罗义菊, 陈洪宇, 等. 长期种植云南大叶种茶对土壤真菌多样性的影响[J]. 应用与环境生物学报, 2023, 29(2): 440-448. |
Pu D, Luo YJ, Chen HY, et al. Effects of long-term cultivation of Yunnan large-leaf tea(Camellia sinensis var. assamica)on soil fungal community characteristics[J]. Chin J Appl Environ Biol, 2023, 29(2): 440-448. | |
[5] | 张旭博, 徐梦, 史飞. 藏东南林芝地区典型农业土地利用方式对土壤微生物群落特征的影响[J]. 农业环境科学学报, 2020, 39(2): 331-342. |
Zhang XB, Xu M, Shi F. Impact of typical agricultural land use on the characteristics of soil microbial communities in the Nyingchi region of southeastern Tibet[J]. J Agro Environ Sci, 2020, 39(2): 331-342. | |
[6] | 刘会梅, 张天宇. 土壤真菌研究进展[J]. 山东农业大学学报: 自然科学版, 2008, 39(2): 326-330. |
Liu HM, Zhang TY. Research progress on soil fungi[J]. J Shandong Agric Univ Nat Sci Ed, 2008, 39(2): 326-330. | |
[7] | Jackson LE, Bowles TM, Hodson AK, et al. Soil microbial-root and microbial-rhizosphere processes to increase nitrogen availability and retention in agroecosystems[J]. Curr Opin Environ Sustain, 2012, 4(5): 517-522. |
[8] | Huang Q, Jiao F, Huang YM, et al. Response of soil fungal community composition and functions on the alteration of precipitation in the grassland of Loess Plateau[J]. Sci Total Environ, 2021, 751: 142273. |
[9] | Boddington CL, Dodd JC. The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. I. Field studies in an Indonesian ultisol[J]. Plant Soil, 2000, 218(1): 137-144. |
[10] | 卢开阳. 云南11个茶山的大叶种茶树根际土壤微生物遗传多样性研究[D]. 昆明: 云南师范大学, 2016. |
Lu KY. Study on microbial genetic diversity in large leaf tea rhizosphere soil at 11 mountains from Yunnan province[D]. Kunming: Yunnan Normal University, 2016. | |
[11] | Sarkar S, Seenivasan S, Asir RPS. Biodegradation of propargite by Pseudomonas putida, isolated from tea rhizosphere[J]. J Hazard Mater, 2010, 174(1/2/3): 295-298. |
[12] | 黄芳芳, 李勤, 黄建安. 茶树根际微生物研究进展[J]. 茶叶科学, 2020, 40(6): 715-723. |
Huang FF, Li Q, Huang JA. Research progress of tea rhizosphere microorganisms[J]. J Tea Sci, 2020, 40(6): 715-723. | |
[13] |
Sharma S, Chen C, Navathe S, et al. A halotolerant growth promoting rhizobacteria triggers induced systemic resistance in plants and defends against fungal infection[J]. Sci Rep, 2019, 9(1): 4054.
doi: 10.1038/s41598-019-40930-x pmid: 30858512 |
[14] | 陈丽莹, 张玉满, 陈晓英, 等. 茶树叶际选择性富集的内生细菌的鉴定[J]. 微生物学报, 2018, 58(10): 1776-1785. |
Chen LY, Zhang YM, Chen XY, et al. Identification of endophytic bacteria selectively enriched in Camellia sinensis leaf[J]. Acta Microbiol Sin, 2018, 58(10): 1776-1785. | |
[15] | 夏丽飞, 梁名志, 王丽, 等. 勐海晒青茶品质化学研究[J]. 中国农学通报, 2012, 28(16): 239-244. |
Xia LF, Liang MZ, Wang L, et al. Studying on the quality of Menghai's sunny dried tea[J]. Chin Agric Sci Bull, 2012, 28(16): 239-244. | |
[16] | Jiang PK, Xu QF, Xu ZH, et al. Seasonal changes in soil labile organic carbon pools within a Phyllostachys praecox stand under high rate fertilization and winter mulch in subtropical China[J]. For Ecol Manag, 2006, 236(1): 30-36. |
[17] |
曾美娟, 钟永嘉, 刁勇. 药用植物根际促生菌促生机理研究进展[J]. 生物技术通报, 2017, 33(11): 13-18.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0359 |
Zeng MJ, Zhong YJ, Diao Y. Promoting mechanism of plant growth-promoting rhizobacteria in medicinal plants[J]. Biotechnol Bull, 2017, 33(11): 13-18. | |
[18] | Osorio NW, Habte M. Soil phosphate desorption induced by a phosphate-solubilizing fungus[J]. Commun Soil Sci Plant Anal, 2014, 45(4): 451-460. |
[19] | Tamayo-Vélez Á, Osorio NW. Soil fertility improvement by litter decomposition and inoculation with the fungus Mortierella sp. in avocado plantations of Colombia[J]. Commun Soil Sci Plant Anal, 2018, 49(2): 139-147. |
[20] |
孙建光, 胡海燕, 刘君, 等. 农田环境中固氮菌的促生潜能与分布特点[J]. 中国农业科学, 2012, 45(8): 1532-1544.
doi: 10.3864/j.issn.0578-1752.2012.08.009 |
Sun JG, Hu HY, Liu J, et al. Growth promotion potential and distribution features of nitrogen-fixing bacteria in field environments[J]. Sci Agric Sin, 2012, 45(8): 1532-1544. | |
[21] | Azarias Guimarães A, Duque Jaramillo PM, Simão Abrahão Nóbrega R, et al. Genetic and symbiotic diversity of nitrogen-fixing bacteria isolated from agricultural soils in the western Amazon by using cowpea as the trap plant[J]. Appl Environ Microbiol, 2012, 78(18): 6726-6733. |
[22] |
梁晓洁, 刘志华, 张平, 等. 抗油桐枯萎病木霉菌的分离鉴定及抑菌作用研究[J]. 菌物学报, 2020, 39(5): 795-805.
doi: 10.13346/j.mycosystema.190392 |
Liang XJ, Liu ZH, Zhang P, et al. Trichoderma spp. isolated from rhizosphere soil of wilt-resistant Vernicia fordii and their inhibition effects against Fusarium oxysporum[J]. Mycosystema, 2020, 39(5): 795-805. | |
[23] | 汪立群, 颜小梅, 郭小双, 等. 紫娟、云抗10号两个茶树品种内生菌多样性研究[J]. 安徽农业大学学报, 2016, 43(1): 1-5. |
Wang LQ, Yan XM, Guo XS, et al. Diversity of endophytic microorganisms zijuan and Yunkang 10 of Camellia sinensis[J]. J Anhui Agric Univ, 2016, 43(1): 1-5. | |
[24] | 杨瑞娟, 王桥美, 龚婉莹, 等. 云南景迈山不同生境茶园及茶窖空气微生物群落分布多样性研究[J]. 云南农业大学学报: 自然科学, 2020, 35(4): 659-666. |
Yang RJ, Wang QM, Gong WY, et al. Distribution diversity of microbial communities in the air of tea gardens and tea cellars in different habitats of jingmai mountain, Yunnan Province[J]. J Yunnan Agric Univ Nat Sci, 2020, 35(4): 659-666. | |
[25] | 张英英, 魏玉杰, 吴之涛, 等. 不同种植年限对特殊药材土壤化学性质和微生物多样性的影响[J]. 干旱地区农业研究, 2023, 41(1): 150-159. |
Zhang YY, Wei YJ, Wu ZT, et al. Effects of different cropping years on soil chemical properties of special medicine source plant[J]. Agric Res Arid Areas, 2023, 41(1): 150-159. | |
[26] | 李丽艳, 朱瑞艳, 杜迎辉, 等. 微生物肥料对草莓根腐病防治效果及对根围土壤微生物群落多样性的影响[J]. 安徽农业科学, 2018, 46(33): 111-113. |
Li LY, Zhu RY, Du YH, et al. Effect of microbial fertilizer on the control of strawberry root rot and the diversity of soil microbial communities[J]. J Anhui Agric Sci, 2018, 46(33): 111-113. | |
[27] | 黄昆鹏, 董昆乐, 李芳芳, 等. 烟草抗病嫁接对根际土壤微生物多样性的影响[J]. 江苏农业科学, 2023, 51(20): 239-247. |
Huang KP, Dong KL, Li FF, et al. Impacts of disease-resistant grafting on microbial diversity in rhizosphere soil of tobacco[J]. Jiangsu Agric Sci, 2023, 51(20): 239-247. |
[1] | 孔德婷, 齐笑含, 刘兴蕾, 李丽萍, 胡凤益, 黄立钰, 秦世雯. 不同多年生稻品种内生细菌群落多样性比较分析[J]. 生物技术通报, 2024, 40(5): 225-236. |
[2] | 高玉坤, 张建东, 杨溥原, 陈东明, 王志博, 田颐瑾, 崔江慧, 常金华. 高粱根际土壤细菌群落对盐胁迫的响应[J]. 生物技术通报, 2024, 40(4): 203-216. |
[3] | 王颢杰, 常栋, 李俊营, 孟颢光, 蒋士君, 周硕野, 崔江宽. 不同生境下烤烟三段式育苗微生物群落变化及抗逆酶活分析[J]. 生物技术通报, 2024, 40(4): 242-254. |
[4] | 刘佳宁, 李梦, 杨新森, 吴伟, 裴新梧, 袁潜华. 不同水分管理栽培方式对山栏稻根际土壤细菌群落的影响[J]. 生物技术通报, 2024, 40(3): 242-250. |
[5] | 雷美玲, 饶文华, 胡进锋, 岳琪, 吴祖建, 范国成. 黄龙病发病芦柑根际土壤细菌群落组成与多样性特征[J]. 生物技术通报, 2024, 40(2): 266-276. |
[6] | 王雨晴, 马子奇, 侯嘉欣, 宗钰琪, 郝晗睿, 刘国元, 魏辉, 连博琳, 陈艳红, 张健. 盐胁迫下植物根系分泌物的成分分析与生态功能研究进展[J]. 生物技术通报, 2024, 40(1): 12-23. |
[7] | 赵林艳, 徐武美, 王豪吉, 王昆艳, 魏富刚, 杨绍周, 官会林. 施用生物炭对连作三七根际真菌群落与存活率的影响[J]. 生物技术通报, 2023, 39(7): 219-227. |
[8] | 孙海航, 官会林, 王旭, 王童, 李泓霖, 彭文洁, 刘柏桢, 樊芳玲. 生物炭对三七连作土壤性质及真菌群落的影响[J]. 生物技术通报, 2023, 39(2): 221-231. |
[9] | 孙卓, 王妍, 韩忠明, 王云贺, 赵淑杰, 杨利民. 防风根际真菌的分离鉴定及其生防潜力评价[J]. 生物技术通报, 2023, 39(1): 264-273. |
[10] | 李颖, 龙长梅, 蒋标, 韩丽珍. 两株PGPR菌株的花生定殖及对根际细菌群落结构的影响[J]. 生物技术通报, 2022, 38(9): 237-247. |
[11] | 王子夜, 王志刚, 阎爱华. 不同树龄桑根际土壤原生生物群落组成多样性[J]. 生物技术通报, 2022, 38(8): 206-215. |
[12] | 陈天赐, 武少兰, 杨国辉, 江丹霞, 江玉姬, 陈炳智. 无柄灵芝醇提物对小鼠睡眠及肠道菌群的影响[J]. 生物技术通报, 2022, 38(8): 225-232. |
[13] | 王子寅, 刘秉儒, 李子豪, 赵晓玉. 荒漠草原柠条灌丛堆不同发育阶段土壤细菌群落结构特征[J]. 生物技术通报, 2022, 38(7): 205-214. |
[14] | 钟辉, 刘亚军, 王滨花, 和梦洁, 吴兰. 分析方法对细菌群落16S rRNA基因扩增测序分析结果的影响[J]. 生物技术通报, 2022, 38(6): 81-92. |
[15] | 王宁, 李蕙秀, 李季, 丁国春. 堆肥调控作物根际微生物组抑制植物病害的研究进展[J]. 生物技术通报, 2022, 38(5): 4-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||