生物技术通报 ›› 2024, Vol. 40 ›› Issue (5): 215-224.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1139
李景艳1(), 周家婧2, 袁媛3, 苏晓艺1, 乔文慧2, 薛岩磊3, 李国婧1, 王瑞刚1()
收稿日期:
2023-12-03
出版日期:
2024-05-26
发布日期:
2024-06-13
通讯作者:
王瑞刚,男,博士,教授,研究方向:植物分子生物学;E-mail: wangruigang@imau.edu.cn作者简介:
李景艳,女,硕士研究生,研究方向:植物分子生物学;E-mail: 3265729074@qq.com
基金资助:
LI Jing-yan1(), ZHOU Jia-jing2, YUAN Yuan3, SU Xiao-yi1, QIAO Wen-hui2, XUE Yan-lei3, LI Guo-jing1, WANG Rui-gang1()
Received:
2023-12-03
Published:
2024-05-26
Online:
2024-06-13
摘要:
【目的】AtiPGAM2 基因是拟南芥(Arabidopsis thaliana)碱性磷酸酶超家族的成员,参与糖酵解过程。研究AtiPGAM2基因在逆境胁迫下的响应机制,为进一步研究AtiPGAM2的抗逆功能奠定基础。【方法】使用PlantCARE在线软件对AtiPGAM2基因启动子顺式作用元件进行分析。采用实时荧光定量PCR,检测AtiPGAM2在NaCl和ABA胁迫下的响应模式。克隆AtiPGAM2基因转入拟南芥,获得AtiPGAM2基因超表达株系。利用三引物法鉴定Atipgam2突变体。对过表达、突变体和野生型在盐胁迫下的萌发率、绿苗率以及各种非生物胁迫(甘露醇、ABA和MeJA)下的表型,进行统计分析。【结果】其启动子上存在多个光、MeJA、低温、ABA、SA、GAs等非生物胁迫和激素响应元件。荧光定量PCR分析显示,AtiPGAM2在NaCl和ABA胁迫下受到不同程度的诱导。成功获得AtiPGAM2基因过表达和突变体株系。在盐胁迫条件下AtiPGAM2过表达株系萌发率以及绿苗率均高于野生型,突变体表型则相反。甘露醇处理下突变体的萌发率低于野生型。ABA处理48 h内突变体和过表达AtiPGAM2株系的萌发率都低于野生型。MeJA处理下过表达的侧根数量高于野生型,突变体则相反。【结论】AtiPGAM2具有耐盐性,该基因响应甘露醇、ABA 和MeJA处理。
李景艳, 周家婧, 袁媛, 苏晓艺, 乔文慧, 薛岩磊, 李国婧, 王瑞刚. 拟南芥AtiPGAM2基因参与非生物胁迫的响应[J]. 生物技术通报, 2024, 40(5): 215-224.
LI Jing-yan, ZHOU Jia-jing, YUAN Yuan, SU Xiao-yi, QIAO Wen-hui, XUE Yan-lei, LI Guo-jing, WANG Rui-gang. Response of Arabidopsis AtiPGAM2 Gene to Abiotic Stress[J]. Biotechnology Bulletin, 2024, 40(5): 215-224.
引物名称Primer name | 序列Sequence(5'-3') | 引物用途Primer usage |
---|---|---|
AtiPGAM2-HA-F | TACTTCCAATCCAATGCCATGGGTAGCTCCGGCG | 基因克隆 |
AtiPGAM2-HA-R | TTATCCACTTCCAATGCTACTTCTCGACGACTTCGATCAG | Gene clone |
AtiPGAM2-qRT-F | TGCGTGTAAACCTGCCAAAT | 荧光定量PCR |
AtiPGAM2-qRT-R | GTATATCCCTCCGACCTGTTCTAT | RT-qPCR |
AtEF1α-F | AGAAGGGTGCCAAATGATGAG | 荧光定量PCR |
AtEF1α-R | GGAGGGAGAGAGAAAGTCACAGA | RT-qPCR |
salk_119825C-LP | TACCGAACCAGATCAATTTGC | 突变体鉴定 |
salk_119825C-RP | TCCTTGATGCCATAGAACAGG | Mutant identification |
表1 本研究中涉及的引物
Table 1 Primers used in this study
引物名称Primer name | 序列Sequence(5'-3') | 引物用途Primer usage |
---|---|---|
AtiPGAM2-HA-F | TACTTCCAATCCAATGCCATGGGTAGCTCCGGCG | 基因克隆 |
AtiPGAM2-HA-R | TTATCCACTTCCAATGCTACTTCTCGACGACTTCGATCAG | Gene clone |
AtiPGAM2-qRT-F | TGCGTGTAAACCTGCCAAAT | 荧光定量PCR |
AtiPGAM2-qRT-R | GTATATCCCTCCGACCTGTTCTAT | RT-qPCR |
AtEF1α-F | AGAAGGGTGCCAAATGATGAG | 荧光定量PCR |
AtEF1α-R | GGAGGGAGAGAGAAAGTCACAGA | RT-qPCR |
salk_119825C-LP | TACCGAACCAGATCAATTTGC | 突变体鉴定 |
salk_119825C-RP | TCCTTGATGCCATAGAACAGG | Mutant identification |
图1 AtiPGAM2基因ORF的克隆(A)及35S::HA-AtiP-GAM2重组质粒(B)酶切鉴定电泳 A:泳道M为DL 2000 DNA marker;1:AtiPGAM2基因ORF扩增产物;B:M:DL2000 DNA marker;1:Sal I单酶切重组质粒;2:空载体对照
Fig. 1 Gel electrophoresis of the PCR products of AtiP-GAM2 ORF cloned(A)and identification of 35S:: AtiPGAM2-HA recombinant vector(B) A: M: DL2000 DNA marker; 1: PCR products of the AtiPGAM2 ORF; B: M: DL2000 DNA marker; 1: recombinant vector digested with Sal I; 2: vector control
顺式作用元件名称 Name of cis-acting element | 顺式作用元件功能 Function of cis-acting element | 序列 Sequence(5'-3') | 顺式作用元件数量 Number of cis-acting elements |
---|---|---|---|
TGACG-motif | MeJA反应相关 | TGACG | 4 |
CGTCA-motif | MeJA反应相关 | CGTCA | 4 |
G-box | 光反应相关 | CACGTC | 3 |
G-box | 光反应相关 | CACGTT | 1 |
ABRE | 脱落酸反应相关 | ACGTG | 4 |
TCA-element | 水杨酸反应相关 | TCAGAAGAGG | 1 |
TCA-element | 水杨酸反应相关 | CCATCTTTTT | 1 |
TCCC-motif | 光反应相关 | TCTCCCT | 1 |
P-box | 赤霉素相关 | CCTTTTG | 2 |
I-box | 光反应相关 | CCTTATCCT | 1 |
GARE-motif | 赤霉素响应元件 | TCTGTTG | 1 |
GT1-motif | 光响应元件 | GGTTAA | 1 |
GATA-motif | 光反应相关 | GATAGGA | 1 |
GATA-motif | 光反应相关 | AAGGATAAGG | 1 |
LTR | 低温响应元件 | CCGAAA | 1 |
TCT-motif | 光响应元件 | TCTTAC | 2 |
表2 AtiPGAM2启动子中的顺式作用元件
Table 2 Cis-acting elements in AtiPGAM2 promoter
顺式作用元件名称 Name of cis-acting element | 顺式作用元件功能 Function of cis-acting element | 序列 Sequence(5'-3') | 顺式作用元件数量 Number of cis-acting elements |
---|---|---|---|
TGACG-motif | MeJA反应相关 | TGACG | 4 |
CGTCA-motif | MeJA反应相关 | CGTCA | 4 |
G-box | 光反应相关 | CACGTC | 3 |
G-box | 光反应相关 | CACGTT | 1 |
ABRE | 脱落酸反应相关 | ACGTG | 4 |
TCA-element | 水杨酸反应相关 | TCAGAAGAGG | 1 |
TCA-element | 水杨酸反应相关 | CCATCTTTTT | 1 |
TCCC-motif | 光反应相关 | TCTCCCT | 1 |
P-box | 赤霉素相关 | CCTTTTG | 2 |
I-box | 光反应相关 | CCTTATCCT | 1 |
GARE-motif | 赤霉素响应元件 | TCTGTTG | 1 |
GT1-motif | 光响应元件 | GGTTAA | 1 |
GATA-motif | 光反应相关 | GATAGGA | 1 |
GATA-motif | 光反应相关 | AAGGATAAGG | 1 |
LTR | 低温响应元件 | CCGAAA | 1 |
TCT-motif | 光响应元件 | TCTTAC | 2 |
图3 转基因株系中AtiPGAM2基因的转录水平检测 图中误差线表示标准偏差。下同
Fig. 3 Expressions of AtiPGAM2 in transgenic Arabidopsis lines The error line in the figure refers to the standard deviation. The same below
图4 突变体Atipgam2的T-DNA插入位点以及表达水平鉴定 A:突变体salk_119825C的T-DNA插入位点;B:突变体salk_119825C的PCR鉴定(M:DL 2000 marker;1-4:Atipgam2突变体个体编号;1-4左侧泳道:LP+RP扩增产物;1-4右侧泳道:BP+RP扩增产物);C:AtiPGAM2基因表达水平的RT-qPCR的检测
Fig. 4 T-DNA insertion site in mutant Atipgam2 and identification of its expression A: T-DNA insertion site of salk_119825C mutant ; B: PCR identification of salk_119825C mutant(M: DL 2000 marker; 1-4: the number of Atipgam2 mutant; 1-4 left swimming lane: PCR products of LP+RP; 1-4 right swimming lane: PCR products of BP+ RP); C: detection of AtiPGAM2 gene expression levels by RT qPCR
图5 盐和ABA处理下AtiPGAM2转录水平的变化 A:盐胁迫处理下RD29A基因转录水平的变化;B:盐胁迫处理下AtiPGAM2基因转录水平的变化;C:ABA处理下ABI1基因转录水平的变化;D:ABA处理下AtiPGAM2基因转录水平的变化。*P<0.05,** P<0.01,*** P<0.001,ns表示不显著。下同
Fig. 5 Transcriptional changes of AtiPGAM2 under salt stress and ABA A: Transcription level change of RD29A under salt stress. B: Transcription level change of AtiPGAM2 under salt stress. C: Transcription level change of ABI1 under ABA. D: Transcription level change of AtiPGAM2 under ABA. *P<0.05,** P<0.01, *** P<0.001, ns refers to insignificant. The same below
图6 NaCl对野生型、AtiPGAM2过表达纯合体和Atipgam2突变体萌发率和绿苗率的影响 A, C:对照条件下3种基因型拟南芥种子萌发7 d的表型(A)和萌发率统计结果(C);B, D:200 mmol/L NaCl处理条件下3种基因型拟南芥种子萌发7 d的表型(B)和萌发率统计结果(D); E:对照条件下3种基因型拟南芥种子萌发10 d的绿苗率表型;F:150 mmol/L NaCl处理下3种基因型拟南芥种子萌发10 d的绿苗率表型;G:对照和150 mmol/L NaCl处理下3种基因型拟南芥种子萌发10 d的绿苗率统计结果
Fig. 6 Effects of NaCl on the germination rate and green seedling rate of wild-type, AtiPGAM2 overexpressed homozygotes and Atipgam2 mutant A, C: Phenotypes(A)and germination rate(C)of Arabidopsis seeds of three genotypes under control conditions after 7 d of germination. B, D: Phenotypes(B)and germination rate(D)of Arabidopsis seeds of three genotypes under 200 mmol/L NaCl treatment after 7 d of germination. E: Phenotypes of green seedling rates of three Arabidopsis genotypes under control after 10 d of germination. F: Phenotypes of green seedling rates of three Arabidopsis genotypes under 150 mmol/L NaCl treatment after 10 d of germination. G: Statistical results of the green seedling rates of Arabidopsis of three genotypes under control and 150 mmol/L NaCl treatment after 10 d of germination
图7 甘露醇对野生型、AtiPGAM2过表达纯合体和Atipgam2突变体萌发率的影响 A, C:对照条件下3种基因型拟南芥种子萌发7 d的表型(A)和萌发率统计结果(C);B, D:400 mmol/L甘露醇处理条件下3种基因型拟南芥种子萌发7 d的表型(B)和萌发率统计结果(D)
Fig. 7 Effects of mannitol on the germination rate of wild-type, AtiPGAM2 overexpressed homozygotes and Atipgam2 mutant A, C: Phenotypes(A)and germination rate(C)of Arabidopsis seeds of three genotypes under control conditions after 7 d of germination. B, D: Phenotypes(B)and germination rate(D)of Arabidopsis seeds of three genotypes under 400 mmol/L mannitol treatment after 7 d of germination
图8 ABA对野生型、AtiPGAM2过表达纯合体和Atipgam2突变体萌发率的影响 A, D:对照条件下3种基因型拟南芥种子萌发7 d的表型(A)和萌发率统计结果(D);B, E:1 μmol/L ABA处理条件下3种基因型拟南芥种子萌发7 d的表型(B)和萌发率统计结果(E);C, F:3 μmol/L ABA处理条件下3种基因型拟南芥种子萌发7 d的表型(C)和萌发率统计结果(F)
Fig. 8 Effects of ABA on the germination rate of wild-type, AtiPGAM2 overexpressed homozygotes and Atipgam2 mutant A, D: Phenotypes(A)and germination rate(D)of Arabidopsis seeds of three genotypes under control conditions after 7 d of germination. B, E: Phenotypes(B)and germination rate(E)of Arabidopsis seeds of three genotypes under 1 μmol /L ABA treatment after 7 d of germination. C, F: Phenotypes(C)and germination rate(F)of Arabidopsis seeds of three genotypes under 3 μmol/L ABA treatment after 7 d of germination
图9 MeJA对野生型、AtiPGAM2过表达纯合体和Atipgam2突变体侧根数量的影响 A:对照条件下3种基因型拟南芥侧根数量的表型;B:75 μmol/L MeJA处理下3种基因型拟南芥侧根数量的表型;C:对照和75 μmol/L MeJA处理3种基因型拟南芥平均侧根数量的统计结果
Fig. 9 Effects of MeJA on the number of lateral roots in wild-type, AtiPGAM2 overexpressed homozygotes, and Atipgam2 mutants A: Phenotypes of lateral root number of three Arabidopsis genotypes under control. B: Phenotypes of lateral root number of three Arabidopsis genotypes under 75 μmol/L MeJA treatment. C: Statistical results of lateral root average number of Arabidopsis of three genotypes under control and 75 μmol/L MeJA treatment
[1] | Okuda J, Niizuma S, Shioi T, et al. Persistent overexpression of phosphoglycerate mutase, a glycolytic enzyme, modifies energy metabolism and reduces stress resistance of heart in mice[J]. PLoS One, 2013, 8(8): e72173. |
[2] |
Fothergill-Gilmore LA, Watson HC. The phosphoglycerate mutases[J]. Adv Enzymol Relat Areas Mol Biol, 1989, 62: 227-313.
pmid: 2543188 |
[3] | Jedrzejas MJ. Structure, function, and evolution of phosphoglycerate mutases: comparison with fructose-2, 6-bisphosphatase, acid phosphatase, and alkaline phosphatase[J]. Prog Biophys Mol Biol, 2000, 73(2/3/4): 263-287. |
[4] | Poonperm B, Guerra DG, McNae IW, et al. Expression, purification, crystallization and preliminary crystallographic analysis of Leishmania mexicana phosphoglycerate mutase[J]. Acta Crystallogr D Biol Crystallogr, 2003, 59(Pt 7): 1313-1316. |
[5] |
Wang YL, Wei ZY, Bian Q, et al. Crystal structure of human bisphosphoglycerate mutase[J]. J Biol Chem, 2004, 279(37): 39132-39138.
doi: 10.1074/jbc.M405982200 pmid: 15258155 |
[6] |
谢鑫, 刘娜, 魏凤菊. 植物iPGAM的研究进展[J]. 生物技术通报, 2015, 31(9): 1-7.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.09.001 |
Xie X, Liu N, Wei FJ. Research progress on cofactor-independent phosphoglycerate mutase in plants[J]. Biotechnol Bull, 2015, 31(9): 1-7.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.09.001 |
|
[7] | Graña X, Pérez de la Ossa P, Broceño C, et al. 2, 3-Bisphosphoglycerate-independent phosphoglycerate mutase is conserved among different phylogenic Kingdoms[J]. Comp Biochem Physiol B Biochem Mol Biol, 1995, 112(2): 287-293. |
[8] |
Bond CS, Clements PR, Ashby SJ, et al. Structure of a human lysosomal sulfatase[J]. Structure, 1997, 5(2): 277-289.
doi: 10.1016/s0969-2126(97)00185-8 pmid: 9032078 |
[9] |
Andriotis VME, Kruger NJ, Pike MJ, et al. Plastidial glycolysis in developing Arabidopsis embryos[J]. New Phytol, 2010, 185(3): 649-662.
doi: 10.1111/j.1469-8137.2009.03113.x pmid: 20002588 |
[10] | Graña X, Ureña J, Ludevid D, et al. Purification, characterization and immunological properties of 2, 3-bisphosphoglycerate-independent phosphoglycerate mutase from maize(Zea mays)seeds[J]. Eur J Biochem, 1989, 186(1/2): 149-153. |
[11] |
Wang JL, Walling LL, Jauh GY, et al. Lily cofactor-independent phosphoglycerate mutase: purification, partial sequencing, and immunolocalization[J]. Planta, 1996, 200(3): 343-352.
pmid: 8931352 |
[12] | Westram A, Lloyd JR, Roessner U, et al. Increases of 3-phosphoglyceric acid in potato plants through antisense reduction of cytoplasmic phosphoglycerate mutase impairs photosynthesis and growth, but does not increase starch contents[J]. Plant Cell Environ, 2002, 25(9): 1133-1143. |
[13] | Lin D, Zhang L, Mei J, et al. Mutation of the rice TCM12 gene encoding 2, 3-bisphosphoglycerate-independent phosphoglycerate mutase affects chlorophyll synthesis, photosynthesis and chloroplast development at seedling stage at low temperatures[J]. Plant Biol, 2019, 21(4): 585-594. |
[14] | 刘朋虎, 邓优锦, 江玉姬, 等. 草菇PGAM基因克隆、结构及其在同核、异核菌株中的表达量分析[J]. 福建农业学报, 2012, 27(3): 252-256. |
Liu PH, Deng YJ, Jiang YJ, et al. Cloning and structural analysis of phosphoglycerate mutas gene and its expression levels in homokaryon and heterokaryon of Volvariella volvacea[J]. Fujian J Agric Sci, 2012, 27(3): 252-256. | |
[15] | 李春明, 白卉, 于文喜. 低温驯化过程中大青杨叶片差异蛋白质分析[J]. 东北林业大学学报, 2011, 39(10): 45-49. |
Li CM, Bai H, Yu WX. Differential protein in Populus ussuriensis leaves during natural low-temperature acclimation by proteomic analysis[J]. J Northeast For Univ, 2011, 39(10): 45-49. | |
[16] |
Huang Y, Blakeley SD, McAleese SM, et al. Higher-plant cofactor-independent phosphoglyceromutase: purification, molecular characterization and expression[J]. Plant Mol Biol, 1993, 23(5): 1039-1053.
doi: 10.1007/BF00021818 pmid: 8260624 |
[17] |
Hajduch M, Casteel JE, Hurrelmeyer KE, et al. Proteomic analysis of seed filling in Brassica napus. Developmental characterization of metabolic isozymes using high-resolution two-dimensional gel electrophoresis[J]. Plant Physiol, 2006, 141(1): 32-46.
pmid: 16543413 |
[18] | 龙翔宇, 董绪浓, 等. 橡胶树PGAM基因的克隆及表达特性分析[J]. 热带作物学报, 2013, 34(10): 1895-1901. |
Long XY, Dong XN, et al. Molecular cloning and expression analysis of HbPGAM from Hevea brasiliensis(para rubber tree)[J]. Chin J Trop Crops, 2013, 34(10): 1895-1901. | |
[19] |
Stein M, Gabdoulline RR, Wade RC. Cross-species analysis of the glycolytic pathway by comparison of molecular interaction fields[J]. Mol Biosyst, 2010, 6(1): 152-164.
doi: 10.1039/b912398a pmid: 20024078 |
[20] | Zhao ZX, Assmann SM. The glycolytic enzyme, phosphoglycerate mutase, has critical roles in stomatal movement, vegetative growth, and pollen production in Arabidopsis thaliana[J]. J Exp Bot, 2011, 62(14): 5179-5189. |
[21] | Amme S, Matros A, Schlesier B, et al. Proteome analysis of cold stress response in Arabidopsis thaliana using DIGE-technology[J]. J Exp Bot, 2006, 57(7): 1537-1546. |
[22] | 红格日其其格. 盐胁迫下拟南芥角果的蛋白质组和Khib修饰组学分析及AtATPase-β亚基的功能研究[D]. 呼和浩特: 内蒙古农业大学, 2021. |
Hong G. Proteomic and Khib modification analysis of Arabidopsis thaliana siliques under salt stress and function study on ATATPase-β subunit[D]. Hohhot: Inner Mongolia Agricultural University, 2021. | |
[23] | Zhang XJ, Yang GY, et al. Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses[J]. Plant Physiol Biochem, 2013, 67: 189-198. |
[24] | Karimi R, Gavili-Kilaneh K, Khadivi A. Methyl jasmonate promotes salinity adaptation responses in two grapevine(Vitis vinifera L.) cultivars differing in salt tolerance[J]. Food Chem, 2022, 375: 131667. |
[25] | 刘丽婧. 烟草糖酵解途径iPGAM基因的鉴定和功能研究[D]. 重庆: 西南大学, 2020. |
Liu LJ. Identification and functional study of NtiPGAM involved in glycolytic pathway in tobacco[D]. Chongqing: Southwest University, 2020. |
[1] | 杜兵帅, 邹昕蕙, 王子豪, 张馨元, 曹一博, 张凌云. 油茶SWEET基因家族的全基因组鉴定及表达分析[J]. 生物技术通报, 2024, 40(5): 179-190. |
[2] | 郭慧妍, 董雪, 安梦楠, 夏子豪, 吴元华. 泛素化修饰关键酶在植物抗逆反应中的功能研究进展[J]. 生物技术通报, 2024, 40(4): 1-11. |
[3] | 陈春林, 李白雪, 李金玲, 杜清洁, 李猛, 肖怀娟. 甜瓜CmEPF基因家族的鉴定及表达分析[J]. 生物技术通报, 2024, 40(4): 130-138. |
[4] | 李慧, 文钰芳, 王悦, 纪超, 石国优, 罗英, 周勇, 李志敏, 吴晓玉, 杨有新, 刘建萍. 盐胁迫下辣椒CaPIF4的表达特性与功能分析[J]. 生物技术通报, 2024, 40(4): 148-158. |
[5] | 郭纯, 宋桂梅, 闫艳, 邸鹏, 王英平. 西洋参bZIP基因家族全基因组鉴定和表达分析[J]. 生物技术通报, 2024, 40(4): 167-178. |
[6] | 高玉坤, 张建东, 杨溥原, 陈东明, 王志博, 田颐瑾, 崔江慧, 常金华. 高粱根际土壤细菌群落对盐胁迫的响应[J]. 生物技术通报, 2024, 40(4): 203-216. |
[7] | 高志伟, 魏明, 于祖隆, 伍国强, 魏俊龙. 耐盐植物促生菌W-1鉴定及其对红豆草耐盐性的影响[J]. 生物技术通报, 2024, 40(4): 217-227. |
[8] | 张以恒, 刘家正, 王雪晨, 孙政哲, 薛雅郡, 汪沛, 韩华, 郑宏伟, 李晓娟. 基于超分辨成像增强对拟南芥内质网动态变化的研究[J]. 生物技术通报, 2024, 40(4): 67-76. |
[9] | 江林琪, 赵佳莹, 郑飞雄, 姚馨怡, 李效贤, 俞振明. 铁皮石斛14-3-3基因家族鉴定及表达分析[J]. 生物技术通报, 2024, 40(3): 229-241. |
[10] | 周宏丹, 罗晓萍, 涂米雪, 李忠光. 植物褪黑素:植物应答非生物胁迫的新兴信号分子[J]. 生物技术通报, 2024, 40(3): 41-51. |
[11] | 沈天虹, 齐孝博, 赵瑞丰, 马欣荣. 微藻盐胁迫响应分子机制研究进展[J]. 生物技术通报, 2024, 40(3): 89-99. |
[12] | 吴翠翠, 肖水平. 陆地棉HD-Zip家族全基因组鉴定及响应非生物胁迫的表达分析[J]. 生物技术通报, 2024, 40(2): 130-145. |
[13] | 辛奇, 李压凡, 尹铮, 张晓丹, 陈霆, 刘晓华. 甘蔗CBL-CIPK基因家族的鉴定和表达分析[J]. 生物技术通报, 2024, 40(2): 197-211. |
[14] | 李昊, 伍国强, 魏明, 韩悦欣. 甜菜BvBADH基因家族全基因组鉴定及其高盐胁迫下的表达分析[J]. 生物技术通报, 2024, 40(2): 233-244. |
[15] | 徐扬, 张瑞英, 戴良香, 张冠初, 丁红, 张智猛. 盐胁迫下氮素对花生种子萌发和种子际细菌菌群结构的调控[J]. 生物技术通报, 2024, 40(2): 253-265. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||