生物技术通报 ›› 2024, Vol. 40 ›› Issue (9): 225-237.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0313
温绍福(), 江润海, 朱城强, 张梅, 余小琴, 杨杰惠, 杨小容, 侯秀丽()
收稿日期:
2024-03-31
出版日期:
2024-09-26
发布日期:
2024-10-12
通讯作者:
侯秀丽,博士,教授,研究方向:生态修复;E-mail: hxlyn@aliyun.com作者简介:
温绍福,硕士研究生,研究方向:土壤重金属污染修复;E-mail: 2319473994@qq.com
基金资助:
WEN Shao-fu(), JIANG Run-hai, ZHU Cheng-qiang, ZHANG Mei, YU Xiao-qin, YANG Jie-hui, YANG Xiao-rong, HOU Xiu-li()
Received:
2024-03-31
Published:
2024-09-26
Online:
2024-10-12
摘要:
【目的】探究解磷菌及其发酵产物在铅污染土壤中对玉米(Zea mays L.)根际土壤性质和微生物群落组成和多样性的影响。【方法】在筛选具有耐铅解磷功能的巴氏克雷伯氏菌(Klebsiella pasteurii)的基础上,采用盆栽实验在铅污染土壤中培育种植玉米,在其根际施加LB培养基、上清液(菌剂分泌物)、菌液(只含菌体细胞)和发酵液(上清液+菌体细胞),并设置无菌水对照,探究解磷菌对根际土壤理化性质及微生物群落结构的影响。【结果】巴氏克雷伯氏菌的上清液、菌液和发酵液对玉米根际细菌群落多样性并无显著影响,而菌液显著增加了土壤真菌群落的Shannon指数和Chao指数;菌株的上清液、菌液、发酵液均增加了拟杆菌门(Bacteroidetes)与放线菌门(Actinobacteria)等耐重金属的微生物类群的相对丰度,同时上清液、发酵液增加了变形菌门(Proteobacteria)和被孢霉门(Mortierellomycota)的丰度,上清液提高了鞘氨醇单胞菌属(Sphingomonas)、芽球菌属(Blastococcus)、慢生根瘤菌属(Bradyrhizobium)、古根菌属(Archaeorhizomyces)的相对丰度。此外,对玉米根际土壤差异菌属进行皮尔逊相关性分析,有7组差异菌属之间为正相关性,揭示了不同微生物菌属之间更趋向于形成互利共生关系。菌株的上清液、菌液、发酵液均显著增加了土壤酸性磷酸酶(Acp)的活性,其中在发酵液处理组中玉米根际土壤Acp活性最高为574.44 mg/g,24-1,施用上清液、菌液显著增加了根际土壤中碱解氮(AN)的含量,较对照组分别增加了47.4%、39.5%,三个处理组均显著降低了土壤pH值。通过冗余分析(RDA)发现土壤AN、Acp、pH值、可溶性磷(AP)是影响微生物群落结构的主要影响因素。【结论】外源施用解磷菌及其发酵产物有利于改善铅污染土壤肥力质量,影响土壤微生物群落的组成和结构,为铅污染农田接种解磷菌并提高土壤养分、改善土壤微生物群落结构提供了理论依据。
温绍福, 江润海, 朱城强, 张梅, 余小琴, 杨杰惠, 杨小容, 侯秀丽. 铅污染土壤中解磷菌对玉米根际土壤性质和微生物群落结构的影响[J]. 生物技术通报, 2024, 40(9): 225-237.
WEN Shao-fu, JIANG Run-hai, ZHU Cheng-qiang, ZHANG Mei, YU Xiao-qin, YANG Jie-hui, YANG Xiao-rong, HOU Xiu-li. Effects of Phosphate-solubilizing Bacteria on the Rhizosphere Soil Properties and Microbial Community Structure of Maize in Lead-contaminated Soil[J]. Biotechnology Bulletin, 2024, 40(9): 225-237.
图1 细菌(A)和真菌(B)在OTUs水平上 差异丰度在不同处理中的分布 CK:无菌水对照;T1: LB培养基;T2:上清液(菌剂分泌物);T3:菌液(只含菌体细胞);T4:发酵液(上清液+菌体细胞),下同
Fig. 1 Distribution of different abundances of bacteria(A)and fungi(B)at the OTUs level in different treatments CK: Sterile water control; T1: luria-bertani medium; T2: supernatant(bacterial secretion); T3: bacterial liquid(only containing bacterial cells); T4: fermentation broth(supernatant + bacterial cells). The same below
图2 玉米根际土壤细菌和真菌群落Alpha多样性指数变化
Fig. 2 Changes of Alpha diversity index of bacterial and fungal communities in maize rhizosphere soil ***,P < 0.001;**,P < 0.01;*,P < 0.05. The same below
图4 玉米根际土壤细菌属水平相对丰度在不同处理中的差异变化
Fig. 4 Differences in the relative abundances of bacterial genera in the rhizosphere soils of maize under different treatments
处理 Treatment | 有效磷 AP /(mg·kg-1) | 碱解氮 AN /(mg·kg-1) | 脲酶 Urease/(mg·kg-1, 24-1) | 酸性磷酸酶 Acid phosphatase /(mg·kg-1, 24-1) | pH |
---|---|---|---|---|---|
CK | 16.77 ±1.68a | 133.00 ±9.90b | 21783.70 ±3288.05a | 270.00 ±33.00c | 7.12 ±0.05a |
T1 | 17.48 ±1.48a | 122.50 ±4.95b | 2901.60 ±274.99c | 505.00 ±16.50ab | 7.11 ±0.04a |
T2 | 14.41 ±0.38b | 196.00 ±19.80a | 14216.60 ±1860.19b | 486.67 ±103.71ab | 6.70 ±0.08b |
T3 | 13.88 ±0.13b | 185.50 ±34.65a | 4473.30 ±1357.42c | 451.67 ±40.07b | 6.57 ±0.03c |
T4 | 12.36 ±0.54b | 157.50 ±4.95ab | 19522.25±46.03a | 574.44 ±9.62a | 6.71 ±0.05b |
表1 玉米根际土壤性质
Table 1 Properties of maize rhizosphere soil
处理 Treatment | 有效磷 AP /(mg·kg-1) | 碱解氮 AN /(mg·kg-1) | 脲酶 Urease/(mg·kg-1, 24-1) | 酸性磷酸酶 Acid phosphatase /(mg·kg-1, 24-1) | pH |
---|---|---|---|---|---|
CK | 16.77 ±1.68a | 133.00 ±9.90b | 21783.70 ±3288.05a | 270.00 ±33.00c | 7.12 ±0.05a |
T1 | 17.48 ±1.48a | 122.50 ±4.95b | 2901.60 ±274.99c | 505.00 ±16.50ab | 7.11 ±0.04a |
T2 | 14.41 ±0.38b | 196.00 ±19.80a | 14216.60 ±1860.19b | 486.67 ±103.71ab | 6.70 ±0.08b |
T3 | 13.88 ±0.13b | 185.50 ±34.65a | 4473.30 ±1357.42c | 451.67 ±40.07b | 6.57 ±0.03c |
T4 | 12.36 ±0.54b | 157.50 ±4.95ab | 19522.25±46.03a | 574.44 ±9.62a | 6.71 ±0.05b |
[1] | 张慧娟, 王齐, 高媛, 等. 水稻重金属积累分布与风险分析研究综述[J]. 环境科学与技术, 2020, 43(8): 64-72. |
Zhang HJ, Wang Q, Gao Y, et al. Accumulation, distribution and risk assessment of heavy metals in rice: a review[J]. Environ Sci Technol, 2020, 43(8): 64-72. | |
[2] | Beattie RE, Henke W, Campa MF, et al. Variation in microbial community structure correlates with heavy-metal contamination in soils decades after mining ceased[J]. Soil Biol Biochem, 2018, 126: 57-63. |
[3] | 孙进博, 胡玲燕, 李博, 等. 石灰与生物炭对污染土壤理化性质、万寿菊生长与镉铅含量的影响[J]. 环境化学, 2024, 43(9): 1-11. |
Sun JB, Hu LY, Li B, et al. Effects of lime and biochar on physicochemical properties of polluted soil, gro-wth and content of cadmium and lead of marigold[J]. Environmental Chemistry, 2024, 43(9): 1-11. | |
[4] | Serna L. Maize stomatal responses against the climate change[J]. Front Plant Sci, 2022, 13: 952146. |
[5] | Khan S, Hesham AELL, Qiao M, et al. Effects of Cd and Pb on soil microbial community structure and activities[J]. Environ Sci Pollut Res Int, 2010, 17(2): 288-296. |
[6] |
Song JW, Shen QL, Wang L, et al. Effects of Cd, Cu, Zn and their combined action on microbial biomass and bacterial community structure[J]. Environ Pollut, 2018, 243(Pt A): 510-518.
doi: S0269-7491(18)32107-9 pmid: 30216883 |
[7] | Fierer N, Wood SA, Bueno de Mesquita CP. How microbes can, and cannot, be used to assess soil health[J]. Soil Biol Biochem, 2021, 153: 108111. |
[8] | Ma SY, Qiao LK, Liu XX, et al. Microbial community succession in soils under long-term heavy metal stress from community diversity-structure to KEGG function pathways[J]. Environ Res, 2022, 214(Pt 2): 113822. |
[9] | Wood JL, Tang CX, Franks AE. Microbial associated plant growth and heavy metal accumulation toimprove phytoextraction of contaminated soils[J]. Soil Biol Biochem, 2016, 103: 131-137. |
[10] | Yin SQ, Zhang X, Xie JQ, et al. Change of microbial communities in heavy metals-contaminated rhizosphere soil with ectomycorrhizal fungi Suillus luteus inoculation[J]. Appl Soil Ecol, 2023, 190: 105019. |
[11] | 刘英杰, 张丽红, 张宏, 等. 溶磷微生物在土壤磷循环中的作用研究进展[J]. 微生物学通报, 2023, 50(8): 3671-3687. |
Liu YJ, Zhang LH, Zhang H, et al. Role of phosphate solubilizing microorganisms in soil phosphorus cycle: a review[J]. Microbiol China, 2023, 50(8): 3671-3687. | |
[12] |
赵光绪, 杨合同, 邵晓波, 等. 一株高效溶磷产红青霉培养条件优化及其溶磷特性[J]. 生物技术通报, 2023, 39(9): 71-83.
doi: 10.13560/j.cnki.biotech.bull.1985.2023-0268 |
Zhao GX, Yang HT, Shao XB, et al. Phosphate-solubilizing properties and optimization of cultivation conditions of Penicillium rubens: a highly efficient phosphate solubilizer[J]. Biotechnol Bull, 2023, 39(9): 71-83. | |
[13] | Zaib S, Zubair A, Abbas S, et al. Plant growth-promoting rhizobacteria(PGPR)reduce adverse effects of salinity and drought stresses by regulating nutritional profile of barley[J]. Appl Environ Soil Sci, 2023, 2023: 7261784. |
[14] | Liu YH, Nessa A, Zheng QY, et al. Inoculations of phosphate-solubilizing bacteria alter soil microbial community and improve phosphorus bioavailability for moso bamboo(Phyllostachys edulis)growth[J]. Appl Soil Ecol, 2023, 189: 104911. |
[15] |
Alori ET, Glick BR, Babalola OO. Microbial phosphorus solubilization and its potential for use in sustainable agriculture[J]. Front Microbiol, 2017, 8: 971.
doi: 10.3389/fmicb.2017.00971 pmid: 28626450 |
[16] | Liang JL, Liu J, Jia P, et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining[J]. ISME J, 2020, 14(6): 1600-1613. |
[17] |
Li CK, Li QS, Wang ZP, et al. Environmental fungi and bacteria facilitate lecithin decomposition and the transformation of phosphorus to apatite[J]. Sci Rep, 2019, 9(1): 15291.
doi: 10.1038/s41598-019-51804-7 pmid: 31653926 |
[18] | Rawat P, Das S, Shankhdhar D, et al. Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake[J]. J Soil Sci Plant Nutr, 2021, 21(1): 49-68. |
[19] | He M, Zhong XJ, Xia Y, et al. Long-term nitrogen addition exerts minor effects on microbial community but alters sensitive microbial species in a subtropical natural forest[J]. Forests, 2023, 14(5): 928. |
[20] | Wang QQ, Sheng JD, Pan LY, et al. Soil property determines the ability of rhizobial inoculation to enhance nitrogen fixation and phosphorus acquisition in soybean[J]. Appl Soil Ecol, 2022, 171: 104346. |
[21] | Billah M, Khan M, Bano A, et al. Phosphorus and phosphate solubilizing bacteria: keys for sustainable agriculture[J]. Geomicrobiol J, 2019, 36(10): 904-916. |
[22] | 马莹, 姜岸, 石孝均, 等. 微生物胞外多糖的合成及其在重金属修复中的作用机制与应用[J]. 微生物学报, 2024, 64(3): 701-719. |
Ma Y, Jiang A, Shi XJ, et al. Synthesis of microbial exopolysaccharides and their mechanisms and applications in heavy metal remediation[J]. Acta Microbiol Sin, 2024, 64(3): 701-719. | |
[23] |
Zaidi A, Khan MS, Ahemad M, et al. Plant growth promotion by phosphate solubilizing bacteria[J]. Acta Microbiol Immunol Hung, 2009, 56(3): 263-284.
doi: 10.1556/AMicr.56.2009.3.6 pmid: 19789141 |
[24] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
Lu RK. Methods of soil agrochemical analysis[M]. China Agriculture Scientech Press, 2000. | |
[25] | 王宏燕, 韩凯鑫, 冯丽荣, 等. 耐盐解磷菌筛选鉴定及生理特性研究[J]. 东北农业大学学报, 2023, 54(5): 28-37. |
Wang HY, Han KX, Feng LR, et al. Screening and identification of salt-resistant phosphorus bacteria and its physiological characteristics[J]. J Northeast Agric Univ, 2023, 54(5): 28-37. | |
[26] | Qiao LK, Liu XX, Zhang S, et al. Distribution of the microbial community and antibiotic resistance genes in farmland surrounding gold tailings: a metagenomics approach[J]. Sci Total Environ, 2021, 779: 146502. |
[27] | Qin SM, Zhang HY, He YH, et al. Improving radish phosphorus utilization efficiency and inhibiting Cd and Pb uptake by using heavy metal-immobilizing and phosphate-solubilizing bacteria[J]. Sci Total Environ, 2023, 868: 161685. |
[28] | Diels L, Mergeay M. DNA probe-mediated detection of resistant bacteria from soils highly polluted by heavy metals[J]. Appl Environ Microbiol, 1990, 56(5): 1485-1491. |
[29] | Zhao XQ, Huang J, Lu J, et al. Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine[J]. Ecotoxicol Environ Saf, 2019, 170: 218-226. |
[30] | Zhang C, Liu GB, Xue S, et al. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau[J]. Soil Biol Biochem, 2016, 97: 40-49. |
[31] | Gonçalves OS, Fernandes AS, Tupy SM, et al. Insights into plant interactions and the biogeochemical role of the globally widespread Acidobacteriota phylum[J]. Soil Biol Biochem, 2024, 192: 109369. |
[32] | Liu ML, Li XR, Zhu RQ, et al. Vegetation richness, species identity and soil nutrients drive the shifts in soil bacterial communities during restoration process[J]. Environ Microbiol Rep, 2021, 13(4): 411-424. |
[33] | Zhou XR, Chen XK, Qi XN, et al. Soil bacterial communities associated with multi-nutrient cycling under long-term warming in the alpine meadow[J]. Front Microbiol, 2023, 14: 1136187. |
[34] | Kolton M, Sela N, Elad Y, et al. Correction: comparative genomic analysis indicates that niche adaptation of terrestrial flavobacteria is strongly linked to plant glycan metabolism[J]. PLoS One, 2014, 9(1). |
[35] |
Larsbrink J, McKee LS. Bacteroidetes bacteria in the soil: Glycan acquisition, enzyme secretion, and gliding motility[J]. Adv Appl Microbiol, 2020, 110: 63-98.
doi: S0065-2164(19)30049-8 pmid: 32386606 |
[36] | Saghaï A, Wittorf L, Philippot L, et al. Loss in soil microbial diversity constrains microbiome selection and alters the abundance of N-cycling guilds in barley rhizosphere[J]. Appl Soil Ecol, 2022, 169: 104224. |
[37] |
Kuppusamy S, Thavamani P, Megharaj M, et al. Pyrosequencing analysis of bacterial diversity in soils contaminated long-term with PAHs and heavy metals: implications to bioremediation[J]. J Hazard Mater, 2016, 317: 169-179.
doi: S0304-3894(16)30504-0 pmid: 27267691 |
[38] | Polti MA, Aparicio JD, Benimeli CS, et al. Simultaneous bioremediation of Cr(VI)and lindane in soil by Actinobacteria[J]. Int Biodeterior Biodegrad, 2014, 88: 48-55. |
[39] | Lin YB, Ye YM, Hu YM, et al. The variation in microbial community structure under different heavy metal contamination levels in paddy soils[J]. Ecotoxicol Environ Saf, 2019, 180: 557-564. |
[40] | Iram S, Ahmad I, Javed B, et al. Fungal tolerance to heavy metals[J]. Pak J Bot, 2009, 41: 2583-2594. |
[41] | Muneer MA, Huang XM, Hou W, et al. Response of fungal diversity, community composition, and functions to nutrients management in red soil[J]. J Fungi, 2021, 7(7): 554. |
[42] | Yuan J, Wen T, Zhang H, et al. Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt[J]. ISME J, 2020, 14(12): 2936-2950. |
[43] |
Asaf S, Numan M, Khan AL, et al. Sphingomonas: from diversity and genomics to functional role in environmental remediation and plant growth[J]. Crit Rev Biotechnol, 2020, 40(2): 138-152.
doi: 10.1080/07388551.2019.1709793 pmid: 31906737 |
[44] | Li X, Geng XY, Xie RR, et al. The endophytic bacteria isolated from elephant grass(Pennisetum purpureum Schumach)promote plant growth and enhance salt tolerance of Hybrid Pennisetum[J]. Biotechnol Biofuels, 2016, 9(1): 190. |
[45] | Li ZL, Zhang KX, Qiu LX, et al. Soil microbial co-occurrence patterns under controlled-release urea and fulvic acid applications[J]. Microorganisms, 2022, 10(9): 1823. |
[46] | Teulet A, Gully D, Rouy Z, et al. Phylogenetic distribution and evolutionary dynamics of nod and T3SS genes in the genus Bradyrhizobium[J]. Microb Genom, 2020, 6(9): mgen000407. |
[47] | Lewis JA, Larkin RP. Formulation of the biocontrol fungus Cladorrhinum foecundissimumto reduce damping-off diseases caused by Rhizoctonia solani and Pythium ultimum[J]. Biol Contr, 1998, 12(3): 182-190. |
[48] |
Azadi N, Raiesi F. Salinization depresses soil enzyme activity in metal-polluted soils through increases in metal mobilization and decreases in microbial biomass[J]. Ecotoxicology, 2021, 30(6): 1071-1083.
doi: 10.1007/s10646-021-02433-2 pmid: 34101047 |
[49] |
Shen GQ, Lu YT, Zhou QX, et al. Interaction of polycyclic aromatic hydrocarbons and heavy metals on soil enzyme[J]. Chemosphere, 2005, 61(8): 1175-1182.
pmid: 16263387 |
[50] | Wei T, Gao H, An FQ, et al. Performance of heavy metal-immobilizing bacteria combined with biochar on remediation of cadmium and lead co-contaminated soil[J]. Environ Geochem Health, 2023, 45(8): 6009-6026. |
[51] | Frey B, Moser B, Tytgat B, et al. Long-term N-addition alters the community structure of functionally important N-cycling soil microorganisms across global grasslands[J]. Soil Biol Biochem, 2023, 176: 108887. |
[52] | Feng WR, Xiao X, Li JJ, et al. Bioleaching and immobilizing of copper and zinc using endophytes coupled with biochar-hydroxyapatite: Bipolar remediation for heavy metals contaminated mining soils[J]. Chemosphere, 2023, 315: 137730. |
[53] | Liu HK, Wang C, Xie YL, et al. Ecological responses of soil microbial abundance and diversity to cadmium and soil properties in farmland around an enterprise-intensive region[J]. J Hazard Mater, 2020, 392: 122478. |
[54] | Liu BH, Wang SX, Wang J, et al. The great potential for phytoremediation of abandoned tailings pond using ectomycorrhizal Pinus sylvestris[J]. Sci Total Environ, 2020, 719: 137475. |
[55] | Mousavi R, Rasouli-Sadaghiani M, Sepehr E, et al. Improving phosphorus availability and wheat yield in saline soil of the lake urmia basin through enriched biochar and microbial inoculation[J]. Agriculture, 2023, 13(4): 805. |
[56] | Hu XW, Wang JL, Lv Y, et al. Effects of heavy metals/metalloids and soil properties on microbial communities in farmland in the vicinity of a metals smelter[J]. Front Microbiol, 2021, 12: 707786. |
[57] | Guo HH, Nasir M, Lv JL, et al. Understanding the variation of microbial community in heavy metals contaminated soil using high throughput sequencing[J]. Ecotoxicol Environ Saf, 2017, 144: 300-306. |
[58] | Zhou YC, Zhao XQ, Jiang Y, et al. Synergistic remediation of lead pollution by biochar combined with phosphate solubilizing bacteria[J]. Sci Total Environ, 2023, 861: 160649. |
[59] | Yu XN, Jiang NJ, Yang Y, et al. Heavy metals remediation through bio-solidification: potential application in environmental geotechnics[J]. Ecotoxicol Environ Saf, 2023, 263: 115305. |
[1] | 田胜尼, 张琴, 董玉飞, 丁洲, 叶爱华, 张明珠. 酸性矿山废水对成熟期水稻根区理化因子及固氮微生物的影响[J]. 生物技术通报, 2024, 40(6): 271-280. |
[2] | 张迪, 鞠睿, 李丽梅, 王煜倩, 陈瑞, 王新一. 基于转录因子生物传感器在环境分析中的应用[J]. 生物技术通报, 2024, 40(6): 114-125. |
[3] | 李嘉欣, 李鸿燕, 刘丽娥, 张恬, 周武. 沙棘NRAMP基因家族鉴定及铅胁迫下表达分析[J]. 生物技术通报, 2024, 40(5): 191-202. |
[4] | 高玉坤, 张建东, 杨溥原, 陈东明, 王志博, 田颐瑾, Zakey Eldinn.E.A.Khlid, 崔江慧, 常金华. 高粱根际土壤细菌群落对盐胁迫的响应[J]. 生物技术通报, 2024, 40(4): 203-216. |
[5] | 赵曜, 文朗, 骆少丹, 栗子杏, 刘超超. 番茄HMA基因家族的鉴定及SlHMA1镉转运功能研究[J]. 生物技术通报, 2024, 40(2): 212-222. |
[6] | 李冲, 杨亚楠, 王翠霞, 郑海鑫. 微生物-生物炭协同修复农业环境中的多元污染物[J]. 生物技术通报, 2024, 40(10): 86-97. |
[7] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[8] | 谢田朋, 张佳宁, 董永骏, 张建, 景明. 早期抽薹对当归根际土壤微环境的影响[J]. 生物技术通报, 2023, 39(7): 206-218. |
[9] | 张华香, 徐晓婷, 郑云婷, 肖春桥. 溶磷微生物在钝化和植物修复重金属污染土壤中的作用[J]. 生物技术通报, 2023, 39(3): 52-58. |
[10] | 陈宏艳, 李小二, 李忠光. 糖信号及其在植物响应逆境胁迫中的作用[J]. 生物技术通报, 2022, 38(7): 80-89. |
[11] | 李一涵, 于浪柳, 李春燕, 张蒙蒙, 张晓勤, 方云霞, 薛大伟. 大麦NRAMP全基因组鉴定及重金属胁迫下基因表达分析[J]. 生物技术通报, 2022, 38(6): 103-111. |
[12] | 杨露, 辛建攀, 田如男. 根际微生物对植物重金属胁迫的缓解作用及其机理研究进展[J]. 生物技术通报, 2022, 38(3): 213-225. |
[13] | 高惠惠, 贾晨波, 韩琴, 苏建宇, 徐春燕. 宁杞7号枸杞根腐病发生的微生物学机制[J]. 生物技术通报, 2022, 38(12): 244-251. |
[14] | 胡华冉, 杜磊, 张芮豪, 钟秋月, 刘发万, 桂敏. 辣椒适应非生物胁迫的研究进展[J]. 生物技术通报, 2022, 38(12): 58-72. |
[15] | 颜珲璘, 芦光新, 邓晔, 顾松松, 颜程良, 马坤, 赵阳安, 张海娟, 王英成, 周学丽, 窦声云. 高寒地区根瘤菌拌种对禾/豆混播土壤微生物群落的影响[J]. 生物技术通报, 2022, 38(10): 204-215. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||