生物技术通报 ›› 2024, Vol. 40 ›› Issue (6): 271-280.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1146
田胜尼(), 张琴, 董玉飞, 丁洲, 叶爱华, 张明珠()
收稿日期:
2023-12-05
出版日期:
2024-06-26
发布日期:
2024-04-28
通讯作者:
张明珠,女,博士,讲师,研究方向:微生物生态;E-mail: 2021037@ahau.edu.cn作者简介:
田胜尼,男,博士,副教授,研究方向:植物生态学;E-mail: tiansn@ahau.edu.cn张琴为本文共同第一作者
基金资助:
TIAN Sheng-ni(), ZHANG Qin, DONG Yu-fei, DING Zhou, YE Ai-hua, ZHANG Ming-zhu()
Received:
2023-12-05
Published:
2024-06-26
Online:
2024-04-28
摘要:
【目的】 酸性矿山废水(acid mine drainage, AMD)是一类低pH、高硫酸盐浓度和重金属富集的废水。探究成熟期水稻根区土壤固氮菌群落的丰度和组成及其对AMD的响应,并阐明土壤固氮菌群落结构变化的主要驱动因素。【方法】 对取自安徽省铜陵市矿区受AMD污染和未受污染的稻田土壤进行水稻盆栽试验,设置3组不同处理(A:AMD浇溉污染土、B:清洁水浇灌污染土、CK:清洁水浇灌未污染土),采用nifH基因高通量测序技术分析不同处理下的成熟期水稻根区土壤固氮菌群落特征。【结果】 AMD污灌使得水稻根区土壤中SO42-、NO3-、重金属的含量显著上升,土壤酸化且固氮菌群落的多样性下降。水稻根区土壤的优势固氮菌包括Anaeromyxobacter、Geobacter等,CK处理中富集的固氮菌群数量显著高于A、B处理,且B处理中主要富集疣微菌门,CK处理中主要富集变形菌门。pH和重金属Cu、Pb、Zn是驱动水稻根区土壤固氮菌群落结构的主要因素。具有硫还原功能的Desulfovibrio和Desulfurivibrio对氮的变化贡献明显。【结论】 AMD对水稻根区土壤化学性质和固氮菌产生显著影响,恢复清洁水灌溉可促进固氮菌的恢复。
田胜尼, 张琴, 董玉飞, 丁洲, 叶爱华, 张明珠. 酸性矿山废水对成熟期水稻根区理化因子及固氮微生物的影响[J]. 生物技术通报, 2024, 40(6): 271-280.
TIAN Sheng-ni, ZHANG Qin, DONG Yu-fei, DING Zhou, YE Ai-hua, ZHANG Ming-zhu. Effects of Acid Mine Drainage on Physicochemical Factors and Nitrogen-fixing Microorganisms in the Root Zone of Mature Rice[J]. Biotechnology Bulletin, 2024, 40(6): 271-280.
供试土壤 Tested soil | TN/ (g·kg-1) | NO3-/ (mg·kg-1) | NH4+/ (mg·kg-1) | OM/ (g·kg-1) | TP/ (g·kg-1) | pH | SO42-/ (mg·kg-1) | Cu/ (mg·kg-1) | Cd/ (mg·kg-1) | Pb/ (mg·kg-1) | Zn/ (mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|---|
污染土AMD contaminated soil | 0.97±0.10 | 6.42±0.60 | 7.52±0.90 | 13.01±1.72 | 0.72±0.07 | 4.68±0.05 | 282.41±6.29 | 151.82±5.94 | 2.49±0.11 | 159.02±5.19 | 210.30±5.39 |
未污染土Uncontaminated soil | 0.98±0.90 | 3.89±0.51 | 8.05±0.64 | 8.29±0.44 | 0.67±0.01 | 6.18±0.07 | 132.87±4.79 | 20.85±0.57 | 1.99±0.13 | 28.30±0.94 | 90.96±2.26 |
表1 水稻种植前供试土壤理化性质
Table 1 Physical and chemical properties of soil before planting rice
供试土壤 Tested soil | TN/ (g·kg-1) | NO3-/ (mg·kg-1) | NH4+/ (mg·kg-1) | OM/ (g·kg-1) | TP/ (g·kg-1) | pH | SO42-/ (mg·kg-1) | Cu/ (mg·kg-1) | Cd/ (mg·kg-1) | Pb/ (mg·kg-1) | Zn/ (mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|---|
污染土AMD contaminated soil | 0.97±0.10 | 6.42±0.60 | 7.52±0.90 | 13.01±1.72 | 0.72±0.07 | 4.68±0.05 | 282.41±6.29 | 151.82±5.94 | 2.49±0.11 | 159.02±5.19 | 210.30±5.39 |
未污染土Uncontaminated soil | 0.98±0.90 | 3.89±0.51 | 8.05±0.64 | 8.29±0.44 | 0.67±0.01 | 6.18±0.07 | 132.87±4.79 | 20.85±0.57 | 1.99±0.13 | 28.30±0.94 | 90.96±2.26 |
图2 不同处理下土壤理化因子特征 A:AMD灌溉污染土壤;B:清洁水灌溉污染土壤;CK:清洁水灌溉未污染土壤。不同小写字母表示不同处理间差异显著(P < 0.05)。下同
Fig. 2 Characteristics of soil physical and chemical factors under different treatments A: AMD irrigated contaminated soil; B: clean water irrigated contaminated soil; CK: clean water irrigated uncontaminated soil. Different lowercase letters indicate significant difference between different treatments (P < 0.05). The same below
图3 不同处理下水稻根区土壤中固氮微生物的多样性和群落结构的差异 a:不同处理下水稻根区土壤中固氮菌的Chao1和Shannon指数多样性的箱型图;b:水稻根区固氮微生物群落的PcoA分析
Fig. 3 Differences in diversity and community structure of nitrogen-fixing microorganisms in rice root zone soil under different treatments a: Box plots of Chao1 and Shannon index diversity of azotobacter in rice root zone soil samples under different treatments; b: PcoA analysis of nitrogen-fixing microbial communities in rice root zone
图4 不同处理下水稻根区土壤中固氮微生物的群落组成差异 a:不同处理下水稻根区土壤中固氮菌分布circos图;b:LEfSe基于A、B、CK不同处理组间群落差异分析,只有LDA值大于2的类群被清晰显示
Fig. 4 Differences in community composition of nitrogen-fixing microorganisms in rice root zone soil under different treatments a: Distribution of azotobacter in rice root zone soil samples under different treatments; b: LEfSe was based on community difference analysis among different treatment groups A, B and CK, and only groups with LDA values > 2 were clearly displayed
养分因子Nutrient factor | 回归方程Regression equation | R2 | P |
---|---|---|---|
TN | Y=1.778-4225.623×Sinorhizobium-47.255×Desulfovibrio+456.497×Azoarcus-97.577×Azospira+1.902×Geobacter | 1 | 0.000*** |
NO3- | Y=8.099-1661.173×Desulfurivibrio | 1 | 0.003*** |
OM | Y=14.024-2588.656×Rhodopseudomonas | 0.557 | 0.013** |
TP | Y=89.211-97715.976×Xanthobacter-25902.225×Pelomonas-693.042×Desulfovibrio+1097.825×Rubrivivax+13487.397×Desulfobulbus | 0.994 | 0.000*** |
SO42- | Y=-357.746+614469.605×Frankia+91743.681×Sideroxydans | 0.903 | 0.000*** |
表2 水稻根区土壤中的养分因子与各固氮菌属的逐步回归分析
Table 1 Stepwise regression analysis of nutrient factors in rice root zone soil and each azotobacter genus
养分因子Nutrient factor | 回归方程Regression equation | R2 | P |
---|---|---|---|
TN | Y=1.778-4225.623×Sinorhizobium-47.255×Desulfovibrio+456.497×Azoarcus-97.577×Azospira+1.902×Geobacter | 1 | 0.000*** |
NO3- | Y=8.099-1661.173×Desulfurivibrio | 1 | 0.003*** |
OM | Y=14.024-2588.656×Rhodopseudomonas | 0.557 | 0.013** |
TP | Y=89.211-97715.976×Xanthobacter-25902.225×Pelomonas-693.042×Desulfovibrio+1097.825×Rubrivivax+13487.397×Desulfobulbus | 0.994 | 0.000*** |
SO42- | Y=-357.746+614469.605×Frankia+91743.681×Sideroxydans | 0.903 | 0.000*** |
[1] |
李慧, 查建军, 孙庆业. 酸性矿业废水对土壤剖面中氮代谢功能基因丰度的影响[J]. 生物技术通报, 2019, 35(9): 249-256.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-1094 |
Li H, Zha JJ, Sun QY. Effects of acid mine drainage on the abundance of functional genes involved in nitrogen cycle in soil profiles[J]. Biotechnol Bull, 2019, 35(9): 249-256.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-1094 |
|
[2] | 廖正家. 大宝山矿业酸性矿山废水的污染与治理技术研究[J]. 资源再生, 2021(2): 61-63. |
Liao ZJ. Research on pollution and treatment technology of acid mine wastewater in Dabaoshan mining industry[J]. Resour Recycl, 2021(2): 61-63. | |
[3] | Cravotta III CA. Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 1: constituent quantities and correlations[J]. Appl Geochem, 2008, 23(2): 166-202. |
[4] | Xu R, Li BQ, Xiao EZ, et al. Uncovering microbial responses to sharp geochemical gradients in a terrace contaminated by acid mine drainage[J]. Environ Pollut, 2020, 261: 114226. |
[5] | 贺帆, 黄见良, 崔克辉, 等. 实时实地氮肥管理对不同杂交水稻氮肥利用率的影响[J]. 中国农业科学, 2008, 41(2): 470-479. |
He F, Huang JL, Cui KH, et al. Effect of real-time and site-specific nitrogen management on various hybrid rice[J]. Sci Agric Sin, 2008, 41(2): 470-479.
doi: 10.3864/j.issn.0578-1752.2008.02.021 |
|
[6] | 朱兆良, 金继运. 保障我国粮食安全的肥料问题[J]. 植物营养与肥料学报, 2013, 19(2): 259-273. |
Zhu ZL, Jin JY. Fertilizer use and food security in China[J]. Plant Nutr Fertil Sci, 2013, 19(2): 259-273. | |
[7] |
李玉静, 冯雨晴, 赵园园, 等. 不同形态氮素吸收利用及其对植物生理代谢影响的综述[J]. 中国农业科技导报, 2023, 25(2): 128-139.
doi: 10.13304/j.nykjdb.2021.0909 |
Li YJ, Feng YQ, Zhao YY, et al. Review of absorption and utilization of different nitrogen forms and their effects on plant physiological metabolism[J]. J Agric Sci Technol, 2023, 25(2): 128-139. | |
[8] | Xu P, Wang ET. Diversity and regulation of symbiotic nitrogen fixation in plants[J]. Curr Biol, 2023, 33(11): R543-R559. |
[9] |
徐鹏霞, 韩丽丽, 贺纪正, 等. 非共生生物固氮微生物分子生态学研究进展[J]. 应用生态学报, 2017, 28(10): 3440-3450.
doi: 10.13287/j.1001-9332.201710.035 |
Xu PX, Han LL, He JZ, et al. Research advance on molecular ecology of asymbiotic nitrogen fixation microbes[J]. Chin J Appl Ecol, 2017, 28(10): 3440-3450. | |
[10] | Capone DG, Knapp AN. A marine nitrogen cycle fix?[J]. Nature, 2007, 445: 159-160. |
[11] | Li Q, Zhang Y, Hu J, et al. Response of bacterial communities and nitrogen-cycling genes in newly reclaimed mudflat paddy soils to nitrogen fertilizer gradients[J]. Environ Sci Pollut Res Int, 2022, 29(47): 71113-71123. |
[12] | Fan Z, Li RC, Guan EX, et al. Fertilization regimes affect crop yields through changes of diazotrophic community and gene abundance in soil aggregation[J]. Sci Total Environ, 2023, 866: 161359. |
[13] | 李璐, 程晓钰, 刘晓燕, 等. 湖北和尚洞固氮微生物群落的生境特异性及网络分析[J]. 微生物学报, 2023, 63(6): 2120-2135. |
Li L, Cheng XY, Liu XY, et al. Habitat specificity and network analysis of nitrogen-fixing bacteria in the Heshang Cave, Hubei province[J]. Acta Microbiol Sin, 2023, 63(6): 2120-2135. | |
[14] |
Sun WM, Xiao EZ, Krumins V, et al. Characterization of the microbial community composition and the distribution of Fe-metabolizing bacteria in a creek contaminated by acid mine drainage[J]. Appl Microbiol Biotechnol, 2016, 100(19): 8523-8535.
doi: 10.1007/s00253-016-7653-y pmid: 27277134 |
[15] | Chen D, Feng QY, Liang HQ. Effects of long-term discharge of acid mine drainage from abandoned coal mines on soil microorganisms: microbial community structure, interaction patterns, and metabolic functions[J]. Environ Sci Pollut Res, 2021, 28(38): 53936-53952. |
[16] | Li Y, Chen X, Tang CJ, et al. Variations on the diazotrophic community in the rhizosphere soil of three dominant plant species in a lead-zinc mine area[J]. Plant Soil, 2023, 489(1): 155-175. |
[17] | Davies-Barnard T, Zaehle S, Friedlingstein P. Assessment of the impacts of biological nitrogen fixation structural uncertainty in CMIP6 earth system models[J]. Biogeosciences, 2022, 19(14): 3491-3503. |
[18] | 杨海, 黄新, 林子增, 等. 重金属污染土壤微生物修复技术研究进展[J]. 应用化工, 2019, 48(6): 1417-1422. |
Yang H, Huang X, Lin ZZ, et al. Research progress on microbial remediation technology for heavy metal contaminated soil[J]. Appl Chem Ind, 2019, 48(6): 1417-1422. | |
[19] | 焦冰洁, 徐琳, 李香真, 等. 黄土高原水蚀风蚀交错区固氮微生物群落多样性在生物结皮中的演变规律[J]. 生态学报, 2023, 43(23): 9662-9673. |
Jiao BJ, Xu L, Li XZ, et al. Diazotrophic community diversity in the succession development of biological soil crusts in water-wind erosion crisscross region of the Loess Plateau[J]. Acta Ecol Sin, 2023, 43(23): 9662-9673. | |
[20] | Berthrong ST, Yeager CM, Gallegos-Graves L, et al. Nitrogen fertilization has a stronger effect on soil nitrogen-fixing bacterial communities than elevated atmospheric CO2[J]. Appl Environ Microbiol, 2014, 80(10): 3103-3112. |
[21] | Zhao XQ, Huang J, Lu J, et al. Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine[J]. Ecotoxicol Environ Saf, 2019, 170: 218-226. |
[22] | Regan K, Stempfhuber B, Schloter M, et al. Spatial and temporal dynamics of nitrogen fixing, nitrifying and denitrifying microbes in an unfertilized grassland soil[J]. Soil Biol Biochem, 2017, 109: 214-226. |
[23] | Yang CF, Lu GN, Chen MQ, et al. Spatial and temporal distributions of sulfur species in paddy soils affected by acid mine drainage in Dabaoshan sulfide mining area, South China[J]. Geoderma, 2016, 281: 21-29. |
[24] | Mabagala FS, Mng'ong'o ME. On the tropical soils; The influence of organic matter(OM)on phosphate bioavailability[J]. Saudi J Biol Sci, 2022, 29(5): 3635-3641. |
[25] | 汪涵. 酸性矿山废水长期灌溉稻田土壤中微生物群落结构时空变化特征及其响应机制[D]. 广州: 华南理工大学, 2019. |
Wang H. Characteristics of microbial community spatial and temporal change in paddy soil under long-term acid mine drainage irrigation and its response mechanism[D]. Guangzhou: South China University of Technology, 2019. | |
[26] | 毕继安, 王芳, 张国芳, 等. 药用野生稻基因组DNA提取方法比较[J]. 安徽农业科学, 2023, 51(14): 86-89. |
Bi JA, Wang F, Zhang GF, et al. Comparison of different extraction methods of genomic DNA from Oryza officinalis[J]. J Anhui Agric Sci, 2023, 51(14): 86-89. | |
[27] | Dlamini TC, Tshivhase VM, Maleka P, et al. The effect of uranium speciation on the removal of gross alpha activity from acid mine drainage using anion exchange resin[J]. J Radioanal Nucl Chem, 2019, 319(1): 357-363. |
[28] | 刘庆玲, 金修齐, 毛金群, 等. 小尺度矿山酸性废水污灌农田土壤重金属统计分析与空间分布研究——以贵州某矿区下游农田为例[J]. 中国农技推广, 2019, 35(10): 69-74, 79. |
Liu QL, Jin XQ, Mao JQ, et al. Statistical analysis and spatial distribution of heavy metals in farmland soil irrigated by small-scale mine acid wastewater—a case study of downstream farmland in a mining area in Guizhou Province[J]. China Agric Technol Ext, 2019, 35(10): 69-74, 79. | |
[29] | 李一凡, 王玉杰, 王彬, 等. 西南酸雨区重庆缙云山常绿阔叶林土壤氮矿化特征[J]. 林业科学, 2019, 55(6): 1-12. |
Li YF, Wang YJ, Wang B, et al. Soil nitrogen mineralization characteristics of evergreen broad-leaved forest in Jinyun Mountain in Chongqing in the acid rain zone, southwest China[J]. Sci Silvae Sin, 2019, 55(6): 1-12. | |
[30] |
Dar SA, Bijmans MFM, Dinkla IJT, et al. Population dynamics of a single-stage sulfidogenic bioreactor treating synthetic zinc-containing waste streams[J]. Microb Ecol, 2009, 58(3): 529-537.
doi: 10.1007/s00248-009-9509-9 pmid: 19322604 |
[31] | 郑勇, 郑袁明, 张丽梅, 等. 极端环境下嗜热酸甲烷营养细菌研究进展[J]. 生态学报, 2009, 29(7): 3864-3871. |
Zheng Y, Zheng YM, Zhang LM, et al. Advances in thermoacidophilic methanotrophs from extreme environments[J]. Acta Ecol Sin, 2009, 29(7): 3864-3871. | |
[32] |
Wolińska A, Kuźniar A, Zielenkiewicz U, et al. Metagenomic analysis of some potential nitrogen-fixing bacteria in arable soils at different formation processes[J]. Microb Ecol, 2017, 73(1): 162-176.
doi: 10.1007/s00248-016-0837-2 pmid: 27581036 |
[33] | Zhang CZ, Cao KX, Li Y, et al. Long-term nitrogen fertilization shaped the nifH, nirK, and nosZ gene community patterns in red paddy soil in South China[J]. Can J Microbiol, 2021, 67(4): 310-322. |
[34] | 梁锦鹏, 陈玉蓝, 王勇, 等. 攀西高原不同轮作制度下土壤固氮微生物nifH基因多样性与群落结构特征[J]. 微生物学通报, 2023, 50(1): 118-130. |
Liang JP, Chen YL, Wang Y, et al. Effect of crop rotation system on diversity and community structure of soil microorganisms with nifH gene in Panxi Plateau, China[J]. Microbiol China, 2023, 50(1): 118-130. | |
[35] | Giller KE, Witter E, McGrath SP. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review[J]. Soil Biol Biochem, 1998, 30(10-11): 1389-1414. |
[36] |
Zelaya-Molina LX, Hernández-Soto LM, Guerra-Camacho JE, et al. Ammonia-oligotrophic and diazotrophic heavy metal-resistant Serratia liquefaciens strains from pioneer plants and mine tailings[J]. Microb Ecol, 2016, 72(2): 324-346.
doi: 10.1007/s00248-016-0771-3 pmid: 27138047 |
[37] | Wang CY, Jiang K, Zhou JW, et al. Responses of soil N-fixing bacterial communities to redroot pigweed(Amaranthus retroflexus L.) invasion under Cu and Cd heavy metal soil pollution[J]. Agric Ecosyst Environ, 2018, 267: 15-22. |
[38] | 查建军, 孙庆业, 徐欣如, 等. 酸性矿山废水对稻田土壤元素组成的影响——以铜陵某处硫铁矿为例[J]. 西南农业学报, 2019, 32(8): 1817-1824. |
Zha JJ, Sun QY, Xu XR, et al. Effect of acid mine drainage on elemental composition in paddy soil: case study of pyrite in Tongling city[J]. Southwest China J Agric Sci, 2019, 32(8): 1817-1824. | |
[39] | Wang YS, Li CN, Kou YP, et al. Soil pH is a major driver of soil diazotrophic community assembly in Qinghai-Tibetalpine meadows[J]. Soil Biol Biochem, 2017, 115: 547-555. |
[40] | 李慧. 酸性矿业废水对土壤剖面中微生物及C、N、S转化功能基因丰度的影响[D]. 合肥: 安徽大学, 2019. |
Li H. Effects of acid mining drainage on microorganism and the abundance of functional genes involving in C, N and S transformation in soil profile[D]. Hefei: Anhui University, 2019. | |
[41] | Smercina DN, Bowsher AW, Evans SE, et al. Switchgrass rhizosphere metabolite chemistry driven by nitrogen availability[J]. Phytobiomes J, 2021, 5(1): 88-96. |
[42] | Baldani JI, Reis VM, Videira SS, et al. The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists[J]. Plant Soil, 2014, 384(1): 413-431. |
[43] | Smercina DN, Evans SE, Friesen ML, et al. To fix or not to fix: controls on free-living nitrogen fixation in the rhizosphere[J]. Appl Environ Microbiol, 2019, 85(6): e02546-18. |
[44] | 王晓菲, 罗珠珠, 李玲玲, 等. 黄土高原不同种植年限苜蓿土壤固氮微生物群落结构和丰度特征[J]. 中国生态农业学报: 中英文, 2023, 31(5): 665-676. |
Wang XF, Luo ZZ, Li LL, et al. Characteristics of structure and abundance of soil nitrogen-fixing bacterial community in alfalfa with different growing ages in the Loess Plateau[J]. Chin J Eco Agric, 2023, 31(5): 665-676. | |
[45] | 章明奎, 郑顺安, 王丽平. 土壤中颗粒状有机质对重金属的吸附作用[J]. 土壤通报, 2007, 38(6): 1100-1104. |
Zhang MK, Zheng SA, Wang LP. Adsorption of heavy metals by soil particulate organic matter[J]. Chin J Soil Sci, 2007, 38(6): 1100-1104. | |
[46] | Sato A, Watanabe T, Unno Y, et al. Analysis of diversity of diazotrophic bacteria associated with the rhizosphere of a tropical Arbor, Melastoma malabathricum L[J]. Microbes Environ, 2009, 24(2): 81-87. |
[47] | 于广祥, 雷宇, 李洋, 等. 铜离子对甲基单胞菌ZR1生长代谢的影响[J]. 基因组学与应用生物学, 2021, 40(S2): 2741-2747. |
Yu GX, Lei Y, Li Y, et al. Effect of copper ion on growth and metabolism of methanomonas ZR1[J]. Genom Appl Biol, 2021, 40(S2): 2741-2747. | |
[48] | Sun XX, Kong TL, Li FB, et al. Desulfurivibrio spp. mediate sulfur-oxidation coupled to Sb(V)reduction, a novel biogeochemical process[J]. ISME J, 2022, 16(6): 1547-1556. |
[1] | 张迪, 鞠睿, 李丽梅, 王煜倩, 陈瑞, 王新一. 基于转录因子生物传感器在环境分析中的应用[J]. 生物技术通报, 2024, 40(6): 114-125. |
[2] | 蔡志成, 王媛媛, 桑晓涵, 曾丽仙, 邓文韬, 王佳媚. 低温等离子体活化溶液在抑菌及清除生物被膜中的研究进展[J]. 生物技术通报, 2024, 40(6): 95-104. |
[3] | 李嘉欣, 李鸿燕, 刘丽娥, 张恬, 周武. 沙棘NRAMP基因家族鉴定及铅胁迫下表达分析[J]. 生物技术通报, 2024, 40(5): 191-202. |
[4] | 高志伟, 魏明, 于祖隆, 伍国强, 魏俊龙. 耐盐植物促生菌W-1鉴定及其对红豆草耐盐性的影响[J]. 生物技术通报, 2024, 40(4): 217-227. |
[5] | 李雪, 李容欧, 孔美懿, 黄磊. 解淀粉芽孢杆菌SQ-2对水稻的促生作用[J]. 生物技术通报, 2024, 40(2): 109-119. |
[6] | 赵曜, 文朗, 骆少丹, 栗子杏, 刘超超. 番茄HMA基因家族的鉴定及SlHMA1镉转运功能研究[J]. 生物技术通报, 2024, 40(2): 212-222. |
[7] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[8] | 袁野, 周佳, 屈建航, 张博源, 罗宇, 李海峰. 高效反硝化聚磷菌的筛选及其脱氮除磷条件和性能研究[J]. 生物技术通报, 2023, 39(7): 266-276. |
[9] | 张宇红, 董先博, 刘香宇, 许家琪, 徐子祾. 新型异养硝化-好氧反硝化菌Paracoccus sp. QD-19的分离及脱氮特性研究[J]. 生物技术通报, 2023, 39(3): 301-310. |
[10] | 张华香, 徐晓婷, 郑云婷, 肖春桥. 溶磷微生物在钝化和植物修复重金属污染土壤中的作用[J]. 生物技术通报, 2023, 39(3): 52-58. |
[11] | 董怡华, 王凌潇, 任涵雪, 陈峰. 一株耐低温异养硝化-好氧反硝化菌的分离鉴定及其脱氮特性[J]. 生物技术通报, 2023, 39(12): 237-249. |
[12] | 蒋慧慧, 王强, 付维来, 饶志明, 张显. 一株异养硝化-好氧反硝化细菌的筛选及氮转化特性研究[J]. 生物技术通报, 2023, 39(12): 250-260. |
[13] | 高宇轩, 靳静晨, 徐利杉, 高雅娟, 张闻天, 李晨晨, 张国伟, 靳永胜. 耐盐异养硝化-好氧反硝化菌Bacillus megatherium N07的分离及脱氮特性[J]. 生物技术通报, 2022, 38(7): 247-257. |
[14] | 陈宏艳, 李小二, 李忠光. 糖信号及其在植物响应逆境胁迫中的作用[J]. 生物技术通报, 2022, 38(7): 80-89. |
[15] | 李一涵, 于浪柳, 李春燕, 张蒙蒙, 张晓勤, 方云霞, 薛大伟. 大麦NRAMP全基因组鉴定及重金属胁迫下基因表达分析[J]. 生物技术通报, 2022, 38(6): 103-111. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||