生物技术通报 ›› 2024, Vol. 40 ›› Issue (9): 4-10.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0472
• 薯类作物生物技术专题(专题主编:徐建飞,尚轶) • 上一篇 下一篇
收稿日期:
2024-05-20
出版日期:
2024-09-26
发布日期:
2024-10-12
通讯作者:
高玉林,男,博士,研究员,研究方向 :马铃薯害虫监测与防控 ;E-mail: gaoyulin@caas.cn作者简介:
王柯然,男,硕士研究生,研究方向 :RNA生物农药 ;E-mail: wkr120120120@163.com
基金资助:
WANG Ke-ran1,2(), YAN Jun-jie1, LIU Jian-feng2, GAO Yu-lin1()
Received:
2024-05-20
Published:
2024-09-26
Online:
2024-10-12
摘要:
害虫对农作物的危害严重威胁全球粮食安全,为满足日益增长的全球粮食需求,迫切需要安全有效的害虫绿色防控技术。RNAi技术(RNA interference)又叫RNA干扰技术,是一种转录后调控基因沉默的分子生物学技术,其原理是基于由19-25对核苷酸组成的小分子双链RNA与目标靶基因mRNA结合并引发mRNA降解,从而导致靶基因沉默。目前RNAi技术已被广泛应用于农作物害虫治理,在针对马铃薯靶标害虫方面,主要研究集中在防控鞘翅目、半翅目、鳞翅目害虫。2023年12月22 日,世界上首款RNAi生物农药正式批准商业化,用于防控抗药性日益严重、国际公认的马铃薯重要毁灭性检疫害虫马铃薯甲虫,是世界上首款被允许在农作物上商业使用的可喷洒RNA生物农药,对马铃薯害虫的绿色防控具有划时代的里程碑意义。基于RNAi技术的产品被用于农业害虫防控的同时,仍需考虑其抗药性、脱靶效应和对环境安全的潜在风险。本文以RNAi技术在马铃薯害虫防控应用的可行性、RNAi技术在马铃薯害虫防控中的应用以及潜在的风险等方面进行了综述,以期阐述RNAi技术在马铃薯害虫防控中的应用现状与前景,为RNAi技术纳入防控马铃薯害虫综合治理体系提供理论参考。
王柯然, 闫俊杰, 刘建凤, 高玉林. RNAi技术在马铃薯害虫防控中的应用和风险[J]. 生物技术通报, 2024, 40(9): 4-10.
WANG Ke-ran, YAN Jun-jie, LIU Jian-feng, GAO Yu-lin. Application and Risk of RNAi Technology in Potato Insect Pest Management[J]. Biotechnology Bulletin, 2024, 40(9): 4-10.
[1] | Fire A, Xu SQ, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998, 391(6669): 806-811. |
[2] | 唱通, 赵康竹, 汪以馼, 等. RNAi技术在昆虫基因组学研究及其生物防控中的研究进展[J]. 环境昆虫学报, 2023, 45(6): 1514-1524. |
Chang T, Zhao KZ, Wang YW, et al. Progress of RNAi technology in insect genomics and biological control[J]. J Environ Entomol, 2023, 45(6): 1514-1524. | |
[3] | Feng XZ, Guang SH. Small RNAs, RNAi and the inheritance of gene silencing in Caenorhabditis elegans[J]. J Genet Genomics, 2013, 40(4): 153-160. |
[4] |
Hannon GJ, Rivas FV, Murchison EP, et al. The expanding universe of noncoding RNAs[J]. Cold Spring Harb Symp Quant Biol, 2006, 71: 551-564.
pmid: 17381339 |
[5] |
Ketting RF. The many faces of RNAi[J]. Dev Cell, 2011, 20(2): 148-161.
doi: 10.1016/j.devcel.2011.01.012 pmid: 21316584 |
[6] | Zhu Y, Wu X, Xu K. Application of RNAi technology in cancer therapy[J]. Zhongguo Fei Ai Za Zhi, 2009, 12(7): 811-815. |
[7] | 范守城, 张云茹. RNAi技术研究进展及其在医学中的应用前景[J]. 微生物学杂志, 2009, 29(4): 93-98. |
Fan SC, Zhang YR. Research progress on RNAi technique and its application prospect in medicine[J]. J Microbiol, 2009, 29(4): 93-98. | |
[8] | 宋波涛, 涂卫, 王海波, 等. 马铃薯种质演化与分类研究进展[J]. 中国马铃薯, 2023, 37(6): 536-554. |
Song BT, Tu W, Wang HB, et al. Progress in the evolution and taxonomy of potato germplasm resources[J]. Chin Potato J, 2023, 37(6): 536-554. | |
[9] | 谢春霞, 李灿辉, 杨雄, 等. 中国马铃薯战略储备的意义及体系构建[J]. 农业展望, 2024, 20(4): 43-48. |
Xie CX, Li CH, Yang X, et al. The significance and system construction of potato strategic reserve in China[J]. Agric Outlook, 2024, 20(4): 43-48. | |
[10] | 黄冲, 刘万才. 近年我国马铃薯病虫害发生特点与监控对策[J]. 中国植保导刊, 2016, 36(6): 48-52, 29. |
Huang C, Liu WC. Occurrence characteristics and monitoring countermeasures of potato diseases and insect pests in China in recent years[J]. China Plant Prot, 2016, 36(6): 48-52, 29. | |
[11] | 闫俊杰, 郭文超, 李国清, 等. 我国马铃薯害虫防控现状与展望[J]. 植物保护, 2023, 49(5): 190-195, 206. |
Yan JJ, Guo WC, Li GQ, et al. Current status and prospects of the management of important insect pests on potato in China[J]. Plant Prot, 2023, 49(5): 190-195, 206. | |
[12] |
徐进, 朱杰华, 杨艳丽, 等. 中国马铃薯病虫害发生情况与农药使用现状[J]. 中国农业科学, 2019, 52(16): 2800-2808.
doi: 10.3864/j.issn.0578-1752.2019.16.006 |
Xu J, Zhu JH, Yang YL, et al. Status of major diseases and insect pests of potato and pesticide usage in China[J]. Sci Agric Sin, 2019, 52(16): 2800-2808.
doi: 10.3864/j.issn.0578-1752.2019.16.006 |
|
[13] | 高玉林, 徐进, 刘宁, 等. 我国马铃薯病虫害发生现状与防控策略[J]. 植物保护, 2019, 45(5):106-111. |
Gao YL, Xu J, Liu N, et al. Current status and management strategies for potato insect pests and diseases in China[J]. Plant Protection, 2019, 45(5):106-111. | |
[14] | Gao YL, Alyokhin A, Zhang RZ, et al. Proactive resistance management for sustaining the efficacy of RNA interference for pest control[J]. J Econ Entomol, 2024: toae099. |
[15] | 段美春, 刘云慧, 张鑫, 等. 以病虫害控制为中心的农业生态景观建设[J]. 中国生态农业学报, 2012, 20(7): 825-831. |
Duan MC, Liu YH, Zhang X, et al. Agricultural disease and insect-pest control via agro-ecological landscape construction[J]. Chin J Eco Agric, 2012, 20(7): 825-831. | |
[16] | 冯家阳, 李常凯, 丁胜利, 等. RNAi在农业病虫害防控中的应用研究进展[J]. 农药学学报, 2022, 24(6): 1302-1313. |
Feng JY, Li CK, Ding SL, et al. Research advances on the application of RNA interference in agricultural disease and pest control[J]. Chin J Pestic Sci, 2022, 24(6): 1302-1313. | |
[17] | Khajuria C, Vélez AM, Rangasamy M, et al. Parental RNA interference of genes involved in embryonic development of the western corn rootworm, Diabrotica virgifera virgifera LeConte[J]. Insect Biochem Mol Biol, 2015, 63: 54-62. |
[18] | 张建珍, 柴林, 史学凯, 等. RNA干扰技术与害虫防治[J]. 山西大学学报: 自然科学版, 2021, 44(5): 980-987. |
Zhang JZ, Chai L, Shi XK, et al. RNA interference technology and pest control[J]. J Shanxi Univ Nat Sci Ed, 2021, 44(5): 980-987. | |
[19] | Mao YB, Cai WJ, Wang JW, et al. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol[J]. Nat Biotechnol, 2007, 25(11): 1307-1313. |
[20] | Head GP, Carroll MW, Evans SP, et al. Evaluation of SmartStax and SmartStax PRO maize against western corn rootworm and northern corn rootworm: efficacy and resistance management[J]. Pest Manag Sci, 2017, 73(9): 1883-1899. |
[21] | Gong L, Chen Y, Hu Z, et al. Testing insecticidal activity of novel chemically synthesized siRNA against Plutella xylostella under laboratory and field conditions[J]. PLoS One, 2013, 8(5): e62990. |
[22] | Zhang H, Li HC, Guan RB, et al. Lepidopteran insect species-specific, broad-spectrum, and systemic RNA interference by spraying dsRNA on larvae[J]. Entomologia Exp Applicata, 2015, 155(3): 218-228. |
[23] | Baum JA, Roberts JK. Progress towards RNAi-mediated insect pest management[M]// Advances in Insect Physiology. Amsterdam: Elsevier, 2014: 249-295. |
[24] | Ghag SB. Host induced gene silencing, an emerging science to engineer crop resistance against harmful plant pathogens[J]. Physiol Mol Plant Pathol, 2017, 100: 242-254. |
[25] | Pallis S, Alyokhin A, Manley B, et al. Effects of low doses of a novel dsRNA-based biopesticide(calantha)on the Colorado potato beetle[J]. J Econ Entomol, 2023, 116(2): 456-461. |
[26] | 汪聪. RNA干扰几丁质脱乙酰酶基因对茄二十八星瓢虫发育的影响[D]. 南京: 南京农业大学, 2021. |
Wang C. Effects of RNA interference on chitin deacetylase gene on the development of Coccinella solanacearum[D]. Nanjing: Nanjing Agricultural University, 2021. | |
[27] |
Mohammed AMA, Diab MR, Abdelsattar M, et al. Characterization and RNAi-mediated knockdown of Chitin Synthase A in the potato tuber moth, Phthorimaea operculella[J]. Sci Rep, 2017, 7(1): 9502.
doi: 10.1038/s41598-017-09858-y pmid: 28842624 |
[28] | Camargo RA, Barbosa GO, Possignolo IP, et al. RNA interference as a gene silencing tool to control Tuta absoluta in tomato(Solanum lycopersicum)[J]. PeerJ, 2016, 4: e2673. |
[29] | Dong Y, Zhang Q, Mao YR, et al. Control of two insect pests by expression of a mismatch corrected double-stranded RNA in plants[J]. Plant Biotechnol J, 2024, 22(7): 2010-2019. |
[30] |
Zhang J, Khan SA, Hasse C, et al. Pest control. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids[J]. Science, 2015, 347(6225): 991-994.
doi: 10.1126/science.1261680 pmid: 25722411 |
[31] | Zhu J, Chen RP, Liu J, et al. Presence of multiple genetic mutations related to insecticide resistance in Chinese field samples of two Phthorimaea pest species[J]. Insects, 2024, 15(3): 194. |
[32] | Nauen R, Bass C, Feyereisen R, et al. The role of cytochrome P450s in insect toxicology and resistance[J]. Annu Rev Entomol, 2022, 67: 105-124. |
[33] |
Mishra S, Dee J, Moar W, et al. Selection for high levels of resistance to double-stranded RNA(dsRNA)in Colorado potato beetle(Leptinotarsa decemlineata Say)using non-transgenic foliar delivery[J]. Sci Rep, 2021, 11(1): 6523.
doi: 10.1038/s41598-021-85876-1 pmid: 33753776 |
[34] | 汪芳, 党聪, 金虹霞, 等. RNA干扰技术在害虫防治中的应用及其安全性[J]. 浙江大学学报: 农业与生命科学版, 2022, 48(6): 683-691. |
Wang F, Dang C, Jin HX, et al. Application of RNA interference technology in pest control and its safety[J]. J Zhejiang Univ Agric Life Sci, 2022, 48(6): 683-691. | |
[35] | Fu JQ, Xu SJ, Lu H, et al. Resistance to RNA interference by plant-derived double-stranded RNAs but not plant-derived short interfering RNAs in Helicoverpa armigera[J]. Plant Cell Environ, 2022, 45(6): 1930-1941. |
[36] | Zhao JJ, Yan S, Li MS, et al. NPFR regulates the synthesis and metabolism of lipids and glycogen via AMPK: novel targets for efficient corn borer management[J]. Int J Biol Macromol, 2023, 247: 125816. |
[37] | 王锦达. 赤拟谷盗RNAi及dsRNA脱靶效应的研究[D]. 南京: 南京农业大学, 2015. |
Wang JD. Study on miss-target effect of RNAi and dsRNA of Tribolium castaneum[D]. Nanjing: Nanjing Agricultural University, 2015. | |
[38] |
Lew-Tabor AE, Kurscheid S, Barrero R, et al. Gene expression evidence for off-target effects caused by RNA interference-mediated gene silencing of Ubiquitin-63E in the cattle tick Rhipicephalus microplus[J]. Int J Parasitol, 2011, 41(9): 1001-1014.
doi: 10.1016/j.ijpara.2011.05.003 pmid: 21712043 |
[39] |
Baum JA, Bogaert T, Clinton W, et al. Control of coleopteran insect pests through RNA interference[J]. Nat Biotechnol, 2007, 25(11): 1322-1326.
doi: 10.1038/nbt1359 pmid: 17982443 |
[40] |
Bachman PM, Bolognesi R, Moar WJ, et al. Characterization of the spectrum of insecticidal activity of a double-stranded RNA with targeted activity against Western Corn Rootworm(Diabrotica virgifera virgifera LeConte)[J]. Transgenic Res, 2013, 22(6): 1207-1222.
doi: 10.1007/s11248-013-9716-5 pmid: 23748931 |
[41] | Guo MJ, Nanda S, Chen SM, et al. Oral RNAi toxicity assay suggests clathrin heavy chain as a promising molecular target for controlling the 28-spotted potato ladybird, Henosepilachna vigintioctopunctata[J]. Pest Manag Sci, 2022, 78(9): 3871-3879. |
[42] | Naito Y, Yamada T, Matsumiya T, et al. dsCheck: highly sensitive off-target search software for double-stranded RNA-mediated RNA interference[J]. Nucleic Acids Res, 2005, 33(Web Server issue): W589-W591. |
[43] | Krishnan N, Hall MJ, Hellmich RL, et al. Evaluating toxicity of Varroa mite(Varroa destructor)-active dsRNA to monarch butterfly(Danaus plexippus)larvae[J]. PLoS One, 2021, 16(6): e0251884. |
[44] | Ulrich J, Dao VA, Majumdar U, et al. Large scale RNAi screen in Tribolium reveals novel target genes for pest control and the proteasome as prime target[J]. BMC Genomics, 2015, 16(1): 674. |
[45] | Dubelman S, Fischer J, Zapata F, et al. Environmental fate of double-stranded RNA in agricultural soils[J]. PLoS One, 2014, 9(3): e93155. |
[46] |
Bachman P, Fischer J, Song ZH, et al. Environmental fate and dissipation of applied dsRNA in soil, aquatic systems, and plants[J]. Front Plant Sci, 2020, 11: 21.
doi: 10.3389/fpls.2020.00021 pmid: 32117368 |
[47] |
Mitter N, Worrall EA, Robinson KE, et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses[J]. Nat Plants, 2017, 3: 16207.
doi: 10.1038/nplants.2016.207 pmid: 28067898 |
[48] |
San Miguel K, Scott JG. The next generation of insecticides: dsRNA is stable as a foliar-applied insecticide[J]. Pest Manag Sci, 2016, 72(4): 801-809.
doi: 10.1002/ps.4056 pmid: 26097110 |
[49] | Yan JJ, Nauen R, Reitz S, et al. The new kid on the block in insect pest management: sprayable RNAi goes commercial[J]. Science China Life Sciences, 2024, 67(8): 1766-1768. |
[1] | 金博阳, 秦仕宇, 张明达, 李倩倩, 文静, 沈秀丽, 杜志强. 小龙虾prx 6基因在对抗金黄色葡萄球菌感染中的分子作用机制研究[J]. 生物技术通报, 2024, 40(7): 314-322. |
[2] | 张龙喜, 吕琳, 张欢欢, 周金成, 车午男, 董辉. RNAi技术在寄生蜂中的应用研究进展[J]. 生物技术通报, 2023, 39(12): 99-108. |
[3] | 刘晓玫, 王东鑫, 张春, 魏双施. AAV介导的RNAi对SARS-CoV-2 S基因表达的抑制作用[J]. 生物技术通报, 2022, 38(3): 188-193. |
[4] | 郭宇飞, 闫荣媚, 张小茹, 曹威, 刘浩. 代谢工程改造黑曲霉生产葡萄糖二酸[J]. 生物技术通报, 2022, 38(11): 227-237. |
[5] | 潘银来, 邱春辉, 王艺磊, 张子平. RNA药物的发展及其在水产上的应用[J]. 生物技术通报, 2021, 37(2): 203-215. |
[6] | 邓普荣, 刘勇波. RNAi与转Bt基因技术协同抗虫研究进展[J]. 生物技术通报, 2021, 37(10): 216-224. |
[7] | 徐雪亮, 王奋山, 刘子荣, 范琳娟, 季香云, 蒋杰贤, 姚英娟. RNA干扰技术在昆虫学领域研究进展[J]. 生物技术通报, 2021, 37(1): 255-261. |
[8] | 杨文文, 倪嘉瑶, 胡蕊洁, 王华忠. 一个RNAi载体上反向重复片段的测序策略[J]. 生物技术通报, 2020, 36(5): 205-210. |
[9] | 宋华丽, 孙效迎, 孔祥会, 李莉, 裴超. RNA干扰技术在水产动物抗病毒和抗寄生虫研究中的应用研究进展[J]. 生物技术通报, 2020, 36(2): 193-205. |
[10] | 许祥, 董维鹏, 张少华, 冯晨毅, 刘田福, 燕炯. Fsp27基因沉默载体的构建及其对细胞脂解的影响研究[J]. 生物技术通报, 2020, 36(1): 88-94. |
[11] | 韩翠翠, 刘立琨, 王玉春, 杨莹, 刘吉成, 周忠光. TOX3基因RNAi慢病毒载体的构建及对乳腺癌ZR-75-1细胞增殖的影响[J]. 生物技术通报, 2019, 35(7): 141-147. |
[12] | 王佳悦, 刘香男, 彭康莉, 赵博. RNA干扰USE1基因慢病毒载体的构建及鉴定[J]. 生物技术通报, 2019, 35(3): 117-122. |
[13] | 陈静, 张道伟, 钱正敏. 白背飞虱几丁质合成酶1基因的结构及特性研究[J]. 生物技术通报, 2018, 34(1): 195-201. |
[14] | 苏子敬, 李巧玲, 黄程, 谢成建, 杨星勇. RNAi技术及其在真菌基因功能研究中的应用[J]. 生物技术通报, 2015, 31(8): 50-58. |
[15] | 温宪春, 韩翠翠, 赵月生, 于海涛, 李成冲, 岳丽玲. FUT8基因RNAi慢病毒载体的构建及对MCF-7细胞增殖的影响[J]. 生物技术通报, 2015, 31(5): 231-236. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||