生物技术通报 ›› 2024, Vol. 40 ›› Issue (7): 43-54.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1177
收稿日期:
2023-12-13
出版日期:
2024-07-26
发布日期:
2024-07-02
通讯作者:
李瑞丽,女,博士,教授,研究方向:植物分子细胞生物学;E-mail: liruili@bifu.edu.cn作者简介:
吴丁洁,女,硕士研究生,研究方向:植物分子细胞生物学;E-mail: W13292002780@bjfu.edu.cn
基金资助:
WU Ding-jie(), CHEN Ying-ying, XU Jing, LIU Yuan, ZHANG Hang, LI Rui-li()
Received:
2023-12-13
Published:
2024-07-26
Online:
2024-07-02
摘要:
赤霉素(gibberellin, GA)是一种重要的植物激素,调节植物的发育及其对环境信号的反应。GA生物合成的最后部分离不开赤霉素氧化酶(gibberellin oxidase,GAox)的催化。赤霉素氧化酶是赤霉素生物合成和分解代谢过程的关键酶,在植物体内的赤霉素生物合成和分解代谢途径中起到复杂的调节作用。GA20ox(gibberellin 20 oxidase)、GA3ox(gibberellin 3 oxidase)和GA2ox(gibberellin 2 oxidase)均属于赤霉素氧化酶基因家族,GA20ox和GA3ox是赤霉素生物合成过程中的限速酶,而GA2ox是赤霉素分解代谢的关键酶,三者共同参与GA生物合成途径的调节,从而保障植物在生长发育以及与环境相互作用过程中对GA的需求。赤霉素氧化酶参与调控植物生长发育的多个阶段,受到外界环境和内源因素的精密调控,目前已经在拟南芥、水稻、杨树等物种中克隆表达,其在不同物种之间的功能存在差异。本文主要围绕GA20ox、GA3ox和GA2ox三种酶进行介绍,对植物赤霉素氧化酶的特性、时空表达进行了阐述,并重点总结了赤霉素氧化酶的功能及其研究进展,以期为今后系统开展赤霉素氧化酶基因功能研究提供理论依据。
吴丁洁, 陈盈盈, 徐静, 刘源, 张航, 李瑞丽. 植物赤霉素氧化酶及其功能研究进展[J]. 生物技术通报, 2024, 40(7): 43-54.
WU Ding-jie, CHEN Ying-ying, XU Jing, LIU Yuan, ZHANG Hang, LI Rui-li. Research Progress in Plant Gibberellin Oxidase and Its Functions[J]. Biotechnology Bulletin, 2024, 40(7): 43-54.
图1 赤霉素生物合成和分解代谢 GGPP:牻牛儿牻牛儿基焦磷酸;CPS:内根-古巴焦磷酸合成酶;KS:内根-贝壳杉烯合成酶;KO:内根-贝壳杉烯氧化酶;KAO:内根-贝壳杉烯酸氧化酶;ent-CDP:内根-柯巴基二磷酸;ent-Kaurene:贝壳杉烯;ent-Kaurenoic acid:内根-贝壳杉烯酸;GA13ox:GA13-氧化酶;GA20ox:赤霉素20-氧化酶;GA3ox:赤霉素3-氧化酶;GA2ox:赤霉素2-氧化酶;DES:GA4去饱和酶;P450-3:细胞色素P450单加氧酶3; :活性赤霉素
Fig. 1 Gibberellin biosynthesis and catabolism GGPP: Geranylgeranyl diphosphate; CPS: ent-copalyl diphosphate synthase; KS: ent-kaurene synthase; KO: entkaurene oxidase; KAO: ent-kaurenoic acid oxidase; ent-CDP: ent-copalyl diphosphate; GA13ox: GA 13-oxidase; GA20ox: GA 20-oxidase; GA3ox: GA 3-oxidase; GA2ox: GA 2-oxidase; DES: GA4 desaturase; P450-3: cytochrome P450-3; : active gibberellin
图2 赤霉素氧化酶的时空表达 At:拟南芥;Os:水稻;Mt:蒺藜苜蓿;Egu:巨桉×尾叶桉;Ha:向日葵;Cs:黄瓜;Pb:梨;Ps:小叶杨;Pp:草地早熟禾;Gh:陆地棉;Sl:番茄
Fig. 2 Spatio-temporal expression of gibberellin oxidase At: Arabidopsis thaliana; Os: Oryza sativa; Mt: Medicago truncatula; Egu: Eucalyptus grandis × E. urophylla; Ha: Helianthus annuus; Cs: Cucumis sativus; Pb: Pyrus bretschneideri Rehd; Ps: Populus simonii Carrière; Pp: Poa pratensis; Gh: Gossypium hirsutum; Sl: Solanum lycopersicum
编码蛋白 Encoded protein | 物种 Species | 基因 Gene | 表型 Phenotype | 参考文献 Reference |
---|---|---|---|---|
GA20ox | 梨 | GA20ox2 | 番茄过表达株系:株高增加;延迟落果;诱导单性结实 | [ |
赤松 | GA20ox1 | 杂交白杨过表达株系:株高增加;木质部分化以及胶状纤维发育增强;根系生长不良、侧根数量减少;叶面积减小 | [ | |
水稻 | GA20ox2 | 水稻突变体:植株矮化;维管束发育异常、细胞变小 | [ | |
玉米 | GA20ox3 | 玉米突变体植株矮化;茎直径减小;节间缩短;薄壁组织细胞数量减少 | [ | |
黄瓜 | GA20ox1 | 黄瓜过表达株系:果刺变短 | [ | |
甘蔗 | GA20ox1 | 甘蔗过表达株系:株高增高;节间长度增长 | [ | |
油茶 | GA20ox1 | 拟南芥过表达株系:株高增加;次生细胞壁沉积增加;叶片增大;开花提前;叶绿素和花青素积累减少;种子增大 | [ | |
拟南芥 | GA20ox1 | 拟南芥过表达株系:株高增加;叶片数量减少;叶片面积增加 | [ | |
GA20ox1/2/3 | 拟南芥三重突变株系:雌性/雄性不育;花药发育停滞;绒毡层退化失败 | [ | ||
甜樱桃 | GA20ox2 | 拟南芥过表达株系:株高增加;开花提前;促进种子萌发 | [ | |
巨桉×尾叶桉 | GA20ox1 GA20ox2 | 巨桉×尾叶桉过表达株系:加快毛根的起始和伸长;促进根部木质部的分化 | [ | |
GA3ox | 豌豆 | GA3ox1 | 豌豆过表达株系:植株节间、卷须和果实较长;托叶较大;开花延迟,顶端分生组织寿命延长;维管组织发育变化,木质部导管直径增加 | [ |
南瓜 | GA3ox | 南瓜突变体:节间缩短;细胞大小减小 | [ | |
西瓜 | GA3ox | 西瓜GA3ox过表达株系:细胞伸长缺陷 | [ | |
水稻 | GA3ox1 | 水稻突变体:OsGA3ox1突变体花粉育性显著下降;OsGA3ox2突变株高显著降低 | [ | |
GA3ox2 | 水稻突变体:OsGA3ox2突变株高显著降低 | [ | ||
马铃薯 | GA3ox2 | 马铃薯RNAi株系:株高降低;节间缩短;块茎重量减小 | [ | |
陆地棉 | GA3ox4 | 陆地棉过表达株系:株高增加 | [ | |
GA2ox | 梨 | GA2ox8 | 烟草过表达株系:植株矮化;节间缩短;叶片长度和宽度减小 | [ |
柿子 | GA2ox | 柿子过表达株系:节间缩短 | [ | |
杉木 | GA2ox12 | 杉木过表达株系:植株矮化;木质素含量降低;木质部导管分化延迟 | [ | |
拟南芥 | GA2ox7 GA2ox8 | 拟南芥过表达株系:花序数量增多;节间缩短;负调控下胚轴伸长 | [ | |
GA2ox9 | 拟南芥突变体:寒冷环境下,生物活性GA4水平增加,突变体存活率降低,有助于获得性冷应激耐受性 | [ | ||
GA2ox10 | 拟南芥突变体:种子产量增加 | [ | ||
小桐子 | GA2ox6 | 小桐子花特异性过表达株系:叶片加深;叶面积变小;单株总花序数目增多;花序变小;雌花和雄花变小;雌雄花数目减少;单个花序中的雌花比例降低 | [ | |
柳枝稷 | GA2ox5/9 | 柳枝稷过表达株系:植株矮化;叶子呈深绿色;节间变短;分蘖增多;开花延迟 | [ | |
草地早熟禾 | GA2ox | 拟南芥过表达株系:植株矮化;角果变小;莲座叶数量增加叶色加深;开花延迟;抗旱性提高 | [ | |
薄壳山核桃 | GA2ox1 | 薄壳山核桃过表达株系:植株矮化;节间缩短;叶片长宽比降低;叶色加深 | [ | |
巨桉×尾叶桉 | GA2ox1 | 巨桉×尾叶桉过表达株系:抗逆性增加;叶片最大电子传输比增加;叶绿素和花青素含量增加 | [ |
表1 赤霉素氧化酶功能汇总
Table 1 Summary of gibberellin oxidase functions
编码蛋白 Encoded protein | 物种 Species | 基因 Gene | 表型 Phenotype | 参考文献 Reference |
---|---|---|---|---|
GA20ox | 梨 | GA20ox2 | 番茄过表达株系:株高增加;延迟落果;诱导单性结实 | [ |
赤松 | GA20ox1 | 杂交白杨过表达株系:株高增加;木质部分化以及胶状纤维发育增强;根系生长不良、侧根数量减少;叶面积减小 | [ | |
水稻 | GA20ox2 | 水稻突变体:植株矮化;维管束发育异常、细胞变小 | [ | |
玉米 | GA20ox3 | 玉米突变体植株矮化;茎直径减小;节间缩短;薄壁组织细胞数量减少 | [ | |
黄瓜 | GA20ox1 | 黄瓜过表达株系:果刺变短 | [ | |
甘蔗 | GA20ox1 | 甘蔗过表达株系:株高增高;节间长度增长 | [ | |
油茶 | GA20ox1 | 拟南芥过表达株系:株高增加;次生细胞壁沉积增加;叶片增大;开花提前;叶绿素和花青素积累减少;种子增大 | [ | |
拟南芥 | GA20ox1 | 拟南芥过表达株系:株高增加;叶片数量减少;叶片面积增加 | [ | |
GA20ox1/2/3 | 拟南芥三重突变株系:雌性/雄性不育;花药发育停滞;绒毡层退化失败 | [ | ||
甜樱桃 | GA20ox2 | 拟南芥过表达株系:株高增加;开花提前;促进种子萌发 | [ | |
巨桉×尾叶桉 | GA20ox1 GA20ox2 | 巨桉×尾叶桉过表达株系:加快毛根的起始和伸长;促进根部木质部的分化 | [ | |
GA3ox | 豌豆 | GA3ox1 | 豌豆过表达株系:植株节间、卷须和果实较长;托叶较大;开花延迟,顶端分生组织寿命延长;维管组织发育变化,木质部导管直径增加 | [ |
南瓜 | GA3ox | 南瓜突变体:节间缩短;细胞大小减小 | [ | |
西瓜 | GA3ox | 西瓜GA3ox过表达株系:细胞伸长缺陷 | [ | |
水稻 | GA3ox1 | 水稻突变体:OsGA3ox1突变体花粉育性显著下降;OsGA3ox2突变株高显著降低 | [ | |
GA3ox2 | 水稻突变体:OsGA3ox2突变株高显著降低 | [ | ||
马铃薯 | GA3ox2 | 马铃薯RNAi株系:株高降低;节间缩短;块茎重量减小 | [ | |
陆地棉 | GA3ox4 | 陆地棉过表达株系:株高增加 | [ | |
GA2ox | 梨 | GA2ox8 | 烟草过表达株系:植株矮化;节间缩短;叶片长度和宽度减小 | [ |
柿子 | GA2ox | 柿子过表达株系:节间缩短 | [ | |
杉木 | GA2ox12 | 杉木过表达株系:植株矮化;木质素含量降低;木质部导管分化延迟 | [ | |
拟南芥 | GA2ox7 GA2ox8 | 拟南芥过表达株系:花序数量增多;节间缩短;负调控下胚轴伸长 | [ | |
GA2ox9 | 拟南芥突变体:寒冷环境下,生物活性GA4水平增加,突变体存活率降低,有助于获得性冷应激耐受性 | [ | ||
GA2ox10 | 拟南芥突变体:种子产量增加 | [ | ||
小桐子 | GA2ox6 | 小桐子花特异性过表达株系:叶片加深;叶面积变小;单株总花序数目增多;花序变小;雌花和雄花变小;雌雄花数目减少;单个花序中的雌花比例降低 | [ | |
柳枝稷 | GA2ox5/9 | 柳枝稷过表达株系:植株矮化;叶子呈深绿色;节间变短;分蘖增多;开花延迟 | [ | |
草地早熟禾 | GA2ox | 拟南芥过表达株系:植株矮化;角果变小;莲座叶数量增加叶色加深;开花延迟;抗旱性提高 | [ | |
薄壳山核桃 | GA2ox1 | 薄壳山核桃过表达株系:植株矮化;节间缩短;叶片长宽比降低;叶色加深 | [ | |
巨桉×尾叶桉 | GA2ox1 | 巨桉×尾叶桉过表达株系:抗逆性增加;叶片最大电子传输比增加;叶绿素和花青素含量增加 | [ |
[1] | Park EJ, Kim HT, Choi YI, et al. Overexpression of gibberellin 20-oxidase1 from Pinus densiflora results in enhanced wood formation with gelatinous fiber development in a transgenic hybrid poplar[J]. Tree Physiol, 2015, 35(11): 1264-1277. |
[2] | 王熙昂, 王彪, 李海燕, 等. 植物中α-酮戊二酸/Fe(II)依赖双加氧酶研究进展[J]. 植物生理学报, 2021, 57(11): 2077-2090. |
Wang XA, Wang B, Li HY, et al. Research progress of 2-oxoglutarate/Fe(II)-dependent dioxygenases in plant[J]. Plant Physiol J, 2021, 57(11): 2077-2090. | |
[3] | 吴建明, 陈荣发, 黄杏, 等. 高等植物赤霉素生物合成关键组分GA20-oxidase氧化酶基因的研究进展[J]. 生物技术通报, 2016, 32(7): 1-12. |
Wu JM, Chen RF, Huang X, et al. Studies on the gene of key component GA20-oxidase for gibberellin biosynthesis in plant[J]. Biotechnol Bull, 2016, 32(7): 1-12. | |
[4] | 许好标. 陆地棉GA20氧化酶的全基因组鉴定及GhGA20ox6的克隆和功能分析[D]. 杭州: 浙江农林大学, 2021. |
Xu HB. Genome-wide identification of GA20ox and function analysis of GhGA20ox6 in upland cotton(Gossypium hirsutum L.)[D]. Hangzhou: Zhejiang A & F University, 2021. | |
[5] | 殷小林, 张超, 王有成, 等. 水稻赤霉素3β羟化酶基因(OsGA3ox1)同源基因的生物信息学分析[J]. 分子植物育种, 2019, 17(4): 1054-1060. |
Yin XL, Zhang C, Wang YC, et al. Bioinformatics analysis of the homologous gene of gibberellin 3β-hydroxylase gene(OsGA3ox1)in rice[J]. Mol Plant Breed, 2019, 17(4): 1054-1060. | |
[6] | Lin JQ, Feng D, Li YP, et al. Comparing the structural characteristics and expression of GA2ox gene in dwarf banana and its wild type[J]. J Plant Biochem Biotechnol, 2023, 32(1): 76-84. |
[7] | Zhang XX, Xing R, Ding YJ, et al. Overexpression of gibberellin 2-oxidase 4 from tall fescue affected plant height, tillering and drought tolerance in rice[J]. Environ Exp Bot, 2023, 205: 105118. |
[8] |
Hedden P. The current status of research on gibberellin biosynthesis[J]. Plant Cell Physiol, 2020, 61(11): 1832-1849.
doi: 10.1093/pcp/pcaa092 pmid: 32652020 |
[9] |
李艳冰, 朱美玉, 杨晓茹, 等. 植物中Gibberellin 2-oxidases基因研究进展[J]. 园艺学报, 2018, 45(9): 1844-1856.
doi: 10.16420/j.issn.0513-353x.2018-0587 |
Li YB, Zhu MY, Yang XR, et al. Advances on gibberellin 2-oxidases gene in higher plants[J]. Acta Hortic Sin, 2018, 45(9): 1844-1856. | |
[10] | Plackett ARG, Powers SJ, Fernandez-Garcia N, et al. Analysis of the developmental roles of the Arabidopsis gibberellin 20-oxidases demonstrates that GA20ox1, -2, and-3 are the dominant paralogs[J]. Plant Cell, 2012, 24(3): 941-960. |
[11] | Sun J, Zhang XQ, Fu C, et al. Genome-wide identification and expression analysis of GA20ox and GA3ox genes during pod development in peanut[J]. PeerJ, 2023, 11: e16279. |
[12] | Hsieh KT, Chen YT, Hu TJ, et al. Comparisons within the rice GA 2-oxidase gene family revealed three dominant paralogs and a functional attenuated gene that led to the identification of four amino acid variants associated with GA deactivation capability[J]. Rice, 2021, 14(1): 70. |
[13] | Li R, Sun S, Wang HJ, et al. FIS1 encodes a GA2-oxidase that regulates fruit firmness in tomato[J]. Nat Commun, 2020, 11(1): 5844. |
[14] | 林文妮, 杨丹, 唐成芬, 等. 陆地棉GhGA3ox1基因调控植物株高的功能探究[J/OL]. 分子植物育种, 2022. http://kns.cnki.net/kcms/detail/46.1068.S.20220413.1453.012.html. |
Lin WN, Yang D, Tang CF, et al. Funcation of GhGA3ox1 gene in regulating plant height in Gossypium hirsutum L.[J/OL]. Mol Plant Breed, 2022. http://kns.cnki.net/kcms/detail/46.1068.S.20220413.1453.012.html. | |
[15] | 孙浩. 蒺藜苜蓿赤霉素合成基因MtGA3ox1生物学功能解析[D]. 北京: 中国农业科学院, 2019. |
Sun H. Biological function analysis of gibberellin synthesis gene MtGA3ox1 in Medicago truncatula[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. | |
[16] |
Lange T, Krämer C, Pimenta Lange MJ. The class III gibberellin 2-oxidases AtGA2ox9 and AtGA2ox10 contribute to cold stress tolerance and fertility[J]. Plant Physiol, 2020, 184(1): 478-486.
doi: 10.1104/pp.20.00594 pmid: 32661062 |
[17] | Li C, Zheng LL, Wang XN, et al. Comprehensive expression analysis of Arabidopsis GA2-oxidase genes and their functional insights[J]. Plant Sci, 2019, 285: 1-13. |
[18] | Ashikari M, Sasaki A, Ueguchi-Tanaka M, et al. Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase(GA20ox-2), led to the rice ‘green revolution’[J]. Breed Sci, 2002, 52(2): 143-150. |
[19] | Peng YL, Hu YG, Qian Q, et al. Progress and prospect of breeding utilization of green revolution gene SD1 in rice[J]. Agriculture, 2021, 11(7): 611. |
[20] | Kawai K, Takehara S, Kashio T, et al. Evolutionary alterations in gene expression and enzymatic activities of gibberellin 3-oxidase 1 in Oryza[J]. Commun Biol, 2022, 5(1): 67. |
[21] | 惠索祯, 常俊楠, 邱牡丹, 等. 利用CRISPR/Cas9基因编辑技术定点编辑水稻赤霉素2氧化酶基因OsGA2ox10[J]. 分子植物育种, 2020, 18(18): 6016-6024. |
Hui SZ, Chang JN, Qiu MD, et al. Gene editing of rice gibberellin 2 oxidase gene OsGA2ox10 by using CRISPR/Cas9 gene editing technology[J]. Mol Plant Breed, 2020, 18(18): 6016-6024. | |
[22] | Wu WF, Zhu LH, Wang P, et al. Transcriptome-based construction of the gibberellin metabolism and signaling pathways in Eucalyptus grandis × E. urophylla, and functional characterization of GA20ox and GA2ox in regulating plant development and abiotic stress adaptations[J]. Int J Mol Sci, 2023, 24(8): 7051. |
[23] | Wang HB, Wu T, Liu JL, et al. PbGA20ox2 regulates fruit set and induces parthenocarpy by enhancing GA4 content[J]. Front Plant Sci, 2020, 11: 113. |
[24] | Carzoli FG, Michelotti V, Fambrini M, et al. Molecular cloning and organ-specific expression of two gibberellin 20-oxidase genes of Helianthus annuus[J]. Plant Mol Biol Report, 2009, 27(2): 144-152. |
[25] |
Reinecke DM, Wickramarathna AD, Ozga JA, et al. Gibberellin 3-oxidase gene expression patterns influence gibberellin biosynthesis, growth, and development in pea[J]. Plant Physiol, 2013, 163(2): 929-945.
doi: 10.1104/pp.113.225987 pmid: 23979969 |
[26] | 王增辉. 黄瓜赤霉素氧化酶基因GA20ox、GA2ox、GA3ox的生物信息学及GA20ox1功能分析[D]. 泰安: 山东农业大学, 2014. |
Wang ZH. Bioinformatics of GA20ox, GA2ox, GA3ox genes and functional of GA20ox1 analyses in Cucumis sativus[D]. Tai'an: Shandong Agricultural University, 2014. | |
[27] | 杨炳磊. 陆地棉GA3氧化酶的全基因组鉴定及GhGA3ox4的克隆和功能分析[D]. 杭州: 浙江农林大学, 2021. |
Yang BL. Genome wide identification of GA3 oxidase in upland cotton and functional analysis of GhGA3ox4[D]. Hangzhou: Zhejiang A & F University, 2021. | |
[28] | 檀鹏辉. 草地早熟禾赤霉素氧化酶基因PpGA2ox的功能研究[D]. 北京: 北京林业大学, 2020. |
Tan PH. Functional study of a novel gibberellin 2-oxidases gene, PpGA2ox, from Kentucky bluegrass(Poa pratensis L.)[D]. Beijing: Beijing Forestry University, 2020. | |
[29] | Li JH, Hou XY, Li CX, et al. Photoperiod effects on guar(Cyamo-psis tetragonoloba L.)[J]. Ind Crops Prod, 2023, 203: 117148. |
[30] | Lee DJ, Zeevaart JAD. Regulation of gibberellin 20-oxidase1 expression in spinach by photoperiod[J]. Planta, 2007, 226(1): 35-44. |
[31] |
Wu K, Li L, Gage DA, et al. Molecular cloning and photoperiod-regulated expression of gibberellin 20-oxidase from the long-day plant spinach[J]. Plant Physiol, 1996, 110(2): 547-554.
pmid: 8742334 |
[32] | Matsuo S, Nanya KJ, Imanishi S, et al. Effects of blue and red lights on gibberellin metabolism in tomato seedlings[J]. Hortic J, 2019, 88(1): 76-82. |
[33] | 罗丹. 拟南芥转录因子VOZ1和VOZ2调控光诱导种子萌发的分子机理研究[D]. 长沙: 湖南大学, 2020. |
Luo D. Molecular mechanisms analysis of Arabidopsis transcription factors VOZ1 and VOZ2 regulating light-induced seed germination[D]. Changsha: Hunan University, 2020. | |
[34] | Li W, Liu SW, Ma JJ, et al. Gibberellin signaling is required for far-red light-induced shoot elongation in Pinus tabuliformis seedlings[J]. Plant Physiol, 2020, 182(1): 658-668. |
[35] | Ding QQ, Wang F, Xue J, et al. Identification and expression analysis of hormone biosynthetic and metabolism genes in the 2OGD family for identifying genes that may be involved in tomato fruit ripening[J]. Int J Mol Sci, 2020, 21(15): 5344. |
[36] |
Li H, Wu H, Qi Q, et al. Gibberellins play a role in regulating tomato fruit ripening[J]. Plant Cell Physiol, 2019, 60(7): 1619-1629.
doi: 10.1093/pcp/pcz069 pmid: 31073591 |
[37] | Serova TA, Tsyganova AV, Tikhonovich IA, et al. Gibberellins inhibit nodule senescence and stimulate nodule meristem bifurcation in pea(Pisum sativum L.)[J]. Front Plant Sci, 2019, 10: 285. |
[38] | Li L, Wang JQ, Chen JJ, et al. Physiological and transcriptomic responses of growth in Neolamarckia cadamba stimulated by exogenous gibberellins[J]. Int J Mol Sci, 2022, 23(19): 11842. |
[39] | Sun H, Pang BY, Yan J, et al. Comprehensive analysis of cucumber gibberellin oxidase family genes and functional characterization of CsGA20ox1 in root development in Arabidopsis[J]. Int J Mol Sci, 2018, 19(10): 3135. |
[40] | 叶家其, 张毓婷, 傅鹰, 等. 毛竹茎秆伸长过程中赤霉素生物合成、降解和信号转导关键基因的鉴定及表达分析[J]. 生物工程学报, 2019, 35(4): 647-666. |
Ye JQ, Zhang YT, Fu Y, et al. Genome-wide identification and expression analysis of gibberellin biosynthesis, metabolism and signaling family genes in Phyllostachys edulis[J]. Chin J Biotechnol, 2019, 35(4): 647-666. | |
[41] | Guan YR, Xue JQ, Xue YQ, et al. Effect of exogenous GA3 on flowering quality, endogenous hormones, and hormone- and flowering-associated gene expression in forcing-cultured tree peony(Paeonia suffruticosa)[J]. J Integr Agric, 2019, 18(6): 1295-1311. |
[42] | 严泽埔, 张佳琦, 梁璧, 等. 外施赤霉素对薄壳山核桃幼苗生长及相关代谢基因表达的影响[J]. 浙江农林大学学报, 2020, 37(5): 922-929. |
Yan ZP, Zhang JQ, Liang B, et al. Effects of exogenous gibberellin on growth of Carya illinoensis and its metabolic gene expression[J]. J Zhejiang A F Univ, 2020, 37(5): 922-929. | |
[43] | 郝鹏博. 外源赤霉素和多效唑对桃节间长度及赤霉素代谢基因表达影响[D]. 郑州: 河南农业大学, 2017. |
Hao PB. Effects of GA3 and PBZ on internode length and gene expression of gibberellins metabolism in peach(Prunus persica L.)[D]. Zhengzhou: Henan Agricultural University, 2017. | |
[44] | Cheng JY, Hill CB, Shabala S, et al. Manipulating GA-related genes for cereal crop improvement[J]. Int J Mol Sci, 2022, 23(22): 14046. |
[45] | Tong HN, Xiao YH, Liu DP, et al. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice[J]. Plant Cell, 2014, 26(11): 4376-4393. |
[46] | Zhu LP, Jiang B, Zhu JJ, et al. Auxin promotes fiber elongation by enhancing gibberellic acid biosynthesis in cotton[J]. Plant Biotechnol J, 2022, 20(3): 423-425. |
[47] |
Cong L, Yue RR, Wang HB, et al. 2, 4-D-induced parthenocarpy in pear is mediated by enhancement of GA4 biosynthesis[J]. Physiol Plant, 2019, 166(3): 812-820.
doi: 10.1111/ppl.12835 pmid: 30203555 |
[48] | Veerabagu M, van der Schoot C, Turečková V, et al. Light on perenniality: para-dormancy is based on ABA-GA antagonism and endo-dormancy on the shutdown of GA biosynthesis[J]. Plant Cell Environ, 2023, 46(6): 1785-1804. |
[49] | Chai P, Dong SJ, Chai LJ, et al. Cytokinin-induced parthenocarpy of San Pedro type fig(Ficus carica L.) main crop: explained by phytohormone assay and transcriptomic network comparison[J]. Plant Mol Biol, 2019, 99(4/5): 329-346. |
[50] |
Fukazawa J, Mori K, Ando H, et al. Jasmonate inhibits plant growth and reduces gibberellin levels via microRNA5998 and transcription factor MYC2[J]. Plant Physiol, 2023, 193(3): 2197-2214.
doi: 10.1093/plphys/kiad453 pmid: 37562026 |
[51] | Wang L, Ma CR, Wang SH, et al. Ethylene and jasmonate signaling converge on gibberellin catabolism during thigmomorphogenesis in Arabidopsis[J]. Plant Physiol, 2024, 194(2): 758-773. |
[52] | Withanage SP, Hossain MA, Kumar MS, et al. Overexpression of Arabidopsis thaliana gibberellic acid 20 oxidase(AtGA20ox)gene enhance the vegetative growth and fiber quality in kenaf(Hibiscus cannabinus L.) plants[J]. Breed Sci, 2015, 65(3): 177-191. |
[53] | 李佳琦, 谢媛, 揭红东, 等. AtGA3ox与AtGA20ox在拟南芥中过表达对纤维发育的影响[J/OL]. 分子植物育种, 2023. http://kns.cnki.net/kcms/detail/46.1068.S.20230131.1135.007.html. |
Li JQ, Xie Y, Jie HD, et al. Effects of AtGA3ox and AtGA20ox over-expression on fiber development in Arabidopsis thaliana[J/OL]. Mol Plant Breed, 2023. http://kns.cnki.net/kcms/detail/46.1068.S.20230131.1135.007.html. | |
[54] | 郝小花, 胡爽, 赵丹, 等. OsGA3ox通过合成不同活性GA调控水稻育性及株高[J]. 遗传, 2023, 45(9): 845-855. |
Hao XH, Hu S, Zhao D, et al. OsGA3ox genes regulate rice fertility and plant height by synthesizing diverse active GA[J]. Hereditas: Beijing, 2023, 45(9): 845-855. | |
[55] | Han Y, Teng KC, Nawaz G, et al. Generation of semi-dwarf rice(Oryza sativa L.) lines by CRISPR/Cas9-directed mutagenesis of OsGA20ox2 and proteomic analysis of unveiled changes caused by mutations[J]. 3 Biotech, 2019, 9(11): 387. |
[56] | Santoso TJ, Trijatmiko KR, Char SN, et al. Targeted mutation of GA20ox-2 gene using CRISPR/Cas9 system generated semi-dwarf phenotype in rice[J]. IOP Conf Ser: Earth Environ Sci, 2020, 482(1): 012027. |
[57] | Cho JS, Jeon HW, Kim MH, et al. Wood forming tissue-specific bicistronic expression of PdGA20ox1 and PtrMYB221 improves both the quality and quantity of woody biomass production in a hybrid poplar[J]. Plant Biotechnol J, 2019, 17(6): 1048-1057. |
[58] | Jeon HW, Cho JS, Park EJ, et al. Developing xylem-preferential expression of PdGA20ox1, a gibberellin 20-oxidase 1 from Pinus densiflora, improves woody biomass production in a hybrid poplar[J]. Plant Biotechnol J, 2016, 14(4): 1161-1170. |
[59] | Ly LK, Bui TP, Van Thi Le A, et al. Enhancing plant growth and biomass production by overexpression of GA20ox gene under control of a root preferential promoter[J]. Transgenic Res, 2022, 31(1): 73-85. |
[60] | Sun YY, Zhang HQ, Fan M, et al. A mutation in the intron splice acceptor site of a GA3ox gene confers dwarf architecture in watermelon(Citrullus lanatus L.)[J]. Sci Rep, 2020, 10(1): 14915. |
[61] |
Paciorek T, Chiapelli BJ, Wang JY, et al. Targeted suppression of gibberellin biosynthetic genes ZmGA20ox3 and ZmGA20ox5 produces a short stature maize ideotype[J]. Plant Biotechnol J, 2022, 20(6): 1140-1153.
doi: 10.1111/pbi.13797 pmid: 35244326 |
[62] | Zhang JJ, Zhang XF, Chen RR, et al. Generation of transgene-free semidwarf maize plants by gene editing of Gibberellin-Oxidase20-3 using CRISPR/Cas9[J]. Front Plant Sci, 2020, 11: 1048. |
[63] | Roumeliotis E, Kloosterman B, Oortwijn M, et al. Down regulation of StGA3ox genes in potato results in altered GA content and affect plant and tuber growth characteristics[J]. J Plant Physiol, 2013, 170(14): 1228-1234. |
[64] |
周慧文, 丘立杭, 黄杏, 等. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
doi: 10.3724/SP.J.1006.2022.04274 |
Zhou HW, Qiu LH, Huang X, et al. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane[J]. Acta Agron Sin, 2022, 48(4): 1017-1026. | |
[65] | Dong YH, Ye XL, Xiong AS, et al. The regulatory role of gibberellin related genes DKGA2ox1 and MIR171f_3 in persimmon dwarfism[J]. Plant Sci, 2021, 310: 110958. |
[66] |
Wuddineh WA, Mazarei M, Zhang JY, et al. Identification and overexpression of gibberellin 2-oxidase(GA2ox)in switchgrass(Panicum virgatum L.) for improved plant architecture and reduced biomass recalcitrance[J]. Plant Biotechnol J, 2015, 13(5): 636-647.
doi: 10.1111/pbi.12287 pmid: 25400275 |
[67] |
Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, et al. The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle[J]. Plant J, 2008, 53(3): 488-504.
doi: 10.1111/j.1365-313X.2007.03356.x pmid: 18069939 |
[68] | Min ZY, Hu XJ, Han XX, et al. Genetic mapping and identification of the gibberellin 3-oxidase gene GA3ox leading to a GA-deficient dwarf phenotype in pumpkin(Cucurbita moschata D.)[J]. Agronomy, 2022, 12(8): 1779. |
[69] | 魏晶晶, 胡恒康, 张佳琦, 等. 薄壳山核桃赤霉素氧化酶基因CiGA2ox1克隆与功能分析[J]. 果树学报, 2022, 39(8): 1368-1381. |
Wei JJ, Hu HK, Zhang JQ, et al. Cloning and functional analysis of gibberellin 2-oxidase1 gene of pecan(Carya illinoensis)[J]. J Fruit Sci, 2022, 39(8): 1368-1381. | |
[70] | 李燕娇, 吴建明, 周慧文, 等. 植物赤霉素生物合成关键基因GA3-oxidase的研究进展[J]. 分子植物育种, 2022, 20(16): 5339-5346. |
Li YJ, Wu JM, Zhou HW, et al. Research progress on gibberellin biosynthesis key gene GA3-oxidase in plants[J]. Mol Plant Breed, 2022, 20(16): 5339-5346. | |
[71] | Wang Y, Li JA, Guo PR, et al. Ectopic expression of Camellia oleifera Abel. gibberellin 20-oxidase gene increased plant height and promoted secondary cell walls deposition in Arabidopsis[J]. Planta, 2023, 258(3): 65. |
[72] | 杨杰. 梨遗传转化体系的优化与赤霉素氧化酶GA2ox8基因的矮化功能研究[D]. 杨凌: 西北农林科技大学, 2020. |
Yang J. Optimization of genetic transformation system and dwarfing functional analysis of GA2ox8 gene and in Pyrus[D]. Yangling: Northwest A & F University, 2020. | |
[73] | Mauriat M, Petterle A, Bellini C, et al. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport[J]. Plant J, 2014, 78(3): 372-384. |
[74] |
Voorend W, Nelissen H, Vanholme R, et al. Overexpression of GA20-OXIDASE1 impacts plant height, biomass allocation and saccharification efficiency in maize[J]. Plant Biotechnol J, 2016, 14(3): 997-1007.
doi: 10.1111/pbi.12458 pmid: 26903034 |
[75] | Peng XP, Tong BT, Lee J, et al. Overexpression of a gibberellin 20-oxidase gene in poplar xylem led to an increase in the size of nanocellulose fibrils and improved paper properties[J]. Carbohydr Polym, 2023, 314: 120959. |
[76] |
Biemelt S, Tschiersch H, Sonnewald U. Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants[J]. Plant Physiol, 2004, 135(1): 254-265.
doi: 10.1104/pp.103.036988 pmid: 15122040 |
[77] | 屈高毅. 杉木ClGA2ox12基因功能研究[D]. 长沙: 中南林业科技大学, 2021. |
Qu GY. Study on the function of ClGA2ox12 gene in Cunninghamia lanceolate(lamb.)hook[D]. Changsha: Central South University of Forestry & Technology, 2021. | |
[78] | Liu XJ, Wang JY, Sun WX, et al. Sweet cherry PavGA20ox-2 positive regulation of plant growth, flowering time, and seed germination[J]. Sci Hortic, 2023, 322: 112405. |
[79] |
Schomburg FM, Bizzell CM, Lee DJ, et al. Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants[J]. Plant Cell, 2003, 15(1): 151-163.
doi: 10.1105/tpc.005975 pmid: 12509528 |
[80] | 胡颖雄, 明新, 陶彦彬, 等. 异位表达小桐子赤霉素降解酶基因JcGA2ox6促进小桐子成花转变[J/OL]. 分子植物育种, 2021. http://kns.cnki.net/kcms/detail/46.1068.S.20210610.1045.004.html. |
Hu YX, Ming X, Tao YB, et al. Ectopic expression of gibberellin-degrading enzyme gene JcGA2ox6 promoted the reproductive growth in perennial woody plant Jatrophacurcas[J/OL]. Mol Plant Breed, 2021. http://kns.cnki.net/kcms/detail/46.1068.S.20210610.1045.004.html. | |
[81] | Wu K, Wang SS, Song WZ, et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice[J]. Science, 2020, 367(6478): eaaz2046. |
[82] | 何红红. 葡萄赤霉素氧化酶基因GA2ox、GA3ox和GA20ox家族的鉴定与GA2ox7的耐盐性功能分析[D]. 兰州: 甘肃农业大学, 2021. |
He HH. Identification of GA2ox, GA3ox and GA20ox families of gibberellin oxidase genes and salt tolerance functional analysis of GA2ox7 in Vitis vinifera[D]. Lanzhou: Gansu Agricultural University, 2021. | |
[83] | Wang YX, Du FP, Wang J, et al. Molecular dissection of the gene OsGA2ox8 conferring osmotic stress tolerance in rice[J]. Int J Mol Sci, 2021, 22(17): 9107. |
[84] | Shi JB, Wang N, Zhou H, et al. The role of gibberellin synthase gene GhGA2ox1 in upland cotton(Gossypium hirsutum L.) responses to drought and salt stress[J]. Biotechnol Appl Biochem, 2019, 66(3): 298-308. |
[85] | Shi JB, Wang J, Wang N, et al. Overexpression of StGA2ox1 gene increases the tolerance to abiotic stress in transgenic potato(Solanum tuberosum L.) plants[J]. Appl Biochem Biotechnol, 2019, 187(4): 1204-1219. |
[86] |
Sakata T, Oda S, Tsunaga Y, et al. Reduction of gibberellin by low temperature disrupts pollen development in rice[J]. Plant Physiol, 2014, 164(4): 2011-2019.
doi: 10.1104/pp.113.234401 pmid: 24569847 |
[87] |
Omena-Garcia RP, Oliveira Martins A, Medeiros DB, et al. Growth and metabolic adjustments in response to gibberellin deficiency in drought stressed tomato plants[J]. Environ Exp Bot, 2019, 159: 95-107.
doi: 10.1016/j.envexpbot.2018.12.011 |
[88] | Band LR, Nelissen H, Preston SP, et al. Modeling reveals posttranscriptional regulation of GA metabolism enzymes in response to drought and cold[J]. Proc Natl Acad Sci USA, 2022, 119(31): e2121288119. |
[1] | 胡雅丹, 伍国强, 刘晨, 魏明. MYB转录因子在调控植物响应逆境胁迫中的作用[J]. 生物技术通报, 2024, 40(6): 5-22. |
[2] | 常雪瑞, 王田田, 王静. 辣椒E2基因家族的鉴定及分析[J]. 生物技术通报, 2024, 40(6): 238-250. |
[3] | 李景艳, 周家婧, 袁媛, 苏晓艺, 乔文慧, 薛岩磊, 李国婧, 王瑞刚. 拟南芥AtiPGAM2基因参与非生物胁迫的响应[J]. 生物技术通报, 2024, 40(5): 215-224. |
[4] | 杜兵帅, 邹昕蕙, 王子豪, 张馨元, 曹一博, 张凌云. 油茶SWEET基因家族的全基因组鉴定及表达分析[J]. 生物技术通报, 2024, 40(5): 179-190. |
[5] | 郭慧妍, 董雪, 安梦楠, 夏子豪, 吴元华. 泛素化修饰关键酶在植物抗逆反应中的功能研究进展[J]. 生物技术通报, 2024, 40(4): 1-11. |
[6] | 陈盈盈, 吴丁洁, 刘源, 张航, 刘艳娇, 王晶宇, 李瑞丽. 14-3-3蛋白及其在植物中的功能研究进展[J]. 生物技术通报, 2024, 40(4): 12-22. |
[7] | 江林琪, 赵佳莹, 郑飞雄, 姚馨怡, 李效贤, 俞振明. 铁皮石斛14-3-3基因家族鉴定及表达分析[J]. 生物技术通报, 2024, 40(3): 229-241. |
[8] | 周宏丹, 罗晓萍, 涂米雪, 李忠光. 植物褪黑素:植物应答非生物胁迫的新兴信号分子[J]. 生物技术通报, 2024, 40(3): 41-51. |
[9] | 吴翠翠, 肖水平. 陆地棉HD-Zip家族全基因组鉴定及响应非生物胁迫的表达分析[J]. 生物技术通报, 2024, 40(2): 130-145. |
[10] | 辛奇, 李压凡, 尹铮, 张晓丹, 陈霆, 刘晓华. 甘蔗CBL-CIPK基因家族的鉴定和表达分析[J]. 生物技术通报, 2024, 40(2): 197-211. |
[11] | 付威, 韦素云, 陈赢男. 植物生长发育动态QTL解析研究进展[J]. 生物技术通报, 2024, 40(2): 9-19. |
[12] | 邹修为, 岳佳妮, 李志宇, 戴良英, 李魏. 水稻热激转录因子HsfA2b调控非生物胁迫抗性的功能分析[J]. 生物技术通报, 2024, 40(2): 90-98. |
[13] | 张怡, 张心如, 张金珂, 胡利宗, 上官欣欣, 郑晓红, 胡娟娟, 张聪聪, 穆桂清, 李成伟. 小麦镉胁迫响应基因TaMYB1的功能分析[J]. 生物技术通报, 2024, 40(1): 194-206. |
[14] | 毕芳玲, 赵爽, 栗斌, 李爱芹, 张建恒, 何培民. 共附生菌对绿潮浒苔作用的研究进展及应用[J]. 生物技术通报, 2024, 40(1): 32-44. |
[15] | 胡海琳, 徐黎, 李晓旭, 王晨璨, 梅曼, 丁文静, 赵媛媛. 小肽激素调控植物生长发育及逆境生理研究进展[J]. 生物技术通报, 2023, 39(7): 13-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||