生物技术通报 ›› 2024, Vol. 40 ›› Issue (4): 1-11.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1095
• 综述与专论 • 下一篇
收稿日期:
2023-11-21
出版日期:
2024-04-26
发布日期:
2024-04-30
通讯作者:
夏子豪,男,博士,副教授,研究方向:植物病毒学;E-mail: zihao8337@syau.edu.cn;作者简介:
郭慧妍,女,博士研究生,研究方向:植物病毒学;E-mail: 2022200149@stu.syau.edu.cn
基金资助:
GUO Hui-yan(), DONG Xue, AN Meng-nan, XIA Zi-hao(), WU Yuan-hua()
Received:
2023-11-21
Published:
2024-04-26
Online:
2024-04-30
摘要:
泛素化修饰是植物蛋白质翻译后修饰的重要组成部分,通过对蛋白质的选择性降解,参与调控植物生长发育和多种逆境胁迫反应。泛素化修饰反应由3种关键酶协同作用完成。泛素分子通过与泛素激活酶的巯基酯键连接从而被激活,被激活的泛素分子再与泛素结合酶形成复合体,最后在泛素连接酶的作用下完成与靶蛋白的结合。随着蛋白质组学测序技术的不断发展,人们对泛素化修饰的研究更加普遍和深入。大量被泛素化修饰的蛋白及其修饰位点被鉴定出来,有助于深入了解蛋白质的调控机制,进一步解析蛋白质的功能。本文介绍了泛素-蛋白酶体系统的反应过程,泛素化修饰关键酶的结构、数量及分类,并重点围绕泛素激活酶、泛素结合酶和泛素连接酶在植物应对非生物及生物胁迫中的功能研究开展论述,同时也对植物泛素化修饰关键酶的功能研究所面临的问题进行总结,并对泛素化修饰与其他修饰之间的串扰进行了讨论与展望,对于泛素化修饰在植物逆境胁迫领域的深入研究具有重要意义。
郭慧妍, 董雪, 安梦楠, 夏子豪, 吴元华. 泛素化修饰关键酶在植物抗逆反应中的功能研究进展[J]. 生物技术通报, 2024, 40(4): 1-11.
GUO Hui-yan, DONG Xue, AN Meng-nan, XIA Zi-hao, WU Yuan-hua. Research Progress in the Functions of Key Enzymes of Ubiquitination Modification in Plant Stress Responses[J]. Biotechnology Bulletin, 2024, 40(4): 1-11.
Species | Number of E2 genes | Reference |
---|---|---|
Dimocarpus longan | 40 | [ |
Glycine max | 71 | [ |
Maninot esculenta | 62 | [ |
Oryza sativa | 48 | [ |
Ricinus communis | 33 | [ |
Solanum lycopersicum | 59 | [ |
Solanum tuberosum | 57 | [ |
Sorghum bicolor | 53 | [ |
Zea mays | 75 | [ |
表1 不同植物中E2基因数目
Table 1 Number of E2 genes in different plant species
Species | Number of E2 genes | Reference |
---|---|---|
Dimocarpus longan | 40 | [ |
Glycine max | 71 | [ |
Maninot esculenta | 62 | [ |
Oryza sativa | 48 | [ |
Ricinus communis | 33 | [ |
Solanum lycopersicum | 59 | [ |
Solanum tuberosum | 57 | [ |
Sorghum bicolor | 53 | [ |
Zea mays | 75 | [ |
E3的类型 E3 type | 结构特征 Structural feature | 与底物的结合方式 Binding mode |
---|---|---|
HECT | 单亚基(具有HECT结构域) | 先与被E2激活的泛素结合形成E3-泛素硫酯中间体,最后再将泛素转移到靶标蛋白上 |
RING | 单亚基(具有RING结构域,在结构域核心具有与锌离子结合的保守半胱氨酸和组氨酸残基) | 不与泛素结合,直接将泛素从E2-泛素复合体转移到底物上 |
U-box | 单亚基(具有U-box结构域) | 不与泛素结合,直接将泛素从E2-泛素复合体转移到底物上 |
CRL | 多亚基(由Cullin蛋白、RING-box蛋白和底物募集蛋白组成) | RING-box蛋白与E2-泛素复合体识别结合,Cullin蛋白发挥支架作用 |
表2 植物中E3的分类
Table 2 Classification of E3 in plants
E3的类型 E3 type | 结构特征 Structural feature | 与底物的结合方式 Binding mode |
---|---|---|
HECT | 单亚基(具有HECT结构域) | 先与被E2激活的泛素结合形成E3-泛素硫酯中间体,最后再将泛素转移到靶标蛋白上 |
RING | 单亚基(具有RING结构域,在结构域核心具有与锌离子结合的保守半胱氨酸和组氨酸残基) | 不与泛素结合,直接将泛素从E2-泛素复合体转移到底物上 |
U-box | 单亚基(具有U-box结构域) | 不与泛素结合,直接将泛素从E2-泛素复合体转移到底物上 |
CRL | 多亚基(由Cullin蛋白、RING-box蛋白和底物募集蛋白组成) | RING-box蛋白与E2-泛素复合体识别结合,Cullin蛋白发挥支架作用 |
物种Species | E3连接酶E3 ligase | 类型Type | 靶标Target | 功能Function | 参考文献Reference |
---|---|---|---|---|---|
Arabidopsis thaliana | AtATL31、AtATL6 | RING | 未知 | 负调控耐盐性 | [ |
AtPUB25、AtPUB26 | U-box | AtICE1 | 负调控耐寒性 | [ | |
AtSDR | SCF | 未知 | 负调控耐旱性,正调控耐盐性 | [ | |
AtAIRP5 | RING | AtGELP22、AtGELP23 | 正调控耐旱性 | [ | |
Capsicum annuum | CaAIRE1 | RING | CaAITP1 | 正调控耐旱性 | [ |
Cucumis sativus | CsCHYR1 | RING | CsATAF1 | 正调控耐旱性 | [ |
Glycine max | GmPUB21 | U-box | 未知 | 负调控耐旱性 | [ |
Ipomoea batatas | IbATL38 | RING | 未知 | 正调控耐盐性 | [ |
Malus pumila | MdPUB23 | U-box | MdICE1 | 负调控耐寒性 | [ |
Oryza sativa | OsRF1 | RING | OsPP2C | 正调控耐旱性和耐盐性 | [ |
OsRINGzf1 | RING | OsPIP2 | 正调控耐旱性 | [ | |
OsPUB41 | U-box | OsCLC6 | 负调控耐旱性 | [ | |
OsSIRP4 | RING | OsPEX11 | 负调控耐盐性 | [ | |
OsATL38 | RING | OsGF14d | 负调控耐寒性 | [ | |
Populus euphratica | PalPUB79 | U-box | PalWRKY77 | 正调控耐旱性 | [ |
Solanum nigrum | StATL2 | RING | StCBF1、StCBF2 | 负调控耐寒性 | [ |
Triticum aestivum | TaSDIR1 | RING | TaWRKY29 | 正调控耐旱性 | [ |
TaSADR1 | RING | 未知 | 负调控耐旱性 | [ | |
TaPUB2、TaPUB3 | U-box | 未知 | 正调控耐旱性 | [ | |
TaPUB4 | U-box | 未知 | 正调控耐旱性 | [ | |
Vitis vinifera | VyRCHC114 | RING | 未知 | 正调控耐旱性 | [ |
表3 E3在植物抗非生物胁迫中的功能
Table 3 Functions of E3 in plant resistance to abiotic stresses
物种Species | E3连接酶E3 ligase | 类型Type | 靶标Target | 功能Function | 参考文献Reference |
---|---|---|---|---|---|
Arabidopsis thaliana | AtATL31、AtATL6 | RING | 未知 | 负调控耐盐性 | [ |
AtPUB25、AtPUB26 | U-box | AtICE1 | 负调控耐寒性 | [ | |
AtSDR | SCF | 未知 | 负调控耐旱性,正调控耐盐性 | [ | |
AtAIRP5 | RING | AtGELP22、AtGELP23 | 正调控耐旱性 | [ | |
Capsicum annuum | CaAIRE1 | RING | CaAITP1 | 正调控耐旱性 | [ |
Cucumis sativus | CsCHYR1 | RING | CsATAF1 | 正调控耐旱性 | [ |
Glycine max | GmPUB21 | U-box | 未知 | 负调控耐旱性 | [ |
Ipomoea batatas | IbATL38 | RING | 未知 | 正调控耐盐性 | [ |
Malus pumila | MdPUB23 | U-box | MdICE1 | 负调控耐寒性 | [ |
Oryza sativa | OsRF1 | RING | OsPP2C | 正调控耐旱性和耐盐性 | [ |
OsRINGzf1 | RING | OsPIP2 | 正调控耐旱性 | [ | |
OsPUB41 | U-box | OsCLC6 | 负调控耐旱性 | [ | |
OsSIRP4 | RING | OsPEX11 | 负调控耐盐性 | [ | |
OsATL38 | RING | OsGF14d | 负调控耐寒性 | [ | |
Populus euphratica | PalPUB79 | U-box | PalWRKY77 | 正调控耐旱性 | [ |
Solanum nigrum | StATL2 | RING | StCBF1、StCBF2 | 负调控耐寒性 | [ |
Triticum aestivum | TaSDIR1 | RING | TaWRKY29 | 正调控耐旱性 | [ |
TaSADR1 | RING | 未知 | 负调控耐旱性 | [ | |
TaPUB2、TaPUB3 | U-box | 未知 | 正调控耐旱性 | [ | |
TaPUB4 | U-box | 未知 | 正调控耐旱性 | [ | |
Vitis vinifera | VyRCHC114 | RING | 未知 | 正调控耐旱性 | [ |
物种Species | E3连接酶E3 ligase | 类型Type | 靶标Target | 功能Function | 参考文献Reference |
---|---|---|---|---|---|
Arabidopsis thaliana | AtMUSE16 | RING | AtRPS2 | 正调控免疫反应 | [ |
AtPUB4 | U-box | AtCERK1 | 正调控活性氧产生 | [ | |
AtKEG | RING | AtMKK4、AtMKK5 | 正调控免疫反应 | [ | |
Glycine max | GmSAUL1 | U-box | 未知 | 负调控抗大豆花叶病毒 | [ |
Nicotiana tabacum | NtRFP1 | RING | βC1 | 正调控抗中国番茄黄曲叶病毒侵染 | [ |
NtRNF217 | RING | 未知 | 正调控过氧化氢酶和过氧化物酶活性 | [ | |
Nicotiana benthamiana | NbubE3R1 | RING | αa | 正调控抗竹花叶病毒侵染 | [ |
NbSKP1 | SCF | βC1 | 负调控抗木尔坦棉花曲叶病毒侵染 | [ | |
NbSKP1 | SCF | P22 | 负调控抗番茄褪绿病毒侵染 | [ | |
Oryza sativa | OsMEL | RING | OsSHMT1 | 正调控广谱抗病性 | [ |
OsAPIP10 | RING | OsVOZ1、OsVOZ2 | 正调控广谱抗病性 | [ | |
OsSKP1 | SCF | P7-2 | 负调控抗黑条矮缩病毒侵染 | [ | |
OsPUB73 | U-box | OsVQ25 | 正调控抗稻瘟病和白叶枯病 | [ | |
OsPIE3 | U-box | OsPID2 | 负调控抗稻瘟病 | [ | |
OsAPIP6 | RING | OsCATC | 负调控免疫反应 | [ | |
Triticum aestivum | TaE3UBQ | U-box | ZtSSP2 | 负调控抗小麦叶枯病菌侵染 | [ |
Zea mays | ZmMIEL1 | RING | ZmMYB83 | 负调控过敏性坏死反应 | [ |
表4 E3在植物抗生物胁迫中的功能
Table 4 Functions of E3 in plant resistance to biotic stresses
物种Species | E3连接酶E3 ligase | 类型Type | 靶标Target | 功能Function | 参考文献Reference |
---|---|---|---|---|---|
Arabidopsis thaliana | AtMUSE16 | RING | AtRPS2 | 正调控免疫反应 | [ |
AtPUB4 | U-box | AtCERK1 | 正调控活性氧产生 | [ | |
AtKEG | RING | AtMKK4、AtMKK5 | 正调控免疫反应 | [ | |
Glycine max | GmSAUL1 | U-box | 未知 | 负调控抗大豆花叶病毒 | [ |
Nicotiana tabacum | NtRFP1 | RING | βC1 | 正调控抗中国番茄黄曲叶病毒侵染 | [ |
NtRNF217 | RING | 未知 | 正调控过氧化氢酶和过氧化物酶活性 | [ | |
Nicotiana benthamiana | NbubE3R1 | RING | αa | 正调控抗竹花叶病毒侵染 | [ |
NbSKP1 | SCF | βC1 | 负调控抗木尔坦棉花曲叶病毒侵染 | [ | |
NbSKP1 | SCF | P22 | 负调控抗番茄褪绿病毒侵染 | [ | |
Oryza sativa | OsMEL | RING | OsSHMT1 | 正调控广谱抗病性 | [ |
OsAPIP10 | RING | OsVOZ1、OsVOZ2 | 正调控广谱抗病性 | [ | |
OsSKP1 | SCF | P7-2 | 负调控抗黑条矮缩病毒侵染 | [ | |
OsPUB73 | U-box | OsVQ25 | 正调控抗稻瘟病和白叶枯病 | [ | |
OsPIE3 | U-box | OsPID2 | 负调控抗稻瘟病 | [ | |
OsAPIP6 | RING | OsCATC | 负调控免疫反应 | [ | |
Triticum aestivum | TaE3UBQ | U-box | ZtSSP2 | 负调控抗小麦叶枯病菌侵染 | [ |
Zea mays | ZmMIEL1 | RING | ZmMYB83 | 负调控过敏性坏死反应 | [ |
[1] |
Ozkaynak E, Finley D, Solomon MJ, et al. The yeast ubiquitin genes: a family of natural gene fusions[J]. EMBO J, 1987, 6(5): 1429-1439.
doi: 10.1002/j.1460-2075.1987.tb02384.x pmid: 3038523 |
[2] |
Schwartz AL, Ciechanover A. Ubiquitin-mediated protein modification and degradation[J]. Am J Respir Cell Mol Biol, 1992, 7(5): 463-468.
doi: 10.1165/ajrcmb/7.5.463 URL |
[3] |
Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction[J]. Physiol Rev, 2002, 82(2): 373-428.
doi: 10.1152/physrev.00027.2001 pmid: 11917093 |
[4] |
Adams EHG, Spoel SH. The ubiquitin-proteasome system as a transcriptional regulator of plant immunity[J]. J Exp Bot, 2018, 69(19): 4529-4537.
doi: 10.1093/jxb/ery216 pmid: 29873762 |
[5] |
Shu K, Yang WY. E3 ubiquitin ligases: ubiquitous actors in plant development and abiotic stress responses[J]. Plant Cell Physiol, 2017, 58(9): 1461-1476.
doi: 10.1093/pcp/pcx071 pmid: 28541504 |
[6] |
Xu FQ, Xue HW. The ubiquitin-proteasome system in plant responses to environments[J]. Plant Cell Environ, 2019, 42(10): 2931-2944.
doi: 10.1111/pce.v42.10 URL |
[7] |
Zientara-Rytter K, Sirko A. To deliver or to degrade - an interplay of the ubiquitin-proteasome system, autophagy and vesicular transport in plants[J]. FEBS J, 2016, 283(19): 3534-3555.
doi: 10.1111/febs.13712 pmid: 26991113 |
[8] |
Hatfield PM, Gosink MM, Carpenter TB, et al. The ubiquitin-activating enzyme(E1)gene family in Arabidopsis thaliana[J]. Plant J, 1997, 11(2): 213-226.
pmid: 9076989 |
[9] |
Takizawa M, Goto A, Watanabe Y. The tobacco ubiquitin-activating enzymes NtE1A and NtE1B are induced by tobacco mosaic virus, wounding and stress hormones[J]. Mol Cells, 2005, 19(2): 228-231.
pmid: 15879707 |
[10] |
Li GQ, Zang XN, Zhang XC, et al. Cloning of ubiquitin-activating enzyme and ubiquitin-conjugating enzyme genes from Gracilaria lemaneiformis and their activity under heat shock[J]. Gene, 2014, 538(1): 155-163.
doi: 10.1016/j.gene.2013.12.017 URL |
[11] |
Hershko A, Ciechanover A. The ubiquitin system[J]. Annu Rev Biochem, 1998, 67: 425-479.
pmid: 9759494 |
[12] | Jue DW, Sang XL, Liu LQ, et al. The ubiquitin-conjugating enzyme gene family in Longan(Dimocarpus longan lour.): genome-wide identification and gene expression during flower induction and abiotic stress responses[J]. Molecules, 2018, 23(3): 662. |
[13] | Zhang CY, Song L, Choudhary MK, et al. Genome-wide analysis of genes encoding core components of the ubiquitin system in soybean(Glycine max)reveals a potential role for ubiquitination in host immunity against soybean cyst nematode[J]. BMC Plant Biol, 2018, 18(1): 149. |
[14] | 贾利强. 木薯泛素结合酶的生物信息学分析[J]. 基因组学与应用生物学, 2021, 40(S2): 2765-2774. |
Jia LQ. Bioinformatics analysis of cassava ubiquitin-binding enzyme[J]. Genom Appl Biol, 2021, 40(S2): 2765-2774. | |
[15] |
Bae H, Kim WT. Classification and interaction modes of 40 rice E2 ubiquitin-conjugating enzymes with 17 rice ARM-U-box E3 ubiquitin ligases[J]. Biochem Biophys Res Commun, 2014, 444(4): 575-580.
doi: 10.1016/j.bbrc.2014.01.098 URL |
[16] | 张洪雨, 王晓宇, 段琼, 等. 蓖麻E2基因家族鉴定及生物信息学分析[J]. 内蒙古民族大学学报: 自然科学版, 2020, 35(6): 489-496. |
Zhang HY, Wang XY, Duan Q, et al. Identification and bioinformatics analysis of E2 gene family in Ricinus communis L[J]. J Inn Mong Univ Natl Nat Sci, 2020, 35(6): 489-496. | |
[17] | Sharma B, Bhatt TK. Author Correction: Genome-wide identification and expression analysis of E2 ubiquitin-conjugating enzymes in tomato[J]. Sci Rep, 2018, 8(1): 6782. |
[18] | 刘维刚. 马铃薯泛素结合酶E2基因家族鉴定和StUBC9基因克隆及功能研究[D]. 兰州: 甘肃农业大学, 2019. |
Liu WG. Genome-wide identification of ubiquitin conjugating enzymes E2 gene family and cloning and functional aanlysis of StUBC9 in potato[D]. Lanzhou: Gansu Agricultural University, 2019. | |
[19] |
Jia LQ, Zhao QF, Chen S. Evolution and expression analysis of the sorghum ubiquitin-conjugating enzyme family[J]. Funct Plant Biol, 2019, 46(3): 236-247.
doi: 10.1071/FP18184 pmid: 32172767 |
[20] | Jue DW, Sang XL, Lu SQ, et al. Genome-wide identification, phylogenetic and expression analyses of the ubiquitin-conjugating enzyme gene family in maize[J]. PLoS One, 2015, 10(11): e0143488. |
[21] | Feng H, Wang S, Dong DF, et al. Arabidopsis ubiquitin-conjugating enzymes UBC7, UBC13, and UBC14 are required in plant responses to multiple stress conditions[J]. Plants, 2020, 9(6): 723. |
[22] |
Feussner K, Feussner I, Leopold I, et al. Isolation of a cDNA coding for an ubiquitin-conjugating enzyme UBC1 of tomato—the first stress-induced UBC of higher plants[J]. FEBS Lett, 1997, 409(2): 211-215.
doi: 10.1016/s0014-5793(97)00509-7 pmid: 9202147 |
[23] | 毛卓卓, 宫宇, 史贵霞, 等. 大豆E2泛素结合酶基因GmUBC1的克隆及在拟南芥中的异源表达[J]. 遗传, 2020, 42(8): 788-798. |
Mao ZZ, Gong Y, Shi GX, et al. Cloning of the soybean E2 ubiquitin-conjugating enzyme GmUBC1 and its expression in Arabidopsis thaliana[J]. Hereditas, 2020, 42(8): 788-798. | |
[24] | 王安邦, 金志强, 刘菊华, 等. 香蕉泛素结合酶基因MaUCE2在非生物胁迫下的表达分析[J]. 生物技术通报, 2013(5): 77-80. |
Wang AB, Jin ZQ, Liu JH, et al. Expression analysis of a banana ubiquitin-conjugating enzyme gene MaUCE2 under abiotic stress[J]. Biotechnol Bull, 2013(5): 77-80. | |
[25] |
Ahn MY, Oh TR, Seo DH, et al. Arabidopsis group XIV ubiquitin-conjugating enzymes AtUBC32, AtUBC33, and AtUBC34 play negative roles in drought stress response[J]. J Plant Physiol, 2018, 230: 73-79.
doi: 10.1016/j.jplph.2018.08.010 URL |
[26] |
Cui F, Liu LJ, Zhao QZ, et al. Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance[J]. Plant Cell, 2012, 24(1): 233-244.
doi: 10.1105/tpc.111.093062 URL |
[27] |
Sun YH, Zhao J, Li XY, et al. E2 conjugases UBC1 and UBC2 regulate MYB42-mediated SOS pathway in response to salt stress in Arabidopsis[J]. New Phytol, 2020, 227(2): 455-472.
doi: 10.1111/nph.v227.2 URL |
[28] |
Wan XR, Mo AQ, Liu S, et al. Constitutive expression of a peanut ubiquitin-conjugating enzyme gene in Arabidopsis confers improved water-stress tolerance through regulation of stress-responsive gene expression[J]. J Biosci Bioeng, 2011, 111(4): 478-484.
doi: 10.1016/j.jbiosc.2010.11.021 URL |
[29] |
Bahmani R, Kim D, Lee BD, et al. Over-expression of tobacco UBC1 encoding a ubiquitin-conjugating enzyme increases cadmium tolerance by activating the 20S/26S proteasome and by decreasing Cd accumulation and oxidative stress in tobacco(Nicotiana tabacum)[J]. Plant Mol Biol, 2017, 94(4/5): 433-451.
doi: 10.1007/s11103-017-0616-6 URL |
[30] |
Zhou GA, Chang RZ, Qiu LJ. Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress-responsive gene expression in Arabidopsis[J]. Plant Mol Biol, 2010, 72(4/5): 357-367.
doi: 10.1007/s11103-009-9575-x URL |
[31] |
Jeon EH, Pak JH, Kim MJ, et al. Ectopic expression of ubiquitin-conjugating enzyme gene from wild rice, OgUBC1, confers resistance against UV-B radiation and Botrytis infection in Arabidopsis thaliana[J]. Biochem Biophys Res Commun, 2012, 427(2): 309-314.
doi: 10.1016/j.bbrc.2012.09.048 URL |
[32] |
Liu X, Song LL, Zhang H, et al. Rice ubiquitin-conjugating enzyme OsUBC26 is essential for immunity to the blast fungus Magnaporthe oryzae[J]. Mol Plant Pathol, 2021, 22(12): 1613-1623.
doi: 10.1111/mpp.13132 URL |
[33] |
Mural RV, Liu Y, Rosebrock TR, et al. The tomato Fni3 lysine-63-specific ubiquitin-conjugating enzyme and suv ubiquitin E2 variant positively regulate plant immunity[J]. Plant Cell, 2013, 25(9): 3615-3631.
doi: 10.1105/tpc.113.117093 URL |
[34] |
Zhou BJ, Mural RV, Chen XY, et al. A subset of ubiquitin-conjugating enzymes is essential for plant immunity[J]. Plant Physiol, 2017, 173(2): 1371-1390.
doi: 10.1104/pp.16.01190 pmid: 27909045 |
[35] |
Eini O, Dogra S, Selth LA, et al. Interaction with a host ubiquitin-conjugating enzyme is required for the pathogenicity of a geminiviral DNA beta satellite[J]. Mol Plant Microbe Interact, 2009, 22(6): 737-746.
doi: 10.1094/MPMI-22-6-0737 URL |
[36] |
Imura Y, Molho M, Chuang C, et al. Cellular Ubc2/Rad6 E2 ubiquitin-conjugating enzyme facilitates tombusvirus replication in yeast and plants[J]. Virology, 2015, 484: 265-275.
doi: 10.1016/j.virol.2015.05.022 pmid: 26135843 |
[37] |
Stone SL, Callis J. Ubiquitin ligases mediate growth and development by promoting protein death[J]. Curr Opin Plant Biol, 2007, 10(6): 624-632.
doi: 10.1016/j.pbi.2007.07.010 pmid: 17851112 |
[38] |
Nguyen HC, Wang W, Xiong Y. Cullin-RING E3 ubiquitin ligases: bridges to destruction[J]. Subcell Biochem, 2017, 83: 323-347.
doi: 10.1007/978-3-319-46503-6_12 pmid: 28271482 |
[39] | Wang RY, You XM, Zhang CY, et al. An ORFeome of rice E3 ubiquitin ligases for global analysis of the ubiquitination interactome[J]. Genome Biol, 2022, 23(1): 154. |
[40] |
Du MS, Lu DP, Liu XT. The Arabidopsis ubiquitin ligases ATL31 and ATL6 regulate plant response to salt stress in an ABA-independent manner[J]. Biochem Biophys Res Commun, 2023, 685: 149156.
doi: 10.1016/j.bbrc.2023.149156 URL |
[41] |
Wang X, Zhang XY, Song CP, et al. PUB25 and PUB26 dynamically modulate ICE1 stability via differential ubiquitination during cold stress in Arabidopsis[J]. Plant Cell, 2023, 35(9): 3585-3603.
doi: 10.1093/plcell/koad159 URL |
[42] |
Li BW, Gao S, Yang ZM, et al. The F-box E3 ubiquitin ligase AtSDR is involved in salt and drought stress responses in Arabidopsis[J]. Gene, 2022, 809: 146011.
doi: 10.1016/j.gene.2021.146011 URL |
[43] |
Cho NH, Kim EY, Park K, et al. Cosuppression of AtGELP22 and AtGELP23, two ubiquitinated target proteins of RING E3 ligase AtAIRP5, increases tolerance to drought stress in Arabidopsis[J]. Plant Mol Biol, 2023, 112(6): 357-371.
doi: 10.1007/s11103-023-01368-y |
[44] |
Baek W, Lim CW, Lee SC. Pepper E3 ligase CaAIRE1 promotes ABA sensitivity and drought tolerance by degradation of protein phosphatase CaAITP1[J]. J Exp Bot, 2021, 72(12): 4520-4534.
doi: 10.1093/jxb/erab138 pmid: 33837765 |
[45] |
Guo LQ, Cao M, Li YF, et al. RING finger ubiquitin E3 ligase CsCHYR1 targets CsATAF1 for degradation to modulate the drought stress response of cucumber through the ABA-dependent pathway[J]. Plant Physiol Biochem, 2023, 202: 107928.
doi: 10.1016/j.plaphy.2023.107928 URL |
[46] | Yang YH, Karthikeyan A, Yin JL, et al. The E3 ligase GmPUB21 negatively regulates drought and salinity stress response in soybean[J]. Int J Mol Sci, 2022, 23(13): 6893. |
[47] |
Du B, Nie N, Sun SF, et al. A novel sweetpotato RING-H2 type E3 ubiquitin ligase gene IbATL38 enhances salt tolerance in transgenic Arabidopsis[J]. Plant Sci, 2021, 304: 110802.
doi: 10.1016/j.plantsci.2020.110802 URL |
[48] |
Wang DR, Zhang XW, Xu RR, et al. Apple U-box-type E3 ubiquitin ligase MdPUB23 reduces cold-stress tolerance by degrading the cold-stress regulatory protein MdICE1[J]. Hortic Res, 2022, 9: uhac171.
doi: 10.1093/hr/uhac171 URL |
[49] |
Kim S, Park SI, Kwon H, et al. The rice abscisic acid-responsive RING finger E3 ligase OsRF1 targets OsPP2C09 for degradation and confers drought and salinity tolerance in rice[J]. Front Plant Sci, 2022, 12: 797940.
doi: 10.3389/fpls.2021.797940 URL |
[50] |
Chen SJ, Xu K, Kong DY, et al. Ubiquitin ligase OsRINGzf1 regulates drought resistance by controlling the turnover of OsPIP2;1[J]. Plant Biotechnol J, 2022, 20(9): 1743-1755.
doi: 10.1111/pbi.13857 pmid: 35587579 |
[51] |
Seo DH, Lee A, Yu SG, et al. OsPUB41, a U-box E3 ubiquitin ligase, acts as a negative regulator of drought stress response in rice(Oryza Sativa L.)[J]. Plant Mol Biol, 2021, 106(4/5): 463-477.
doi: 10.1007/s11103-021-01158-4 |
[52] |
Kim JH, Jang CS. E3 ligase, the Oryza sativa salt-induced RING finger protein 4(OsSIRP4), negatively regulates salt stress responses via degradation of the OsPEX11-1 protein[J]. Plant Mol Biol, 2021, 105(3): 231-245.
doi: 10.1007/s11103-020-01084-x |
[53] |
Cui LH, Min HJ, Yu SG, et al. OsATL38 mediates mono-ubiquitination of the 14-3-3 protein OsGF14d and negatively regulates the cold stress response in rice[J]. J Exp Bot, 2022, 73(1): 307-323.
doi: 10.1093/jxb/erab392 URL |
[54] |
Tong SF, Chen NN, Wang DY, et al. The U-box E3 ubiquitin ligase PalPUB79 positively regulates ABA-dependent drought tolerance via ubiquitination of PalWRKY77 in Populus[J]. Plant Biotechnol J, 2021, 19(12): 2561-2575.
doi: 10.1111/pbi.v19.12 URL |
[55] |
Song QP, Wang XP, Wu FC, et al. StATL2-like could affect growth and cold tolerance of plant by interacting with StCBFs[J]. Plant Cell Rep, 2022, 41(9): 1827-1841.
doi: 10.1007/s00299-022-02890-x pmid: 35732839 |
[56] |
Skubacz A, Daszkowska-Golec A, Szarejko I. The role and regulation of ABI5(ABA-insensitive 5)in plant development, abiotic stress responses and phytohormone crosstalk[J]. Front Plant Sci, 2016, 7: 1884.
doi: 10.3389/fpls.2016.01884 pmid: 28018412 |
[57] |
Sun HM, Li JT, Li X, et al. RING E3 ubiquitin ligase TaSADR1 negatively regulates drought resistance in transgenic Arabidopsis[J]. Plant Physiol Biochem, 2022, 170: 255-265.
doi: 10.1016/j.plaphy.2021.12.004 URL |
[58] |
Kim MS, Kim JH, Amoah JN, et al. Wheat(Triticum aestivum. L)Plant U-box E3 ligases TaPUB2 and TaPUB3 enhance ABA response and salt stress resistance in Arabidopsis[J]. FEBS Lett, 2022, 596(23): 3037-3050.
doi: 10.1002/feb2.v596.23 URL |
[59] |
Kim JH, Kim MS, Seo YW. Overexpression of a plant U-box gene TaPUB4 confers drought stress tolerance in Arabidopsis thaliana[J]. Plant Physiol Biochem, 2023, 196: 596-607.
doi: 10.1016/j.plaphy.2023.02.001 URL |
[60] | Yu YH, Yang SD, Bian L, et al. Identification of C3H2C3-type RING E3 ubiquitin ligase in grapevine and characterization of drought resistance function of VyRCHC114[J]. BMC Plant Biol, 2021, 21(1): 422. |
[61] | Zhao SS, Zhang QK, Liu MY, et al. Regulation of plant responses to salt stress[J]. Int J Mol Sci, 2021, 22(9): 4609. |
[62] |
Soualiou S, Duan FY, Li X, et al. Crop production under cold stress: an understanding of plant responses, acclimation processes, and management strategies[J]. Plant Physiol Biochem, 2022, 190: 47-61.
doi: 10.1016/j.plaphy.2022.08.024 URL |
[63] |
Huang Y, Li JH, Huang TT, et al. Homeostasis of Arabidopsis R protein RPS2 is negatively regulated by the RING-type E3 ligase MUSE16[J]. J Exp Bot, 2023, 74(6): 2160-2172.
doi: 10.1093/jxb/erad026 pmid: 36655859 |
[64] |
Desaki Y, Takahashi S, Sato K, et al. PUB4, a CERK1-interacting ubiquitin ligase, positively regulates MAMP-triggered immunity in Arabidopsis[J]. Plant Cell Physiol, 2019, 60(11): 2573-2583.
doi: 10.1093/pcp/pcz151 URL |
[65] |
Gao CY, Sun PW, Wang W, et al. Arabidopsis E3 ligase KEG associates with and ubiquitinates MKK4 and MKK5 to regulate plant immunity[J]. J Integr Plant Biol, 2021, 63(2): 327-339.
doi: 10.1111/jipb.v63.2 URL |
[66] | Li JM, Ye MY, Wang CF, et al. Soybean Gm SAUL1, a bona fide U-box E3 ligase, negatively regulates immunity likely through repressing the activation of Gm MPK3[J]. Int J Mol Sci, 2023, 24(7): 6240. |
[67] |
Shen QT, Hu T, Bao M, et al. Tobacco RING E3 ligase NtRFP1 mediates ubiquitination and proteasomal degradation of a geminivirus-encoded βC1[J]. Mol Plant, 2016, 9(6): 911-925.
doi: 10.1016/j.molp.2016.03.008 pmid: 27018391 |
[68] | Liu Y, Tang YM, Tan X, et al. NtRNF217, encoding a putative RBR E3 ligase protein of Nicotiana tabacum, plays an important role in the regulation of resistance to Ralstonia solanacearum infection[J]. Int J Mol Sci, 2021, 22(11): 5507. |
[69] |
Chen IH, Chang JE, Wu CY, et al. An E3 ubiquitin ligase from Nicotiana benthamiana targets the replicase of Bamboo mosaic virus and restricts its replication[J]. Mol Plant Pathol, 2019, 20(5): 673-684.
doi: 10.1111/mpp.12784 pmid: 30924604 |
[70] | Jia Q, Liu N, Xie K, et al. CLCuMuB βC1 subverts ubiquitination by interacting with NbSKP1s to enhance geminivirus infection in Nicotiana benthamiana[J]. PLoS Pathog, 2016, 12(6): e1005668. |
[71] |
Liu SJ, Wang CL, Liu XD, et al. Tomato chlorosis virus-encoded p22 suppresses auxin signalling to promote infection via interference with SKP1-Cullin-F-boxTIR1 complex assembly[J]. Plant Cell Environ, 2021, 44(9): 3155-3172.
doi: 10.1111/pce.v44.9 URL |
[72] |
Fu S, Wang K, Ma TT, et al. An evolutionarily conserved C4HC3-type E3 ligase regulates plant broad-spectrum resistance against pathogens[J]. Plant Cell, 2022, 34(5): 1822-1843.
doi: 10.1093/plcell/koac055 URL |
[73] |
Wang JY, Wang RY, Fang H, et al. Two VOZ transcription factors link an E3 ligase and an NLR immune receptor to modulate immunity in rice[J]. Mol Plant, 2021, 14(2): 253-266.
doi: 10.1016/j.molp.2020.11.005 pmid: 33186754 |
[74] |
Wang Q, Tao T, Han YH, et al. Nonstructural protein P7-2 encoded by Rice black-streaked dwarf virus interacts with SKP1, a core subunit of SCF ubiquitin ligase[J]. Virol J, 2013, 10: 325.
doi: 10.1186/1743-422X-10-325 pmid: 24176102 |
[75] | Hao ZY, Tian JF, Fang H, et al. A VQ-motif-containing protein fine-tunes rice immunity and growth by a hierarchical regulatory mechanism[J]. Cell Rep, 2022, 40(7): 111235. |
[76] |
Wang K, Li S, Chen LX, et al. E3 ubiquitin ligase OsPIE3 destabilises the B-lectin receptor-like kinase PID2 to control blast disease resistance in rice[J]. New Phytol, 2023, 237(5): 1826-1842.
doi: 10.1111/nph.v237.5 URL |
[77] |
You XM, Zhang F, Liu Z, et al. Rice catalase OsCATC is degraded by E3 ligase APIP6 to negatively regulate immunity[J]. Plant Physiol, 2022, 190(2): 1095-1099.
doi: 10.1093/plphys/kiac317 pmid: 35781740 |
[78] |
Karki SJ, Reilly A, Zhou BB, et al. A small secreted protein from Zymoseptoria tritici interacts with a wheat E3 ubiquitin ligase to promote disease[J]. J Exp Bot, 2021, 72(2): 733-746.
doi: 10.1093/jxb/eraa489 URL |
[79] |
Karre S, Kim SB, Samira R, et al. The maize ZmMIEL1 E3 ligase and ZmMYB83 transcription factor proteins interact and regulate the hypersensitive defence response[J]. Mol Plant Pathol, 2021, 22(6): 694-709.
doi: 10.1111/mpp.13057 pmid: 33825303 |
[1] | 江林琪, 赵佳莹, 郑飞雄, 姚馨怡, 李效贤, 俞振明. 铁皮石斛14-3-3基因家族鉴定及表达分析[J]. 生物技术通报, 2024, 40(3): 229-241. |
[2] | 周宏丹, 罗晓萍, 涂米雪, 李忠光. 植物褪黑素:植物应答非生物胁迫的新兴信号分子[J]. 生物技术通报, 2024, 40(3): 41-51. |
[3] | 吴翠翠, 肖水平. 陆地棉HD-Zip家族全基因组鉴定及响应非生物胁迫的表达分析[J]. 生物技术通报, 2024, 40(2): 130-145. |
[4] | 辛奇, 李压凡, 尹铮, 张晓丹, 陈霆, 刘晓华. 甘蔗CBL-CIPK基因家族的鉴定和表达分析[J]. 生物技术通报, 2024, 40(2): 197-211. |
[5] | 邹修为, 岳佳妮, 李志宇, 戴良英, 李魏. 水稻热激转录因子HsfA2b调控非生物胁迫抗性的功能分析[J]. 生物技术通报, 2024, 40(2): 90-98. |
[6] | 张怡, 张心如, 张金珂, 胡利宗, 上官欣欣, 郑晓红, 胡娟娟, 张聪聪, 穆桂清, 李成伟. 小麦镉胁迫响应基因TaMYB1的功能分析[J]. 生物技术通报, 2024, 40(1): 194-206. |
[7] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[8] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[9] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[10] | 翟莹, 李铭杨, 张军, 赵旭, 于海伟, 李珊珊, 赵艳, 张梅娟, 孙天国. 异源表达大豆转录因子GmNF-YA19提高转基因烟草抗旱性[J]. 生物技术通报, 2023, 39(5): 224-232. |
[11] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[12] | 杨春洪, 董璐, 陈林, 宋丽. 大豆VAS1基因家族的鉴定及参与侧根发育的研究[J]. 生物技术通报, 2023, 39(3): 133-142. |
[13] | 苗淑楠, 高宇, 李昕儒, 蔡桂萍, 张飞, 薛金爱, 季春丽, 李润植. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析[J]. 生物技术通报, 2023, 39(2): 96-106. |
[14] | 叶红, 王玉昆. 植物PRR免疫受体功能研究进展[J]. 生物技术通报, 2023, 39(12): 1-15. |
[15] | 程爽, ULAANDUU Namuun, 李卓琳, 胡海玲, 邓晓霞, 李月明, 王竞红, 蔺吉祥. 植物光系统 II(PSII)应答非生物胁迫机理研究进展[J]. 生物技术通报, 2023, 39(12): 33-42. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||