生物技术通报 ›› 2024, Vol. 40 ›› Issue (12): 12-19.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0277
邵长轩(), 张少华, 邓浩然, 于伟康, 朱永杰, 单安山(
)
收稿日期:
2024-03-21
出版日期:
2024-12-26
发布日期:
2025-01-15
通讯作者:
单安山,男,博士,教授,博士生导师,研究方向:动物营养与饲料科学;E-mail: asshan@neau.edu.cn作者简介:
邵长轩,男,博士,副教授,研究方向:动物营养与饲料科学;E-mail: cxshao@neau.edu.cn
基金资助:
SHAO Chang-xuan(), ZHANG Shao-hua, DENG Hao-ran, YU Wei-kang, ZHU Yong-jie, SHAN An-shan(
)
Received:
2024-03-21
Published:
2024-12-26
Online:
2025-01-15
摘要:
抗菌肽(antimicrobial peptides, AMPs)是一类广泛存在于自然界,具有广谱抗菌活性的多肽类物质,其因独特的抗菌作用机制被视为传统抗生素的新型替代药物。近几十年来,研究人员在AMPs方向进行了大量工作,但AMPs的开发与应用仍然存在诸多限制,包括生物体内提取困难、生产成本高、全身细胞毒性和生理条件下的不稳定性。因此,研究者们以天然AMPs为模板进行衍生肽设计,以期开发出新的具有强效力和低毒性的AMPs药物。但试验性肽的设计及筛选过程复杂耗时、工作量大、迭代成本高。随着计算方法的不断进步,可公开访问的数据库提供了大量的AMPs数据。这些数据库为开发和构建新型抗菌药物提供了宝贵的资源。本文对现有的AMPs数据库和数据库辅助设计方法进行了综述,以期对AMPs的药物开发提供参考。
邵长轩, 张少华, 邓浩然, 于伟康, 朱永杰, 单安山. 抗菌肽的数据库辅助设计[J]. 生物技术通报, 2024, 40(12): 12-19.
SHAO Chang-xuan, ZHANG Shao-hua, DENG Hao-ran, YU Wei-kang, ZHU Yong-jie, SHAN An-shan. Database-aided Design of Antimicrobial Peptides[J]. Biotechnology Bulletin, 2024, 40(12): 12-19.
图1 AMPs以及AMPs数据库的研究进展 APD:APD抗菌肽数据库;dbAMP:dbAMP抗菌肽数据库;DRAMP:DRAMP抗菌肽数据库;DBAASP:DBAASP抗菌肽结构和活性数据库;CAMP:CAMP抗菌肽数据集。下同
Fig. 1 Research progress on AMPs, and AMP databases APD: The antimicrobial peptide database. dbAMP: Data bank antimicrobial peptides. DRAMP: Data repository of antimicrobial peptide. DBAASP: Database of antimicrobial activity and structure of peptides. CAMP: Collection of antimicrobial peptides. The same below
数据库 Database | 数据来源 Source of data | 数据量 Data size | 最新更新 Latest updated | 预测工具 Predicting tool | 网址 URL | 参考文献 Reference |
---|---|---|---|---|---|---|
APD | 天然、合成 | 3 342 | 2015年 | Antimicrobial peptide calculator and predictor | https://aps.unmc.edu/home | [ |
dbAMP | AMPs数据库、文献 | 28 709 | 2021年 | AMP predictor | http://awi.cuhk.edu.cn/dbAMP | [ |
DRAMP | 天然、合成、实验验证 | 22 259 | 2022年 | BHEAP prediction Stapled peptides prediction | http://dramp.cpu-bioinfor.org/ | [ |
DBAASP | 天然、合成 | 18 878 | 2020年 | Linear AMP prediction | http://dbaasp.org/home | [ |
CAMP | 天然、合成、预测 | 24 243 | 2023年 | AMP prediction | http://www.camp3.bicnirrh.res.in/ | [ |
表1 综合类AMPs数据库
Table 1 Comprehensive type of AMP databases
数据库 Database | 数据来源 Source of data | 数据量 Data size | 最新更新 Latest updated | 预测工具 Predicting tool | 网址 URL | 参考文献 Reference |
---|---|---|---|---|---|---|
APD | 天然、合成 | 3 342 | 2015年 | Antimicrobial peptide calculator and predictor | https://aps.unmc.edu/home | [ |
dbAMP | AMPs数据库、文献 | 28 709 | 2021年 | AMP predictor | http://awi.cuhk.edu.cn/dbAMP | [ |
DRAMP | 天然、合成、实验验证 | 22 259 | 2022年 | BHEAP prediction Stapled peptides prediction | http://dramp.cpu-bioinfor.org/ | [ |
DBAASP | 天然、合成 | 18 878 | 2020年 | Linear AMP prediction | http://dbaasp.org/home | [ |
CAMP | 天然、合成、预测 | 24 243 | 2023年 | AMP prediction | http://www.camp3.bicnirrh.res.in/ | [ |
数据库 Database | 数据类型 Type of database | 数据来源 Source of data | 最新更新 Latest updated | 网址 URL | 参考文献 Reference |
---|---|---|---|---|---|
CancerPPD | 抗癌肽 | 文献、专利、AMPs数据库 | 2015年 | http://crdd.osdd.net/raghava/cancerppd/ | [ |
ParaPep | 抗寄生虫肽 | 天然、专利、AMPs数据库 | 2014年 | http://webs.iiitd.edu.in/raghava/parapep/peptide.php | [ |
CyBase | 环肽类 | 天然、预测抗菌肽 | 2007年 | http://www.cybase.org.au/ | [ |
BaAMPs | 生物膜活性肽 | 文献 | 2015年 | http://www.tandfonline.com/loi/gbif20 | [ |
DRAVP | 抗病毒肽 | 实验验证 | 2023年 | http://dravp.cpu-bioinfor.org/ | [ |
表2 专有类AMPs数据库
Table 2 Proprietary type of AMP databases
数据库 Database | 数据类型 Type of database | 数据来源 Source of data | 最新更新 Latest updated | 网址 URL | 参考文献 Reference |
---|---|---|---|---|---|
CancerPPD | 抗癌肽 | 文献、专利、AMPs数据库 | 2015年 | http://crdd.osdd.net/raghava/cancerppd/ | [ |
ParaPep | 抗寄生虫肽 | 天然、专利、AMPs数据库 | 2014年 | http://webs.iiitd.edu.in/raghava/parapep/peptide.php | [ |
CyBase | 环肽类 | 天然、预测抗菌肽 | 2007年 | http://www.cybase.org.au/ | [ |
BaAMPs | 生物膜活性肽 | 文献 | 2015年 | http://www.tandfonline.com/loi/gbif20 | [ |
DRAVP | 抗病毒肽 | 实验验证 | 2023年 | http://dravp.cpu-bioinfor.org/ | [ |
[1] | Deo S, Turton KL, Kainth T, et al. Strategies for improving antimicrobial peptide production[J]. Biotechnol Adv, 2022, 59: 107968. |
[2] | Shao CX, Zhu YJ, Jian Q, et al. Cross-strand interaction, central bending, and sequence pattern act as biomodulators of simplified β-hairpin antimicrobial amphiphiles[J]. Small, 2021, 17(7): e2003899. |
[3] |
刘成程, 胡小芳, 冯友军. 细菌耐药: 生化机制与应对策略[J]. 生物技术通报, 2022, 38(9): 4-16.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0759 |
Liu CC, Hu XF, Feng YJ. Antimicrobial resistance: biochemical mechanisms and countermeasures[J]. Biotechnol Bull, 2022, 38(9): 4-16. | |
[4] |
Koehbach J, Craik DJ. The vast structural diversity of antimicrobial peptides[J]. Trends Pharmacol Sci, 2019, 40(7): 517-528.
doi: S0165-6147(19)30089-6 pmid: 31230616 |
[5] | Ramazi S, Mohammadi N, Allahverdi A, et al. A review on antimicrobial peptides databases and the computational tools[J]. Database, 2022, 2022: baac011. |
[6] |
Wang JJ, Dou XJ, Song J, et al. Antimicrobial peptides: promising alternatives in the post feeding antibiotic era[J]. Med Res Rev, 2019, 39(3): 831-859.
doi: 10.1002/med.21542 pmid: 30353555 |
[7] | Jhong JH, Yao LT, Pang YX, et al. dbAMP 2.0: updated resource for antimicrobial peptides with an enhanced scanning method for genomic and proteomic data[J]. Nucleic Acids Res, 2022, 50(D1): D460-D470. |
[8] | Zhang LJ, Gallo RL. Antimicrobial peptides[J]. Curr Biol, 2016, 26(1): R14-R19. |
[9] | 张若男, 吴迪, 高艺恬. 抗菌肽的设计与优化研究进展[J]. 生物医学工程学杂志, 2022, 39(6): 1247-1253. |
Zhang RN, Wu D, Gao YT. Progress on the design and optimization of antimicrobial peptides[J]. Journal of Biomedical Engineering, 2022, 39(6): 1247-1253. | |
[10] | Zhang K, Teng D, Mao RY, et al. Thinking on the construction of antimicrobial peptide databases: powerful tools for the molecular design and screening[J]. Int J Mol Sci, 2023, 24(4): 3134. |
[11] |
Steiner H, Hultmark D, Engström A, et al. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292: 246-248.1981[J]. J Immunol, 2009, 182(11): 6635-6637.
pmid: 19454655 |
[12] | Tossi A, Sandri L. Molecular diversity in gene-encoded, cationic antimicrobial polypeptides[J]. Curr Pharm Des, 2002, 8(9): 743-761. |
[13] | Wang GS, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education[J]. Nucleic Acids Res, 2016, 44(D1): D1087-D1093. |
[14] | Shi GB, Kang XY, Dong FY, et al. DRAMP 3.0: an enhanced comprehensive data repository of antimicrobial peptides[J]. Nucleic Acids Res, 2022, 50(D1): D488-D496. |
[15] | Pirtskhalava M, Amstrong AA, Grigolava M, et al. DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics[J]. Nucleic Acids Res, 2021, 49(D1): D288-D297. |
[16] | Gawde U, Chakraborty S, Waghu FH, et al. CAMPR4: a database of natural and synthetic antimicrobial peptides[J]. Nucleic Acids Res, 2023, 51(D1): D377-D383. |
[17] | Tyagi A, Tuknait A, Anand P, et al. CancerPPD: a database of anticancer peptides and proteins[J]. Nucleic Acids Res, 2015, 43(Database issue): D837-D843. |
[18] | Mehta D, Anand P, Kumar V, et al. ParaPep: a web resource for experimentally validated antiparasitic peptide sequences and their structures[J]. Database, 2014, 2014: bau051. |
[19] | Wang CK, Kaas Q, Chiche L, et al. CyBase: a database of cyclic protein sequences and structures, with applications in protein discovery and engineering[J]. Nucleic Acids Res, 2008, 36(Datab-ase issue): D206-D210. |
[20] |
Di Luca M, Maccari G, Maisetta G, et al. BaAMPs: the database of biofilm-active antimicrobial peptides[J]. Biofouling, 2015, 31(2): 193-199.
doi: 10.1080/08927014.2015.1021340 pmid: 25760404 |
[21] | Liu YC, Zhu YZ, Sun X, et al. DRAVP: a comprehensive database of antiviral peptides and proteins[J]. Viruses, 2023, 15(4): 820. |
[22] |
Porto WF, Pires AS, Franco OL. Computational tools for exploring sequence databases as a resource for antimicrobial peptides[J]. Biotechnol Adv, 2017, 35(3): 337-349.
doi: S0734-9750(17)30008-3 pmid: 28216008 |
[23] | Wang GS. The antimicrobial peptide database is 20 years old: recent developments and future directions[J]. Protein Sci, 2023, 32(10): e4778. |
[24] | Wang Z, Wang GS. APD: the antimicrobial peptide database[J]. Nucleic Acids Res, 2004, 32(Database issue): D590-D592. |
[25] | Wang GS, Li X, Wang Z. APD2: the updated antimicrobial peptide database and its application in peptide design[J]. Nucleic Acids Res, 2009, 37(Database issue): D933-D937. |
[26] | Friedman JH. Greedy function approximation: a gradient boosting machine[J]. Ann Statist, 2001, 29(5): 1189-1232. |
[27] | Krawczyk B. Learning from imbalanced data: open challenges and future directions[J]. Prog Artif Intell, 2016, 5(4): 221-232. |
[28] |
Fan LL, Sun J, Zhou MF, et al. DRAMP: a comprehensive data repository of antimicrobial peptides[J]. Sci Rep, 2016, 6: 24482.
doi: 10.1038/srep24482 pmid: 27075512 |
[29] | Kang XY, Dong FY, Shi C, et al. DRAMP 2.0, an updated data repository of antimicrobial peptides[J]. Sci Data, 2019, 6(1): 148. |
[30] |
Gogoladze G, Grigolava M, Vishnepolsky B, et al. DBAASP: database of antimicrobial activity and structure of peptides[J]. FEMS Microbiol Lett, 2014, 357(1): 63-68.
doi: 10.1111/1574-6968.12489 pmid: 24888447 |
[31] | Pirtskhalava M, Gabrielian A, Cruz P, et al. DBAASP v.2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides[J]. Nucleic Acids Res, 2016, 44(13): 6503. |
[32] |
Vishnepolsky B, Pirtskhalava M. Prediction of linear cationic antimicrobial peptides based on characteristics responsible for their interaction with the membranes[J]. J Chem Inf Model, 2014, 54(5): 1512-1523.
doi: 10.1021/ci4007003 pmid: 24730612 |
[33] | Vishnepolsky B, Grigolava M, Managadze G, et al. Comparative analysis of machine learning algorithms on the microbial strain-specific AMP prediction[J]. Brief Bioinform, 2022, 23(4): bbac233. |
[34] | Thomas S, Karnik S, Barai RS, et al. CAMP: a useful resource for research on antimicrobial peptides[J]. Nucleic Acids Res, 2010, 38(Database issue): D774-D780. |
[35] | Waghu FH, Gopi L, Barai RS, et al. CAMP: collection of sequences and structures of antimicrobial peptides[J]. Nucleic Acids Res, 2014, 42(Database issue): D1154-D1158. |
[36] | Waghu FH, Barai RS, Gurung P, et al. CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides[J]. Nucleic Acids Res, 2016, 44(D1): D1094-D1097. |
[37] | Bhadra P, Yan JL, Li JY, et al. AmPEP: sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest[J]. Sci Rep, 2018, 8(1): 1697. |
[38] |
Meher PK, Sahu TK, Saini V, et al. Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou's general PseAAC[J]. Sci Rep, 2017, 7: 42362.
doi: 10.1038/srep42362 pmid: 28205576 |
[39] | Torrent M, Andreu D, Nogués VM, et al. Connecting peptide physicochemical and antimicrobial properties by a rational prediction model[J]. PLoS One, 2011, 6(2): e16968. |
[40] | Lira F, Perez PS, Baranauskas JA, et al. Prediction of antimicrobial activity of synthetic peptides by a decision tree model[J]. Appl Environ Microbiol, 2013, 79(10): 3156-3159. |
[41] | 李剑勋, 步雨珊, 刘银雪, 等. α-螺旋抗菌肽YH X-1的从头设计及抑菌活性研究[J]. 食品科学技术学报, 2022, 40(3): 98-104, 111. |
Li JX, Bu YS, Liu YX, et al. De novo design and antibacterial activity of α-helical antimicrobial peptide YHX-1[J]. J Food Sci Technol, 2022, 40(3): 98-104, 111. | |
[42] |
Mishra B, Wang GS. Ab initio design of potent anti-MRSA peptides based on database filtering technology[J]. J Am Chem Soc, 2012, 134(30): 12426-12429.
doi: 10.1021/ja305644e pmid: 22803960 |
[43] |
Li WZ, Tan TT, Xu W, et al. Rational design of mirror-like peptides with alanine regulation[J]. Amino Acids, 2016, 48(2): 403-417.
doi: 10.1007/s00726-015-2094-y pmid: 26385363 |
[44] | Tan P, Lai ZH, Jian Q, et al. Design of heptad repeat amphiphiles based on database filtering and structure-function relationships to combat drug-resistant fungi and biofilms[J]. ACS Appl Mater Interfaces, 2020, 12(2): 2129-2144. |
[45] | Bobde SS, Alsaab FM, Wang GS, et al. Ab initio designed antimicrobial peptides against gram-negative bacteria[J]. Front Microbiol, 2021, 12: 715246. |
[46] | 肖轶尘, 熊浩, 谢川, 等. 生物信息学用于抗菌肽预测和分子设计的研究进展[J]. 生物技术通报, 2016, 32(12): 23-28. |
Xiao YC, Xiong H, Xie C, et al. Research progress on the application of bioinformatics in prediction and molecular design of antimicrobial peptide[J]. Biotechnol Bull, 2016, 32(12): 23-28. | |
[47] | Alsaab FM, Dean SN, Bobde S, et al. Computationally designed AMPs with antibacterial and antibiofilm activity against MDR Acinetobacter baumannii[J]. Antibiotics, 2023, 12(9): 1396. |
[48] |
Gautier R, Douguet D, Antonny B, et al. HELIQUEST: a web server to screen sequences with specific alpha-helical properties[J]. Bioinformatics, 2008, 24(18): 2101-2102.
doi: 10.1093/bioinformatics/btn392 pmid: 18662927 |
[49] | Duvaud S, Gabella C, Lisacek F, et al. Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users[J]. Nucleic Acids Res, 2021, 49(W1): W216-W227. |
[50] | Zheng W, Zhang CX, Bell EW, et al. I-TASSER gateway: a protein structure and function prediction server powered by XSEDE[J]. Future Gener Comput Syst, 2019, 99: 73-85. |
[51] | Lamiable A, Thévenet P, Rey J, et al. PEP-FOLD3: faster De novo structure prediction for linear peptides in solution and in complex[J]. Nucleic Acids Res, 2016, 44(W1): W449-W454. |
[52] |
Shao CX, Zhu YJ, Lai ZH, et al. Antimicrobial peptides with protease stability: progress and perspective[J]. Future Med Chem, 2019, 11(16): 2047-2050.
doi: 10.4155/fmc-2019-0167 pmid: 31538527 |
[1] | 贺文闯, 许强, 钱前, 商连光. 水稻泛基因组学的发展与前景:重要工具与应用[J]. 生物技术通报, 2024, 40(10): 9-18. |
[2] | 张鸿雁, 林国莉, 李如莲, 纪晓琦. 番茄果腐病拮抗菌的筛选及对番茄的防腐保鲜作用[J]. 生物技术通报, 2022, 38(3): 69-78. |
[3] | 常丽, 邓欣, 唐慧娟, 李建军, 黄思齐, 陈安国, 张翠萍, 赵立宁, 李德芳. 基于专利分析的大麻研发态势及技术构成[J]. 生物技术通报, 2018, 34(12): 195-201. |
[4] | 杨晶, 戴求仲, 侯振平, 王延周, 王满生. 基于专利分析的麻类作物饲料化利用技术态势及热点分析[J]. 生物技术通报, 2018, 34(12): 207-214. |
[5] | 宋娜娜, 柴志欣, 钟金城. 长链非编码RAN的研究进展[J]. 生物技术通报, 2016, 32(9): 23-31. |
[6] | 肖轶尘,熊浩,谢川,吕农华. 生物信息学用于抗菌肽预测和分子设计的研究进展[J]. 生物技术通报, 2016, 32(12): 23-28. |
[7] | 龚静, 柳纯洁, 缪小平, 郭安源. 人类长链非编码RNA相关SNP鉴定与功能预测的研究进展[J]. 生物技术通报, 2015, 31(11): 27-34. |
[8] | 靳进朴, 郭安源, 何坤, 张禾, 朱其慧, 陈新, 高歌, 罗静初. 植物转录因子分类、预测和数据库构建[J]. 生物技术通报, 2015, 31(11): 68-77. |
[9] | 王慧丽, 郭安源. 环境微生物宏基因组学数据库利用[J]. 生物技术通报, 2015, 31(11): 78-88. |
[10] | 杨健, 蔡浩洋. 肿瘤生物信息学数据库[J]. 生物技术通报, 2015, 31(11): 89-101. |
[11] | 罗静初. 实用生物信息技术课程教学实例[J]. 生物技术通报, 2015, 31(11): 102-111. |
[12] | . 《中国中医药现代远程教育》征稿启事[J]. , 2010, 0(09): 220-221. |
[13] | . 《光明中医》杂志2010年征稿征订启事[J]. , 2009, 0(10): 39-39. |
[14] | . 欢迎订阅2010年《农业网络信息》(月刊)[J]. , 2009, 0(10): 113-113. |
[15] | . 《生物医学工程与临床》征订启事[J]. , 2009, 0(10): 69-69. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 73
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 89
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||