生物技术通报 ›› 2024, Vol. 40 ›› Issue (12): 72-83.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0119
余永霞1(), 祝宁2, 刘光敏3, 朱龙佼1, 许文涛1(
)
收稿日期:
2024-01-31
出版日期:
2024-12-26
发布日期:
2025-01-15
通讯作者:
许文涛,男,博士,教授,研究方向:生物安全、功能核酸及功能食品;E-mail: xuwentao@cau.edu.cn作者简介:
余永霞,女,硕士,研究方向:食品安全检测;E-mail: yuyongxia08@163.com
基金资助:
YU Yong-xia1(), ZHU Ning2, LIU Guang-min3, ZHU Long-jiao1, XU Wen-tao1(
)
Received:
2024-01-31
Published:
2024-12-26
Online:
2025-01-15
摘要:
肺炎支原体是目前发现的体积最小的细胞生物,也是引发社区获得性肺炎主要的病原体之一。在感染早期,临床表现千差万别,可累及全身各个器官。早期诊断具有一定的挑战性,放射学X线检查和早期临床表现均不具有特异性,易因误诊和漏诊对人们的身体健康带来危害。目前国内外肺炎支原体的检查主要依靠实验室诊断手段。本文从肺炎支原体的复杂发病机制入手,包括黏附损伤、膜融合损伤、入侵伤害、毒性损伤、免疫损伤和炎症损伤,对实验室常用的分子诊断技术进行论述,涵盖核酸恒温扩增技术与变温扩增技术,恒温扩增技术例如环介导等温扩增技术(LAMP)、链置换反应、多重依赖核酸序列的扩增技术(NASBA)、重组酶扩增技术(RAA),变温扩增技术例如传统聚合酶链式反应(PCR)、广泛PCR、巢式PCR、实时PCR、多重PCR,并在检测技术基础上综合论述了肺炎支原体检测的生物传感平台,囊括侧流层析传感器、电化学传感器、荧光传感器等。旨在总结目前针对肺炎支原体检测技术的优缺点,以期为肺炎支原体的早期诊断提供一定的方法参考,展望未来肺炎支原体免提取、一体化、快速检测,伴随检测成本的降低,使得患者可以实现居家自检,避免抗感染药物的滥用,迎接临床诊疗进入精准时代。
余永霞, 祝宁, 刘光敏, 朱龙佼, 许文涛. 肺炎支原体核酸分子诊断技术研究进展[J]. 生物技术通报, 2024, 40(12): 72-83.
YU Yong-xia, ZHU Ning, LIU Guang-min, ZHU Long-jiao, XU Wen-tao. Research Progress in Nucleic Acid Molecular Diagnostic Technology for Mycoplasma pneumoniae[J]. Biotechnology Bulletin, 2024, 40(12): 72-83.
方法Method | 靶标位点Target site | 使用样本Sample type | 参考文献Reference |
---|---|---|---|
传统PCR Traditional PCR | P1黏附素基因 | 血液/咽拭子 | [ |
16S rRNA | 鼻咽分泌物/咽拭子/痰液 | [ | |
广泛 PCR Broad-range PCR | part E | 咽拭子 | [ |
tuf | 咽拭子/痰液 | [ | |
巢式PCR Nested PCR | 16S-23S rRNA 间隔区 | 鼻咽分泌物 | [ |
P1黏附素基因 | 咽拭子/鼻咽分泌物 | [ | |
23S rRNA | 气管拭子 | [ | |
实时PCR Real-time PCR | 16S rRNA | 痰液/咽拭子/肺泡灌洗液 | [ |
P1黏附素基因 | 痰液 | [ | |
repMp1 | 支气管肺泡灌洗液/鼻咽拭子 | [ | |
CARDS/ATPase | 鼻咽拭子 | [ | |
23S rRNA | 鼻咽拭子/痰液 | [ | |
microR-146/cmicroR-17a | 外周血/痰液 | [ | |
多重PCR Multiplex PCR | 23S rRNA | 痰液/肺泡灌洗液 | [ |
16S rRNA | 鼻咽拭子 | [ | |
P1黏附素基因 | 鼻咽拭子/血液 | [ | |
dnak/pdhA/tuf | ATCC标准品 | [ | |
ATPase | 鼻咽拭子 | [ | |
16S-23S rRNA 间隔区 | 鼻咽拭子 | [ | |
CARDS | 鼻咽分泌物 | [ | |
16S rRNA | 痰液 | [ |
表1 不同PCR技术总结
Table 1 Summary of different PCR techniques
方法Method | 靶标位点Target site | 使用样本Sample type | 参考文献Reference |
---|---|---|---|
传统PCR Traditional PCR | P1黏附素基因 | 血液/咽拭子 | [ |
16S rRNA | 鼻咽分泌物/咽拭子/痰液 | [ | |
广泛 PCR Broad-range PCR | part E | 咽拭子 | [ |
tuf | 咽拭子/痰液 | [ | |
巢式PCR Nested PCR | 16S-23S rRNA 间隔区 | 鼻咽分泌物 | [ |
P1黏附素基因 | 咽拭子/鼻咽分泌物 | [ | |
23S rRNA | 气管拭子 | [ | |
实时PCR Real-time PCR | 16S rRNA | 痰液/咽拭子/肺泡灌洗液 | [ |
P1黏附素基因 | 痰液 | [ | |
repMp1 | 支气管肺泡灌洗液/鼻咽拭子 | [ | |
CARDS/ATPase | 鼻咽拭子 | [ | |
23S rRNA | 鼻咽拭子/痰液 | [ | |
microR-146/cmicroR-17a | 外周血/痰液 | [ | |
多重PCR Multiplex PCR | 23S rRNA | 痰液/肺泡灌洗液 | [ |
16S rRNA | 鼻咽拭子 | [ | |
P1黏附素基因 | 鼻咽拭子/血液 | [ | |
dnak/pdhA/tuf | ATCC标准品 | [ | |
ATPase | 鼻咽拭子 | [ | |
16S-23S rRNA 间隔区 | 鼻咽拭子 | [ | |
CARDS | 鼻咽分泌物 | [ | |
16S rRNA | 痰液 | [ |
[1] |
Waites KB, Talkington DF. Mycoplasma pneumoniaeand its role as a human pathogen[J]. Clin Microbiol Rev, 2004, 17(4): 697-728.
pmid: 15489344 |
[2] | Chanock RM, Hayflick L, Barile MF. Growth on artificial medium of an agent associated with atypical pneumonia and its identification as a PPLO[J]. Proc Natl Acad Sci U S A, 1962, 48(1): 41-49. |
[3] |
Kutty PK, Jain S, Taylor TH, et al. Mycoplasma pneumoniae among children hospitalized with community-acquired pneumonia[J]. Clin Infect Dis, 2019, 68(1): 5-12.
doi: 10.1093/cid/ciy419 pmid: 29788037 |
[4] | Smith CB, Chanock RM, Friedewald WT, et al. Mycoplasma pneumoniae infections in volunteers[J]. Ann N Y Acad Sci, 1967, 143(1): 471-483. |
[5] | 孙天文, 刘思辰, 杨柯. 实时荧光核酸恒温扩增试验对肺炎支原体感染的诊断价值[J]. 河南医学高等专科学校学报, 2023, 35(5): 543-547. |
Sun TW, Liu SC, Yang K. Diagnostic value of real-time fluorescent nucleic acid thermostatic amplification test for Mycoplasma pneumoniae infection[J]. J Henan Med Coll, 2023, 35(5): 543-547. | |
[6] |
Shimizu T, Kimura Y, Kida Y, et al. Cytadherence of Mycoplasma pneumoniae induces inflammatory responses through autophagy and toll-like receptor 4[J]. Infect Immun, 2014, 82(7): 3076-3086.
doi: 10.1128/IAI.01961-14 pmid: 24799628 |
[7] | Chourasia BK, Chaudhry R, Malhotra P. Delineation of immunodominant and cytadherence segment(s)of Mycoplasma pneumoniae P1 gene[J]. BMC Microbiol, 2014, 14: 108. |
[8] |
Seto S, Kenri T, Tomiyama T, et al. Involvement of P1 adhesin in gliding motility of Mycoplasma pneumoniae as revealed by the inhibitory effects of antibody under optimized gliding conditions[J]. J Bacteriol, 2005, 187(5): 1875-1877.
pmid: 15716461 |
[9] |
Balish MF, Santurri RT, Ricci AM, et al. Localization of Mycoplasma pneumoniae cytadherence-associated protein HMW2 by fusion with green fluorescent protein: implications for attachment organelle structure[J]. Mol Microbiol, 2003, 47(1): 49-60.
pmid: 12492853 |
[10] | McDermott AJ, Taylor BM, Bernstein KM. Toxic epidermal necrolysis from suspected Mycoplasma pneumoniae infection[J]. Mil Med, 2013, 178(9): e1048-e1050. |
[11] | Ledford JG, Mukherjee S, Kislan MM, et al. Surfactant protein-a suppresses eosinophil-mediated killing of Mycoplasma pneumoniae in allergic lungs[J]. PLoS One, 2012, 7(2): e32436. |
[12] | Lai JF, Zindl CL, Duffy LB, et al. Critical role of macrophages and their activation via MyD88-NFκB signaling in lung innate immunity to Mycoplasma pneumoniae[J]. PLoS One, 2010, 5(12): e14417. |
[13] | 庞焕香, 乔红梅, 成焕吉, 等. 支原体肺炎患儿肺泡灌洗液中TNF-α、IL-6、IL-10水平检测及意义[J]. 中国当代儿科杂志, 2011, 13(10): 808-810. |
Pang HX, Qiao HM, Cheng HJ, et al. Levels of TNF-α, IL-6 and IL-10 in bronchoalveolar lavage fluid in children with Mycoplasma pneumoniae pneumonia[J]. Chin J Contemp Pediatr, 2011, 13(10): 808-810. | |
[14] | 中华医学会儿科学分会临床检验学组. 儿童肺炎支原体呼吸道感染实验室诊断中国专家共识[J]. 中华检验医学杂志, 2019, 42(7): 507-513. |
Clinical Laboratory Group, Pediatrics Society of Chinese Medical Association. Chinese expert consensus on laboratory diagnosis of mycoplasma pneumoniae respiratory tract infection in children[J]. Chin J Lab Med, 2019, 42(7): 507-513. | |
[15] |
Ieven M, Ursi D, Van Bever H, et al. Detection of Mycoplasma pneumoniae by two polymerase chain reactions and role of M. pneumoniae in acute respiratory tract infections in pediatric patients[J]. J Infect Dis, 1996, 173(6): 1445-1452.
pmid: 8648218 |
[16] | 王居鹏, 朱黎娜, 马明坤, 等. 被动凝集法、间接免疫荧光法和胶体金法联合检测肺炎支原体抗体对儿童肺炎支原体感染的诊断价值[J]. 天津医药, 2022, 50(4): 418-423. |
Wang JP, Zhu LN, Ma MK, et al. Diagnostic value of particle agglutination, indirect immunofluorescence assay and immune colloidal gold technique combined detection for Mycoplasma pneumoniae antibody in children with Mycoplasma pneumoniae infection[J]. Tianjin Med J, 2022, 50(4): 418-423. | |
[17] |
Waites KB, Xiao L, Paralanov V, et al. Molecular methods for the detection of Mycoplasma and ureaplasma infections in humans: a paper from the 2011 William Beaumont Hospital Symposium on molecular pathology[J]. J Mol Diagn, 2012, 14(5): 437-450.
doi: 10.1016/j.jmoldx.2012.06.001 pmid: 22819362 |
[18] |
Bernet C, Garret M, de Barbeyrac B, et al. Detection of Mycoplasma pneumoniae by using the polymerase chain reaction[J]. J Clin Microbiol, 1989, 27(11): 2492-2496.
doi: 10.1128/jcm.27.11.2492-2496.1989 pmid: 2509513 |
[19] |
Dorigo-Zetsma JW, Verkooyen RP, van Helden HP, et al. Molecular detection of Mycoplasma pneumoniae in adults with community-acquired pneumonia requiring hospitalization[J]. J Clin Microbiol, 2001, 39(3): 1184-1186.
pmid: 11230455 |
[20] |
Templeton KE, Scheltinga SA, Graffelman AW, et al. Comparison and evaluation of real-time PCR, real-time nucleic acid sequence-based amplification, conventional PCR, and serology for diagnosis of Mycoplasma pneumoniae[J]. J Clin Microbiol, 2003, 41(9): 4366-4371.
doi: 10.1128/JCM.41.9.4366-4371.2003 pmid: 12958270 |
[21] |
Medjo B, Atanaskovic-Markovic M, Radic S, et al. Mycoplasma pneumoniae as a causative agent of community-acquired pneumonia in children: clinical features and laboratory diagnosis[J]. Ital J Pediatr, 2014, 40: 104.
doi: 10.1186/s13052-014-0104-4 pmid: 25518734 |
[22] |
Morozumi M, Hasegawa K, Chiba N, et al. Application of PCR for Mycoplasma pneumoniae detection in children with community-acquired pneumonia[J]. J Infect Chemother, 2004, 10(5): 274-279.
pmid: 16163461 |
[23] |
Roth SB, Jalava J, Ruuskanen O, et al. Use of an oligonucleotide array for laboratory diagnosis of bacteria responsible for acute upper respiratory infections[J]. J Clin Microbiol, 2004, 42(9): 4268-4274.
pmid: 15365022 |
[24] |
Störmer M, Vollmer T, Henrich B, et al. Broad-range real-time PCR assay for the rapid identification of cell-line contaminants and clinically important mollicute species[J]. Int J Med Microbiol, 2009, 299(4): 291-300.
doi: 10.1016/j.ijmm.2008.08.002 pmid: 18926769 |
[25] | Wang H, Kong FR, Jelfs P, et al. Simultaneous detection and identification of common cell culture contaminant and pathogenic mollicutes strains by reverse line blot hybridization[J]. Appl Environ Microbiol, 2004, 70(3): 1483-1486. |
[26] |
Lin BC, Blaney KM, Malanoski AP, et al. Using a resequencing microarray as a multiple respiratory pathogen detection assay[J]. J Clin Microbiol, 2007, 45(2): 443-452.
pmid: 17135438 |
[27] | Kumar S, Bharti PK, Baveja CP, et al. Detection of Mycoplasma pneumoniae by two polymerase chain reactions and role of Mycoplasma pneumoniae in pediatric community-acquired lower respiratory tract infections[J]. Indian J Med Microbiol, 2022, 40(2): 250-253. |
[28] | Guo DX, Hu WJ, Wei R, et al. Epidemiology and mechanism of drug resistance of Mycoplasma pneumoniae in Beijing, China: a multicenter study[J]. Bosn J Basic Med Sci, 2019, 19(3): 288-296. |
[29] |
Raggam RB, Leitner E, Berg J, et al. Single-Run, parallel detection of DNA from three pneumonia-producing bacteria by real-time polymerase chain reaction[J]. J Mol Diagn, 2005, 7(1): 133-138.
pmid: 15681485 |
[30] | Li LF, Ma JY, Guo PB, et al. Molecular beacon based real-time PCR p1 gene genotyping, macrolide resistance mutation detection and clinical characteristics analysis of Mycoplasma pneumoniae infections in children[J]. BMC Infect Dis, 2022, 22(1): 724. |
[31] |
Pitcher D, Chalker VJ, Sheppard C, et al. Real-time detection of Mycoplasma pneumoniae in respiratory samples with an internal processing control[J]. J Med Microbiol, 2006, 55(Pt 2): 149-155.
doi: 10.1099/jmm.0.46281-0 pmid: 16434706 |
[32] |
Dumke R, Schurwanz N, Lenz M, et al. Sensitive detection of Mycoplasma pneumoniae in human respiratory tract samples by optimized real-time PCR approach[J]. J Clin Microbiol, 2007, 45(8): 2726-2730.
pmid: 17537933 |
[33] |
Winchell JM, Thurman KA, Mitchell SL, et al. Evaluation of three real-time PCR assays for detection of Mycoplasma pneumoniae in an outbreak investigation[J]. J Clin Microbiol, 2008, 46(9): 3116-3118.
doi: 10.1128/JCM.00440-08 pmid: 18614663 |
[34] | Liu Y, Ye XY, Zhang H, et al. Rapid detection of Mycoplasma pneumoniae and its macrolide-resistance mutation by Cycleave PCR[J]. Diagn Microbiol Infect Dis, 2014, 78(4): 333-337. |
[35] | Tang MY, Wang D, Tong X, et al. Comparison of different detection methods for Mycoplasma pneumoniae infection in children with community-acquired pneumonia[J]. BMC Pediatr, 2021, 21(1): 90. |
[36] | Wang JC, Guo CY, Yang LX, et al. Peripheral blood microR-146a and microR-29c expression in children with Mycoplasma pneumoniae pneumonia and its clinical value[J]. Ital J Pediatr, 2023, 49(1): 119. |
[37] |
Ji M, Lee NS, Oh JM, et al. Single-nucleotide polymorphism PCR for the detection of Mycoplasma pneumoniae and determination of macrolide resistance in respiratory samples[J]. J Microbiol Methods, 2014, 102: 32-36.
doi: 10.1016/j.mimet.2014.04.009 pmid: 24780151 |
[38] |
Zacharioudakis IM, Zervou FN, Dubrovskaya Y, et al. Evaluation of a multiplex PCR panel for the microbiological diagnosis of pneumonia in hospitalized patients: experience from an academic medical center[J]. Int J Infect Dis, 2021, 104: 354-360.
doi: 10.1016/j.ijid.2021.01.004 pmid: 33434669 |
[39] | Miyashita N, Saito A, Kohno S, et al. Multiplex PCR for the simultaneous detection of Chlamydia pneumoniae, Mycoplasma pneumoniae and Legionella pneumophila in community-acquired pneumonia[J]. Respir Med, 2004, 98(6): 542-550. |
[40] |
Geertsen R, Kaeppeli F, Sterk-Kuzmanovic N, et al. A multiplex PCR assay for the detection of respiratory bacteriae in nasopharyngeal smears from children with acute respiratory disease[J]. Scand J Infect Dis, 2007, 39(9): 769-774.
pmid: 17701714 |
[41] | Kumar S, Wang LH, Fan J, et al. Detection of 11 common viral and bacterial pathogens causing community-acquired pneumonia or sepsis in asymptomatic patients by using a multiplex reverse transcription-PCR assay with manual(enzyme hybridization)or automated(electronic microarray)detection[J]. J Clin Microbiol, 2008, 46(9): 3063-3072. |
[42] | Lodes MJ, Suciu D, Wilmoth JL, et al. Identification of upper respiratory tract pathogens using electrochemical detection on an oligonucleotide microarray[J]. PLoS One, 2007, 2(9): e924. |
[43] |
Benson R, Tondella ML, Bhatnagar J, et al. Development and evaluation of a novel multiplex PCR technology for molecular differential detection of bacterial respiratory disease pathogens[J]. J Clin Microbiol, 2008, 46(6): 2074-2077.
doi: 10.1128/JCM.01858-07 pmid: 18400916 |
[44] | Wang YJ, Kong FR, Yang YH, et al. A multiplex PCR-based reverse line blot hybridization(mPCR/RLB)assay for detection of bacterial respiratory pathogens in children with pneumonia[J]. Pediatr Pulmonol, 2008, 43(2): 150-159. |
[45] |
Shen HW, Zhu BQ, Wang SL, et al. Association of targeted multiplex PCR with resequencing microarray for the detection of multiple respiratory pathogens[J]. Front Microbiol, 2015, 6: 532.
doi: 10.3389/fmicb.2015.00532 pmid: 26074910 |
[46] | Wang L, Feng ZS, Zhao MC, et al. A comparison study between GeXP-based multiplex-PCR and serology assay for Mycoplasma pneumoniae detection in children with community acquired pneumonia[J]. BMC Infect Dis, 2017, 17(1): 518. |
[47] |
Loens K, Van Heirstraeten L, Malhotra-Kumar S, et al. Optimal sampling sites and methods for detection of pathogens possibly causing community-acquired lower respiratory tract infections[J]. J Clin Microbiol, 2009, 47(1): 21-31.
doi: 10.1128/JCM.02037-08 pmid: 19020070 |
[48] | Diaz MH, Winchell JM. Detection of Mycoplasma pneumoniae and Chlamydophila pneumoniae directly from respiratory clinical specimens using a rapid real-time polymerase chain reaction assay[J]. Diagn Microbiol Infect Dis, 2012, 73(3): 278-280. |
[49] | Pillet S, Lardeux M, Dina JL, et al. Comparative evaluation of six commercialized multiplex PCR kits for the diagnosis of respiratory infections[J]. PLoS One, 2013, 8(8): e72174. |
[50] | Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Res, 2000, 28(12): E63. |
[51] |
Petrone BL, Wolff BJ, DeLaney AA, et al. Isothermal detection of Mycoplasma pneumoniae directly from respiratory clinical specimens[J]. J Clin Microbiol, 2015, 53(9): 2970-2976.
doi: 10.1128/JCM.01431-15 pmid: 26179304 |
[52] |
Ratliff AE, Duffy LB, Waites KB. Comparison of the illumigene Mycoplasma DNA amplification assay and culture for detection of Mycoplasma pneumoniae[J]. J Clin Microbiol, 2014, 52(4): 1060-1063.
doi: 10.1128/JCM.02913-13 pmid: 24430454 |
[53] | Shi C, Shang FJ, Zhou ML, et al. Triggered isothermal PCR by denaturation bubble-mediated strand exchange amplification[J]. Chem Commun, 2016, 52(77): 11551-11554. |
[54] |
Yang C, Li Y, Deng J, et al. Accurate, rapid and low-cost diagnosis of Mycoplasma pneumoniae via fast narrow-thermal-cycling denaturation bubble-mediated strand exchange amplification[J]. Anal Bioanal Chem, 2020, 412(30): 8391-8399.
doi: 10.1007/s00216-020-02977-y pmid: 33040157 |
[55] |
Diaz MH, Winchell JM. The evolution of advanced molecular diagnostics for the detection and characterization of Mycoplasma pneumoniae[J]. Front Microbiol, 2016, 7: 232.
doi: 10.3389/fmicb.2016.00232 pmid: 27014191 |
[56] |
Loens K, Ieven M, Ursi D, et al. Application of NucliSens Basic Kit for the detection of Mycoplasma pneumoniae in respiratory specimens[J]. J Microbiol Methods, 2003, 54(1): 127-130.
pmid: 12732431 |
[57] |
Loens K, Beck T, Ursi D, et al. Development of real-time multiplex nucleic acid sequence-based amplification for detection of Mycoplasma pneumoniae, Chlamydophila pneumoniae, and Legionella spp. in respiratory specimens[J]. J Clin Microbiol, 2008, 46(1): 185-191.
doi: 10.1128/JCM.00447-07 pmid: 18032625 |
[58] | Jiang TT, Wang YC, Jiao WW, et al. Recombinase polymerase amplification combined with real-time fluorescent probe for Mycoplasma pneumoniae detection[J]. J Clin Med, 2022, 11(7): 1780. |
[59] | Zhou J, Xiao F, Fu J, et al. Rapid, ultrasensitive and highly specific diagnosis of Mycoplasma pneumoniae by a CRISPR-based detection platform[J]. Front Cell Infect Microbiol, 2023, 13: 1147142. |
[60] | Xue GH, Li SL, Zhao HQ, et al. Use of a rapid recombinase-aided amplification assay for Mycoplasma pneumoniae detection[J]. BMC Infect Dis, 2020, 20(1): 79. |
[61] | Xia SM, Chen X. Single-copy sensitive, field-deployable, and simultaneous dual-gene detection of SARS-CoV-2 RNA via modified RT-RPA[J]. Cell Discov, 2020, 6(1): 37. |
[62] | Deng ZL, Hu HY, Tang D, et al. Ultrasensitive, specific, and rapid detection of Mycoplasma pneumoniae using the ERA/CRISPR-Cas12a dual system[J]. Front Microbiol, 2022, 13: 811768. |
[63] | Wang YC, Wang Y, Quan ST, et al. Establishment and application of a multiple cross displacement amplification coupled with nanoparticle-based lateral flow biosensor assay for detection of Mycoplasma pneumoniae[J]. Front Cell Infect Microbiol, 2019, 9: 325. |
[64] | Zhu MJ, Ma L, Meng QF, et al. Visual detection of Mycoplasma pneumoniae by the recombinase polymerase amplification assay coupled with lateral flow dipstick[J]. J Microbiol Methods, 2022, 202: 106591. |
[65] | Hu LY, Wang XR, Cao DL, et al. Establishment and performance evaluation of multiplex PCR-dipstick DNA chromatography for Mycoplasma pneumoniae and Chlamydia pneumoniae rapid detection[J]. Can J Infect Dis Med Microbiol, 2023, 2023: 6654504. |
[66] |
Yang W, Restrepo-Pérez L, Bengtson M, et al. Detection of CRISPR-dCas9 on DNA with solid-state nanopores[J]. Nano Lett, 2018, 18(10): 6469-6474.
doi: 10.1021/acs.nanolett.8b02968 pmid: 30187755 |
[67] | Zhu R, Jiang H, Li CY, et al. CRISPR/Cas9-based point-of-care lateral flow biosensor with improved performance for rapid and robust detection of Mycoplasma pneumonia[J]. Anal Chim Acta, 2023, 1257: 341175. |
[68] | Liu LL, Xiang GM, Jiang DN, et al. Electrochemical gene sensor for Mycoplasma pneumoniae DNA using dual signal amplification via a Pt@Pd nanowire and horse radish peroxidase[J]. Microchim Acta, 2016, 183(1): 379-387. |
[69] | Sen D, Gilbert W. A sodium-potassium switch in the formation of four-stranded G4-DNA[J]. Nature, 1990, 344(6265): 410-414. |
[70] | Li JJ, Wu J, He ZQ, et al. Fast detection of Mycoplasma pneumoniae by interaction of tetramolecular G-quadruplex with graphene oxide[J]. Sens Actuat B Chem, 2019, 290: 41-46. |
[71] |
Wang H, Ma Z, Qin JX, et al. A versatile loop-mediated isothermal amplification microchip platform for Streptococcus pneumoniae and Mycoplasma pneumoniae testing at the point of care[J]. Biosens Bioelectron, 2019, 126: 373-380.
doi: S0956-5663(18)30905-9 pmid: 30469075 |
[72] |
Mongan AE, Tuda JSB, Runtuwene LR. Portable sequencer in the fight against infectious disease[J]. J Hum Genet, 2020, 65(1): 35-40.
doi: 10.1038/s10038-019-0675-4 pmid: 31582773 |
[73] | Ishiguro N, Sato R, Mori T, et al. Point-of-care molecular diagnosis of Mycoplasma pneumoniae including macrolide sensitivity using quenching probe polymerase chain reaction[J]. PLoS One, 2021, 16(10): e0258694. |
[74] | Duan YK, Zhang X, Li Y, et al. Amino-modified silica membrane capable of DNA extraction and enrichment for facilitated isothermal amplification detection of Mycoplasma pneumoniae[J]. J Pharm Biomed Anal, 2023, 224: 115190. |
[1] | 李志强, 王吉英, 袁厅, 王佳, 韦艳娜, 王玉格, 李少丽, 邵国青, 冯志新, 于岩飞. 肺炎支原体感染评价方法的比较研究[J]. 生物技术通报, 2025, 41(1): 110-119. |
[2] | 田彤彤, 葛家振, 高鹏程, 李学瑞, 宋国栋, 郑福英, 储岳峰. 绵羊肺炎支原体GH3-3株全基因组测序及生物信息学分析[J]. 生物技术通报, 2024, 40(7): 323-334. |
[3] | 周子莹, 宋晓东, 刘洋儿, 吴一凡, 朱龙佼, 古东月, 何国庆, 李相阳, 许文涛. 变构转录因子生物传感器构建策略及在食品安全中的应用进展[J]. 生物技术通报, 2024, 40(12): 20-33. |
[4] | 薛宁, 王瑾, 李世新, 刘叶, 程海娇, 张玥, 毛雨丰, 王猛. 多基因同步调控结合高通量筛选构建高产L-苯丙氨酸的谷氨酸棒杆菌工程菌株[J]. 生物技术通报, 2023, 39(9): 268-280. |
[5] | 李仁瀚, 张乐乐, 刘春立, 刘秀霞, 白仲虎, 杨艳坤, 李业. 基于紫色杆菌素生物合成途径的L-色氨酸生物传感器的构建[J]. 生物技术通报, 2023, 39(10): 80-92. |
[6] | 胡海洋, 应婉琴, 何军, 吕芷贤, 谢小平, 邓仲良. 酶促重组等温扩增实时荧光法快速检测肺炎支原体方法的建立及应用[J]. 生物技术通报, 2022, 38(9): 264-270. |
[7] | 王鹏飞, 杨敏, 朱龙佼, 许文涛. 基于铂纳米团簇的生物传感研究进展[J]. 生物技术通报, 2021, 37(12): 235-242. |
[8] | 赵颖, 王楠, 陆安祥, 冯晓元, 郭晓军, 栾云霞. 核酸适配体侧流层析分析技术在真菌毒素检测中的应用[J]. 生物技术通报, 2020, 36(8): 217-227. |
[9] | 方顺燕, 宋丹, 刘艳萍, 徐文娟, 刘佳瑶, 韩向峙, 龙峰. 用于Escherichia coli O157∶H7直接快速检测的倏逝波荧光核酸适配体传感器研究[J]. 生物技术通报, 2020, 36(7): 228-234. |
[10] | 叶健文, 陈江楠, 张旭, 吴赴清, 陈国强. 动态调控:一种高效的细胞工厂工程化代谢改造策略[J]. 生物技术通报, 2020, 36(6): 1-12. |
[11] | 杨敏, 李舒婷, 杨文平, 李相阳, 许文涛. DNA/银纳米簇介导的功能核酸生物传感器研究进展[J]. 生物技术通报, 2020, 36(6): 245-254. |
[12] | 柳苏月, 田晶晶, 田洪涛, 许文涛. 铽(III)离子及其复合物:从发光特性到传感应用[J]. 生物技术通报, 2020, 36(4): 192-207. |
[13] | 孙雨阁, 李宸葳, 杜再慧, 许文涛. FEN1酶介导的功能核酸生物传感器的研究进展[J]. 生物技术通报, 2020, 36(4): 208-224. |
[14] | 吴亚, 徐智辉, 张彪, 赵冬芳, 曹文欣, 张兴平. 核酸适配体光学生物传感器在卡那霉素检测中的研究进展[J]. 生物技术通报, 2020, 36(1): 193-201. |
[15] | 肖冰, 罗云波, 黄昆仑, 张园, 许文涛. 功能核酸荧光标记型定量统一化检测技术的研究进展[J]. 生物技术通报, 2019, 35(7): 213-221. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 54
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 88
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||