生物技术通报 ›› 2024, Vol. 40 ›› Issue (12): 72-83.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0119

• 技术与方法 • 上一篇    下一篇

肺炎支原体核酸分子诊断技术研究进展

余永霞1(), 祝宁2, 刘光敏3, 朱龙佼1, 许文涛1()   

  1. 1.中国农业大学营养与健康系 食品精准营养与质量控制教育部重点实验室,北京 100193
    2.北京市昌平区农业技术推广站,北京 102200
    3.北京市农林科学院农产品加工与食品营养研究所,北京 100097
  • 收稿日期:2024-01-31 出版日期:2024-12-26 发布日期:2025-01-15
  • 通讯作者: 许文涛,男,博士,教授,研究方向:生物安全、功能核酸及功能食品;E-mail: xuwentao@cau.edu.cn
  • 作者简介:余永霞,女,硕士,研究方向:食品安全检测;E-mail: yuyongxia08@163.com
  • 基金资助:
    首都卫生发展科研专项(首发2024-2-1141);北京市科技新星计划(20230484463)

Research Progress in Nucleic Acid Molecular Diagnostic Technology for Mycoplasma pneumoniae

YU Yong-xia1(), ZHU Ning2, LIU Guang-min3, ZHU Long-jiao1, XU Wen-tao1()   

  1. 1. Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100193
    2. Beijing Changping District Agricultural Technology Extension Station, Beijing 102200
    3. Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097
  • Received:2024-01-31 Published:2024-12-26 Online:2025-01-15

摘要:

肺炎支原体是目前发现的体积最小的细胞生物,也是引发社区获得性肺炎主要的病原体之一。在感染早期,临床表现千差万别,可累及全身各个器官。早期诊断具有一定的挑战性,放射学X线检查和早期临床表现均不具有特异性,易因误诊和漏诊对人们的身体健康带来危害。目前国内外肺炎支原体的检查主要依靠实验室诊断手段。本文从肺炎支原体的复杂发病机制入手,包括黏附损伤、膜融合损伤、入侵伤害、毒性损伤、免疫损伤和炎症损伤,对实验室常用的分子诊断技术进行论述,涵盖核酸恒温扩增技术与变温扩增技术,恒温扩增技术例如环介导等温扩增技术(LAMP)、链置换反应、多重依赖核酸序列的扩增技术(NASBA)、重组酶扩增技术(RAA),变温扩增技术例如传统聚合酶链式反应(PCR)、广泛PCR、巢式PCR、实时PCR、多重PCR,并在检测技术基础上综合论述了肺炎支原体检测的生物传感平台,囊括侧流层析传感器、电化学传感器、荧光传感器等。旨在总结目前针对肺炎支原体检测技术的优缺点,以期为肺炎支原体的早期诊断提供一定的方法参考,展望未来肺炎支原体免提取、一体化、快速检测,伴随检测成本的降低,使得患者可以实现居家自检,避免抗感染药物的滥用,迎接临床诊疗进入精准时代。

关键词: 肺炎支原体, 核酸分子诊断, 恒温扩增, 变温扩增, 生物传感器

Abstract:

Mycoplasma pneumoniae is the smallest known cell organism, and is one of major pathogens causing community-acquired pneumonia. The symptoms of infection can differ widely in the early stages and can affect different organs in a body. Early diagnosis is challenging because early clinical symptoms and radiological examinations lack specificity and are prone to misdiagnosis and missed diagnosis, which can threaten physical health. At present, both domestic and international M. pneumoniae detection mainly relies on laboratory diagnostic methods. This article begins by examining the intricate pathogenesis of M. pneumoniae, which includes adhesion damage, membrane fusion damage, invasion damage, toxicity damage, immune damage, and inflammatory damage. It also briefly explores commonly used molecular diagnostic techniques in the laboratory, such as nucleic acid isothermal amplification technology and variable temperature amplification technology. The isothermal amplification techniques include loop-mediated isothermal amplification(LAMP), chain displacement reaction, sequence-dependent nucleic acid amplification(NASBA), and recombinase-aided amplification(RAA). Additionally, variable temperature amplification techniques refer to traditional polymerase chain reaction(PCR), broad-range PCR, nested PCR, real-time PCR, and multiplex PCR. The text also includes a comprehensive discussion on biosensing platforms for M. pneumoniae detection, which encompasses lateral flow assay, electrochemical biosensors, fluorescence biosensors, and more. This manuscript aims to summarize the advantages and disadvantages of current M. pneumoniae detection techniques, providing a reference for early diagnosis. It also anticipates future non-extraction, integration, and rapid detection methods. Along with reduced costs, these advancements could enable patients to perform self-examinations at home, avoid unnecessary use of anti-infective drugs, and usher in a precision era for clinical diagnosis and treatment.

Key words: Mycoplasma pneumoniae, nucleic acid molecular diagnosis, isothermal amplification, variable temperature amplification, biosensor