生物技术通报 ›› 2025, Vol. 41 ›› Issue (6): 167-178.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0759
• 研究报告 • 上一篇
宗建伟(
), 邓海芳, 蔡沅原, 常雅雯, 朱雅琦, 杨雨华(
)
收稿日期:2024-08-08
出版日期:2025-06-26
发布日期:2025-06-30
通讯作者:
杨雨华,女,博士,副教授,研究方向 :植物抗性生物学;E-mail: yyzdx2003@163.com作者简介:宗建伟,男,博士,副教授,研究方向 :植物抗逆机理及抗逆植物应用;E-mail: acbczjw@163.com
基金资助:
ZONG Jian-wei(
), DENG Hai-fang, CAI Yuan-yuan, CHANG Ya-wen, ZHU Ya-qi, YANG Yu-hua(
)
Received:2024-08-08
Published:2025-06-26
Online:2025-06-30
摘要:
目的 探究干旱胁迫下接种丛枝菌根(arbuscular mycorrhizal,AM)真菌对文冠果(Xanthoceras sorbifolium Bunge)根系形态、叶片解剖结构及生理的影响,并明确灌水阈值。 方法 以摩西斗管囊霉(Funneliformis mosseae)为供试菌种,选用1年生文冠果幼苗进行盆栽试验,设置4种干旱胁迫(正常(WW)、轻度(LD)、中度(MD)、重度(SD)),进行接种(AM)与不接种(NM),共计8个处理,并对测定指标进行相关性、主成分分析。 结果 AM真菌对文冠果有较好的侵染效益,能够增强根系活力,增加根系体积及最长侧根长,促使地上部生物量的积累高于地下部。随干旱程度加剧,叶片解剖结构完整性在轻度干旱(LD)胁迫后遭受破坏,但接菌苗受损程度较小。此外,AM真菌促进下表皮和栅栏组织厚度的增加并达到极显著水平(P<0.001),SD胁迫时,AM组仍高于NM各处理组。另一方面,相同胁迫下,接种AM真菌能够增强叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性,降低丙二醛(MDA)含量,从而减缓干旱对文冠果造成的质膜伤害。相关性分析表明,文冠果生物量与根系各指标均存在显著影响;叶片厚度、上表皮厚度与根系活力呈显著正相关(P<0.05);而叶的海绵组织厚度与根系活力、根系体积均呈极显著正相关(P<0.001)。通过主成分分析发现,MD处理是文冠果自身抗旱能力的临界点,同时文冠果菌根苗在LD干旱环境适应性最佳。 结论 AM真菌通过增强根系活力、增加根系体积、提高叶片栅栏组织厚度和叶片厚度等机制以应对干旱亏缺,并启动叶片抗氧化系统与根系性状之间的协同策略适应干旱环境。
宗建伟, 邓海芳, 蔡沅原, 常雅雯, 朱雅琦, 杨雨华. AM真菌对干旱胁迫下文冠果根系形态和叶片结构耦合的影响[J]. 生物技术通报, 2025, 41(6): 167-178.
ZONG Jian-wei, DENG Hai-fang, CAI Yuan-yuan, CHANG Ya-wen, ZHU Ya-qi, YANG Yu-hua. Coupling Effect of AM Fungi on the Root Morphology and Leaf Structure of Xanthoceras sorbifolium Bunge under Drought Stress[J]. Biotechnology Bulletin, 2025, 41(6): 167-178.
处理 Treatment | 田间持水量 Field water-holding capacity (%) |
|---|---|
| WW | 75-80 |
| LD | 60-65 |
| MD | 45-50 |
| SD | 30-35 |
表1 各干旱程度的不同田间持水量
Table 1 Different field water-holding capacity under each drought degree
处理 Treatment | 田间持水量 Field water-holding capacity (%) |
|---|---|
| WW | 75-80 |
| LD | 60-65 |
| MD | 45-50 |
| SD | 30-35 |
处理 Treatment | 地上部分鲜质量 Aboveground fresh weight (g) | 地上部分干质量 Aboveground dry weight (g) | 地下部分鲜质量 Underground fresh weight (g) | 地下部分干质量 Underground dry weight (g) | 根冠比 Root-shoot ratio |
|---|---|---|---|---|---|
| WW+NM | 43.10±0.48b | 37.95±0.86b | 20.57±0.91b | 17.98±2.07a | 0.47±0.04cd |
| LD+NM | 40.14±0.89c | 28.09±1.02d | 20.69±1.01b | 16.18±0.36b | 0.58±0.03b |
| MD+NM | 20.40±1.56e | 14.65±1.48f | 11.29±0.58c | 9.88±0.50c | 0.68±0.07a |
| SD+NM | 15.51±0.53f | 13.32±0.99f | 8.02±0.75d | 7.60±0.72d | 0.57±0.02b |
| WW+AM | 45.46±0.05a | 43.52±0.48a | 23.69±1.29a | 18.09±0.22ab | 0.42±0.01d |
| LD+AM | 42.56±0.28b | 34.22±3.21c | 21.10±1.08b | 17.58±0.31a | 0.52±0.04bc |
| MD+AM | 22.86±0.93d | 19.87±0.75e | 11.86±0.52c | 11.37±0.82c | 0.57±0.03b |
| SD+AM | 18.86±1.92e | 15.71±0.62f | 11.11±0.89c | 8.37±0.27d | 0.53±0.00bc |
| 干旱 Drought | P<0.001 | P<0.001 | P<0.001 | P<0.001 | P<0.001 |
| 接种 Inoculation | P<0.001 | P<0.001 | P<0.001 | P<0.05 | P<0.001 |
| 干旱×接种 Drought×Inoculation | 0.89 | 0.15 | P<0.05 | 0.505 | 0.432 |
表2 干旱胁迫下接种AM真菌对文冠果生长的影响
Table 2 Effect of AM fungi inoculation on X. sorbifolium Bunge growth under drought stress
处理 Treatment | 地上部分鲜质量 Aboveground fresh weight (g) | 地上部分干质量 Aboveground dry weight (g) | 地下部分鲜质量 Underground fresh weight (g) | 地下部分干质量 Underground dry weight (g) | 根冠比 Root-shoot ratio |
|---|---|---|---|---|---|
| WW+NM | 43.10±0.48b | 37.95±0.86b | 20.57±0.91b | 17.98±2.07a | 0.47±0.04cd |
| LD+NM | 40.14±0.89c | 28.09±1.02d | 20.69±1.01b | 16.18±0.36b | 0.58±0.03b |
| MD+NM | 20.40±1.56e | 14.65±1.48f | 11.29±0.58c | 9.88±0.50c | 0.68±0.07a |
| SD+NM | 15.51±0.53f | 13.32±0.99f | 8.02±0.75d | 7.60±0.72d | 0.57±0.02b |
| WW+AM | 45.46±0.05a | 43.52±0.48a | 23.69±1.29a | 18.09±0.22ab | 0.42±0.01d |
| LD+AM | 42.56±0.28b | 34.22±3.21c | 21.10±1.08b | 17.58±0.31a | 0.52±0.04bc |
| MD+AM | 22.86±0.93d | 19.87±0.75e | 11.86±0.52c | 11.37±0.82c | 0.57±0.03b |
| SD+AM | 18.86±1.92e | 15.71±0.62f | 11.11±0.89c | 8.37±0.27d | 0.53±0.00bc |
| 干旱 Drought | P<0.001 | P<0.001 | P<0.001 | P<0.001 | P<0.001 |
| 接种 Inoculation | P<0.001 | P<0.001 | P<0.001 | P<0.05 | P<0.001 |
| 干旱×接种 Drought×Inoculation | 0.89 | 0.15 | P<0.05 | 0.505 | 0.432 |
图1 不同干旱胁迫下文冠果的菌根侵染率A:干旱胁迫下接种组文冠果的菌根侵染图;Vesicular: 泡囊;Hypha: 菌丝; Arbusular: 丛枝结构;B:干旱胁迫下接种组文冠果根系的侵染率
Fig. 1 Mycorrhizal infection rate of X. sorbifolium Bunge under different drought stressA: Mycorrhizal infection map of X. sorbifolium Bunge inoculated under drought stress. B: Infection rate of X. sorbifolium Bunge roots in inoculated groups under drought stress
处理 Treatment | 根系活力 Root activity (μTTF /g/h) | 根系体积 Root volume (cm3) | 一级新根数 Number of new roots | 最长侧根长 Roots length (cm) |
|---|---|---|---|---|
| WW+NM | 70.40±2.27b | 64.02±0.42c | 101.33±0.58c | 14.26±0.25b |
| LD+NM | 63.90±1.26c | 60.87±0.52d | 91.33±1.53d | 13.31±0.32c |
| MD+NM | 42.16±1.10e | 57.04±0.87f | 81.67±0.58e | 12.21±0.15d |
| SD+NM | 32.61±1.46f | 52.97±0.97g | 70.33±1.53f | 10.34±0.54e |
| WW+AM | 78.50±0.57a | 70.28±1.05a | 122.67±2.52a | 15.45±0.14a |
| LD+AM | 73.41±2.27b | 65.88±0.65b | 106.00±1.00b | 14.53±0.50b |
| MD+AM | 51.04±2.30d | 60.82±0.45d | 92.67±0.58d | 13.52±0.47c |
| SD+AM | 49.61±4.09d | 58.48±0.87e | 80.33±1.53e | 11.77±0.48d |
| 干旱 Drought | P<0.001 | P<0.001 | P<0.001 | P<0.001 |
| 接种 Inoculation | P<0.001 | P<0.001 | P<0.001 | P<0.001 |
| 干旱×接种 Drought×Inoculation | P<0.01 | 2.81 | P<0.001 | 0.12 |
表3 干旱胁迫下接种AM真菌对文冠果根系的影响
Table 3 Effects of AM fungi inoculation on X. sorbifolium Bunge root under drought stress
处理 Treatment | 根系活力 Root activity (μTTF /g/h) | 根系体积 Root volume (cm3) | 一级新根数 Number of new roots | 最长侧根长 Roots length (cm) |
|---|---|---|---|---|
| WW+NM | 70.40±2.27b | 64.02±0.42c | 101.33±0.58c | 14.26±0.25b |
| LD+NM | 63.90±1.26c | 60.87±0.52d | 91.33±1.53d | 13.31±0.32c |
| MD+NM | 42.16±1.10e | 57.04±0.87f | 81.67±0.58e | 12.21±0.15d |
| SD+NM | 32.61±1.46f | 52.97±0.97g | 70.33±1.53f | 10.34±0.54e |
| WW+AM | 78.50±0.57a | 70.28±1.05a | 122.67±2.52a | 15.45±0.14a |
| LD+AM | 73.41±2.27b | 65.88±0.65b | 106.00±1.00b | 14.53±0.50b |
| MD+AM | 51.04±2.30d | 60.82±0.45d | 92.67±0.58d | 13.52±0.47c |
| SD+AM | 49.61±4.09d | 58.48±0.87e | 80.33±1.53e | 11.77±0.48d |
| 干旱 Drought | P<0.001 | P<0.001 | P<0.001 | P<0.001 |
| 接种 Inoculation | P<0.001 | P<0.001 | P<0.001 | P<0.001 |
| 干旱×接种 Drought×Inoculation | P<0.01 | 2.81 | P<0.001 | 0.12 |
图2 干旱胁迫和接菌处理下的文冠果叶片解剖结构图ue:上表皮厚度;pt:栅栏组织;st:海绵组织;le:下表皮厚度
Fig. 2 Anatomical structure of X. sorbifolium Bunge leaves under drought stress and bacterial treatmentue: Upper epidermis thickness; pt: palisade tissue thickness; st: spongy tissue thickness; le: lower epidermis thickness
处理 Treatment | 叶片厚度 Blade thickness (μm) | 上表皮厚度 Thickness of upper epidermis (μm) | 下表皮厚度 Thickness of lower epidermis (μm) | 栅栏组织厚度 Thickness of palisade tissue (μm) | 海绵组织厚度 Thickness of spongy tissue (μm) | 栅海比 Ratio of palisade tissue to spongy tissue | 叶片组织结构紧密度 Structure density of leaf tissue (%) | 叶片组织结构疏松度 Porosity of leaf tissue structure (%) |
|---|---|---|---|---|---|---|---|---|
| WW+NM | 94.36±7.36ab | 9.35±0.51cd | 7.54±0.68c | 38.20±0.96c | 37.46±2.29a | 1.02±0.06b | 40.61±2.50bc | 39.75±1.28a |
| LD+NM | 100.41±5.04a | 11.10±0.51b | 8.47±0.57abc | 40.59±2.88abc | 35.02±1.95ab | 1.16±0.03a | 40.39±0.93c | 34.88±0.98b |
| MD+NM | 93.79±1.41ab | 9.45±0.81cd | 8.41±0.61abc | 39.13±2.41bc | 32.85±0.71bc | 1.19±0.05a | 41.70±2.01abc | 35.02±0.31b |
| SD+NM | 86.67±4.16b | 8.06±0.42f | 8.25±0.36bc | 38.75±0.54c | 31.48±2.33c | 1.23±0.08a | 44.77±1.96ab | 36.29±1.22b |
| WW+AM | 99.23±3.68a | 9.88±0.64c | 8.53±0.48abc | 39.69±0.40bc | 38.47±0.72a | 1.03±0.03b | 40.04±1.83c | 38.79±0.83a |
| LD+AM | 101.10±5.13a | 12.70±0.57a | 9.56±0.74a | 43.27±1.09a | 37.26±2.31a | 1.16±0.09a | 42.90±3.01abc | 36.86±1.38b |
| MD+AM | 98.94±2.14a | 9.72±0.88c | 9.44±0.56a | 42.85±1.61a | 34.97±1.61ab | 1.23±0.01a | 43.30±0.80abc | 35.34±0.99b |
| SD+AM | 93.31±8.33ab | 8.35±0.69df | 9.06±0.74ab | 42.02±1.32ab | 33.66±1.96bc | 1.25±0.07a | 45.22±3.48a | 36.14±1.23b |
| 干旱 Drought | P<0.05 | P<0.001 | 3.2 | P<0.05 | P<0.001 | P<0.001 | P<0.05 | P<0.001 |
| 接种 Inoculation | 4.24 | P<0.05 | P<0.001 | P<0.001 | P<0.05 | 0.63 | 1.19 | 0.46 |
| 干旱×接种 Drought×Inoculation | 0.37 | 1.44 | 0.06 | 0.54 | 0.15 | 0.08 | 0.54 | 1.99 |
表4 干旱胁迫下接种AM真菌对文冠果叶片解剖结构的影响
Table 4 Effects of AM fungi inoculation on X. sorbifolium Bunge leaves under drought stress
处理 Treatment | 叶片厚度 Blade thickness (μm) | 上表皮厚度 Thickness of upper epidermis (μm) | 下表皮厚度 Thickness of lower epidermis (μm) | 栅栏组织厚度 Thickness of palisade tissue (μm) | 海绵组织厚度 Thickness of spongy tissue (μm) | 栅海比 Ratio of palisade tissue to spongy tissue | 叶片组织结构紧密度 Structure density of leaf tissue (%) | 叶片组织结构疏松度 Porosity of leaf tissue structure (%) |
|---|---|---|---|---|---|---|---|---|
| WW+NM | 94.36±7.36ab | 9.35±0.51cd | 7.54±0.68c | 38.20±0.96c | 37.46±2.29a | 1.02±0.06b | 40.61±2.50bc | 39.75±1.28a |
| LD+NM | 100.41±5.04a | 11.10±0.51b | 8.47±0.57abc | 40.59±2.88abc | 35.02±1.95ab | 1.16±0.03a | 40.39±0.93c | 34.88±0.98b |
| MD+NM | 93.79±1.41ab | 9.45±0.81cd | 8.41±0.61abc | 39.13±2.41bc | 32.85±0.71bc | 1.19±0.05a | 41.70±2.01abc | 35.02±0.31b |
| SD+NM | 86.67±4.16b | 8.06±0.42f | 8.25±0.36bc | 38.75±0.54c | 31.48±2.33c | 1.23±0.08a | 44.77±1.96ab | 36.29±1.22b |
| WW+AM | 99.23±3.68a | 9.88±0.64c | 8.53±0.48abc | 39.69±0.40bc | 38.47±0.72a | 1.03±0.03b | 40.04±1.83c | 38.79±0.83a |
| LD+AM | 101.10±5.13a | 12.70±0.57a | 9.56±0.74a | 43.27±1.09a | 37.26±2.31a | 1.16±0.09a | 42.90±3.01abc | 36.86±1.38b |
| MD+AM | 98.94±2.14a | 9.72±0.88c | 9.44±0.56a | 42.85±1.61a | 34.97±1.61ab | 1.23±0.01a | 43.30±0.80abc | 35.34±0.99b |
| SD+AM | 93.31±8.33ab | 8.35±0.69df | 9.06±0.74ab | 42.02±1.32ab | 33.66±1.96bc | 1.25±0.07a | 45.22±3.48a | 36.14±1.23b |
| 干旱 Drought | P<0.05 | P<0.001 | 3.2 | P<0.05 | P<0.001 | P<0.001 | P<0.05 | P<0.001 |
| 接种 Inoculation | 4.24 | P<0.05 | P<0.001 | P<0.001 | P<0.05 | 0.63 | 1.19 | 0.46 |
| 干旱×接种 Drought×Inoculation | 0.37 | 1.44 | 0.06 | 0.54 | 0.15 | 0.08 | 0.54 | 1.99 |
图6 干旱胁迫下接种AM真菌各指标的相关性分析AFW:地上鲜质量;UFW:地下鲜质量;ADW:地上干质量;UDW:地下干质量;RSR:根冠比;POD:过氧化物酶;SOD:超氧化物歧化酶;CAT:过氧化氢酶;H2O2:过氧化氢;O2-:超氧阴离子;RC:相对电导率;MDA:丙二醛;RA:根系活力;RV:根系体积;NR:一级新根数;RL:最长侧根长;MCR:菌根侵染率;TL:叶片厚度;Tue:上表皮厚度;Tle:下表皮厚度;TPt:栅栏组织厚度;TSt:海绵组织厚度;R2:栅海比;CTR:叶片组织结构紧密度;SR:叶片组织结构疏松度。*、**、***分别表示在P<0.05,P<0.01,P<0.001水平影响显著
Fig. 6 Correlation analysis of indexes after AM fungi inoculation under drought stressAFW: Aboveground fresh weight. UFW: Underground fresh weight. ADW: Aboveground dry weight. UDW: Underground dry weight. RSR: Root-shoot ratio. POD: Peroxidase. SOD: Superoxide dismutase. CAT: Catalase. H2O2: Hydrogen peroxide. O2-: Superoxide anion. RC: Relative conductivity. MDA: Malondialdehyde. RA: Root activity; RV: Root volume. NR: New roots. RL: Roots length. MCR: Mycorrhizal colonization rate. TL: Leaf thickness. Tue: Upper epidermis thickness. Tle: Lower epidermis thickness. TPt: Palisade tissue thickness. TSt: Spongy tissue thickness. R2: Palisade tissue and spongy tissue ratio.CTR: Ratio of palisade tissue thickness to leaf thickness. SR: Ratio of spongy tissue thickness to leaf thickness. *,**, and *** refer to P<0.05, P<0.01, and P <0.001, respectively
| 指标Index | 第一主成分PC1 | 第二主成分PC2 | 第三主成分PC3 |
|---|---|---|---|
| 地上鲜质量Aboveground fresh weight | 0.068 | -0.030 | -0.010 |
| 地上干质量Aboveground dry weight | 0.061 | -0.035 | 0.081 |
| 地下鲜质量Underground fresh weight | 0.069 | -0.034 | -0.006 |
| 地下干质量Underground dry weight | 0.062 | -0.014 | 0.134 |
| 根冠比Root-shoot ratio | 0.003 | 0.015 | 0.309 |
| 过氧化物酶Peroxidase | -0.003 | 0.160 | 0.155 |
| 超氧化物歧化酶Superoxide dismutase | 0.000 | 0.137 | -0.005 |
| 过氧化氢酶Catalase | 0.007 | 0.137 | -0.182 |
| 过氧化氢Hydrogen peroxide | -0.072 | -0.036 | 0.074 |
| 超氧阴离子Superoxide anion | -0.069 | -0.066 | 0.105 |
| 相对电导率Relative conductivity | -0.068 | 0.002 | -0.074 |
| 丙二醛Malondialdehyde | -0.045 | -0.028 | 0.190 |
| 叶片厚度Leaf thickness | 0.073 | 0.006 | 0.000 |
| 上表皮厚度Thickness of upper epidermis | 0.073 | 0.016 | -0.053 |
| 下表皮厚度Thickness of lower epidermis | 0.072 | 0.008 | -0.044 |
| 栅栏组织Thickness of palisade tissue | 0.073 | 0.022 | -0.008 |
| 海绵组织Thickness of spongy tissue | 0.064 | 0.102 | 0.083 |
| 栅海比Ratio of palisade tissue tospongy tissue | 0.052 | 0.098 | 0.179 |
| 叶片组织结构紧密度Structure density of leaf tissue | 0.015 | 0.181 | -0.022 |
| 叶片组织结构疏松度Porosity of leaf tissue structure | 0.023 | 0.179 | -0.011 |
| 根系活力Root activity | 0.072 | 0.002 | -0.039 |
| 根系体积Root volume | -0.051 | 0.103 | 0.019 |
| 一级新根数New roots | -0.047 | 0.067 | -0.108 |
| 最长侧根长Length of the longest root | 0.038 | -0.104 | -0.142 |
| 特征值 Eigen value | 13.754 | 5.411 | 3.179 |
| 方差贡献率Variance contribution rate (%) | 56.932 | 22.825 | 13.346 |
| 累计贡献率Cumulative contribution rate (%) | 56.932 | 79.757 | 93.103 |
表5 主成分分析旋转后的成分载荷矩阵
Table 5 Principal component analysis rotated component loading matrix
| 指标Index | 第一主成分PC1 | 第二主成分PC2 | 第三主成分PC3 |
|---|---|---|---|
| 地上鲜质量Aboveground fresh weight | 0.068 | -0.030 | -0.010 |
| 地上干质量Aboveground dry weight | 0.061 | -0.035 | 0.081 |
| 地下鲜质量Underground fresh weight | 0.069 | -0.034 | -0.006 |
| 地下干质量Underground dry weight | 0.062 | -0.014 | 0.134 |
| 根冠比Root-shoot ratio | 0.003 | 0.015 | 0.309 |
| 过氧化物酶Peroxidase | -0.003 | 0.160 | 0.155 |
| 超氧化物歧化酶Superoxide dismutase | 0.000 | 0.137 | -0.005 |
| 过氧化氢酶Catalase | 0.007 | 0.137 | -0.182 |
| 过氧化氢Hydrogen peroxide | -0.072 | -0.036 | 0.074 |
| 超氧阴离子Superoxide anion | -0.069 | -0.066 | 0.105 |
| 相对电导率Relative conductivity | -0.068 | 0.002 | -0.074 |
| 丙二醛Malondialdehyde | -0.045 | -0.028 | 0.190 |
| 叶片厚度Leaf thickness | 0.073 | 0.006 | 0.000 |
| 上表皮厚度Thickness of upper epidermis | 0.073 | 0.016 | -0.053 |
| 下表皮厚度Thickness of lower epidermis | 0.072 | 0.008 | -0.044 |
| 栅栏组织Thickness of palisade tissue | 0.073 | 0.022 | -0.008 |
| 海绵组织Thickness of spongy tissue | 0.064 | 0.102 | 0.083 |
| 栅海比Ratio of palisade tissue tospongy tissue | 0.052 | 0.098 | 0.179 |
| 叶片组织结构紧密度Structure density of leaf tissue | 0.015 | 0.181 | -0.022 |
| 叶片组织结构疏松度Porosity of leaf tissue structure | 0.023 | 0.179 | -0.011 |
| 根系活力Root activity | 0.072 | 0.002 | -0.039 |
| 根系体积Root volume | -0.051 | 0.103 | 0.019 |
| 一级新根数New roots | -0.047 | 0.067 | -0.108 |
| 最长侧根长Length of the longest root | 0.038 | -0.104 | -0.142 |
| 特征值 Eigen value | 13.754 | 5.411 | 3.179 |
| 方差贡献率Variance contribution rate (%) | 56.932 | 22.825 | 13.346 |
| 累计贡献率Cumulative contribution rate (%) | 56.932 | 79.757 | 93.103 |
| 序号Number | 处理Treatment | PC1(F1) | PC2(F2) | PC3(F3) | 综合得分Overall score | 排名Rank |
|---|---|---|---|---|---|---|
| 1 | WW+NM | 0.660 2 | -1.607 81 | -0.177 88 | -107.208 757 4 | 6 |
| 2 | LD+NM | 0.275 39 | -0.044 52 | 1.745 74 | 174.661 353 1 | 2 |
| 3 | MD+NM | -0.800 52 | -0.244 8 | 0.531 97 | -15.571 715 33 | 4 |
| 4 | SD+NM | -1.576 14 | -0.698 39 | 0.110 22 | -135.172 481 1 | 8 |
| 5 | WW+AM | 1.433 75 | -0.517 79 | -0.979 88 | -50.900 889 67 | 5 |
| 6 | LD+AM | 0.878 2 | 1.265 24 | 0.604 52 | 207.192 054 6 | 1 |
| 7 | MD+AM | -0.155 13 | 1.303 94 | -0.361 95 | 61.467 850 57 | 3 |
| 8 | SD+AM | -0.715 75 | 0.544 12 | -1.472 75 | -134.469 143 4 | 7 |
表6 干旱胁迫下接种AM真菌文冠果的综合得分及排名
Table 6 Overall score and ranking of X. sorbifolium Bunge inoculated with AM fungi under drought stress
| 序号Number | 处理Treatment | PC1(F1) | PC2(F2) | PC3(F3) | 综合得分Overall score | 排名Rank |
|---|---|---|---|---|---|---|
| 1 | WW+NM | 0.660 2 | -1.607 81 | -0.177 88 | -107.208 757 4 | 6 |
| 2 | LD+NM | 0.275 39 | -0.044 52 | 1.745 74 | 174.661 353 1 | 2 |
| 3 | MD+NM | -0.800 52 | -0.244 8 | 0.531 97 | -15.571 715 33 | 4 |
| 4 | SD+NM | -1.576 14 | -0.698 39 | 0.110 22 | -135.172 481 1 | 8 |
| 5 | WW+AM | 1.433 75 | -0.517 79 | -0.979 88 | -50.900 889 67 | 5 |
| 6 | LD+AM | 0.878 2 | 1.265 24 | 0.604 52 | 207.192 054 6 | 1 |
| 7 | MD+AM | -0.155 13 | 1.303 94 | -0.361 95 | 61.467 850 57 | 3 |
| 8 | SD+AM | -0.715 75 | 0.544 12 | -1.472 75 | -134.469 143 4 | 7 |
| 1 | 陈俊芳, 吴宪, 杨佳绒,等. 全球气候变化下干旱及复水对植物和土壤微生物的影响: 进展与展望[J]. 生态学杂志, 2023, 42(12): 3038-3049. |
| Chen JF, Wu X, Yang JR, et al. Effects of drought and rewatering on plants and soil microorganisms under climate change:review and perspectives [J]. Chi J Ecol, 2023, 42(12): 3038-3049. | |
| 2 | 徐梦琦, 高艳菊, 张志浩, 等. 干旱胁迫对疏叶骆驼刺幼苗生长和生理的影响 [J]. 干旱区研究, 2023, 40(2): 257-267. |
| Xu MQ, Gao YJ, Zhang ZH, et al. Effects of drought stress on growth and physiology of Alhagi sparsifolia seedlings [J]. Arid Zone Res, 2023, 40(2): 257-267. | |
| 3 | 陈兰兰, 王丽, 吴亚娟, 等. 植物响应干旱胁迫的分子和微生态机制 [J/OL]. 分子植物育种, 2023: 1-15. . |
| Chen LL, Wang L, Wu YJ, et al. Molecular and microecological mechanisms of plant responses to drought stress [J/OL]. Mol Plant Breeding, 2023: 1-15. . | |
| 4 | 冯树林. 干旱胁迫和复水对侧柏和紫穗槐幼苗生长和生理特征的影响研究 [D]. 杨凌: 西北农林科技大学, 2020. |
| Feng SL. Effects of drought stress and rehydration on growth and physiological characteristics of Platycladus orientalis and Amorpha fruticosa seedlings [D]. Yangling: Northwest A & F University, 2020. | |
| 5 | Eviner VT, Chapin FS. Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes [J]. Annu Rev Ecol Evol Syst, 2003, 34: 455-485. |
| 6 | Li WR, Wang LW, Qian SF, et al. Root characteristics explain greater water use efficiency and drought tolerance in invasive Compositae plants [J]. Plant Soil, 2023, 483(1): 209-223. |
| 7 | 程鑫, 吴纯泽, 韦庆钰, 等. 水曲柳丛枝菌根真菌接菌苗对干旱胁迫的生长和生理响应 [J]. 林业科学, 2023, 59(2): 58-66. |
| Cheng X, Wu CZ, Wei QY, et al. Growth and physiological responses of Fraxinus mandshurica seedlings inoculated with arbuscular mycorrhizal fungi to drought stress [J]. Sci Silvae Sin, 2023, 59(2): 58-66. | |
| 8 | 毛沂新. 生物质能源树种文冠果发展可行性探析 [J]. 防护林科技, 2017(9): 119-120. |
| Mao YX. Feasibility analysis on the development of Xanthoceras sorbifolia Bunge as a biomass energy tree species [J]. Prot For Sci Technol, 2017(9): 119-120. | |
| 9 | 李沅楷. 文冠果育苗移栽与盐胁迫、节水抗旱措施对苗木生长的影响 [D]. 阿拉尔: 塔里木大学, 2023. |
| Li YK. Effects of transplanting Xanthoceras sorbifolia seedlings, salt stress, water saving and drought resistance measures on seedling growth [D]. Ala'er: Tarim University, 2023. | |
| 10 | 赖小平. 干旱胁迫对文冠果根系发育及幼苗生长的影响研究 [J]. 绿色科技, 2023, 25(3): 95-98. |
| Lai XP. Effects of drought stress on root system development and seedling growth of Xanthoceras sorbifolia [J]. J Green Sci Technol, 2023, 25(3): 95-98. | |
| 11 | 王孟珂, 田梦妮, 毕泉鑫, 等. 基于气孔性状的文冠果种质资源抗旱性评价及抗旱资源筛选 [J]. 植物研究, 2021, 41(6): 957-964. |
| Wang MK, Tian MN, Bi QX, et al. Evaluation of drought tolerance based on stomatal characters and selection of germplasm resources from Xanthoceras sorbifolia [J]. Bull Bot Res, 2021, 41(6): 957-964. | |
| 12 | 陈菲. 盐碱胁迫对文冠果幼苗生理生化特征的影响 [D]. 大连: 大连工业大学, 2017. |
| Chen F. Effects of saline-alkali stress on physiological and biochemical characteristics of Xanthoceras sorbifolia seedlings [D]. Dalian: Dalian Polytechnic University, 2017. | |
| 13 | Janah I, Meddich A, Elhasnaoui A, et al. Arbuscular mycorrhizal fungi mitigates salt stress toxicity in Stevia rebaudiana bertoni through the modulation of physiological and biochemical responses [J]. J Soil Sci Plant Nutr, 2023, 23(1): 152-162. |
| 14 | Giovannetti M, Mosse B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots [J]. New Phytol, 1980, 84(3): 489-500. |
| 15 | 何凤, 刘攀峰, 王璐, 等. 干旱胁迫及复水对杜仲苗生理特性的影响 [J]. 植物生理学报, 2021, 57(3): 661-671. |
| He F, Liu PF, Wang L, et al. Effect of drought stress and rewatering on physiological characteristics of Eucommia ulmoides seedling [J]. Plant Physiol J, 2021, 57(3): 661-671. | |
| 16 | 韩忠明, 王云贺, 胥苗苗, 等. 干旱胁迫对防风生理特性及品质的影响 [J]. 西北农林科技大学学报: 自然科学版, 2017, 45(11): 100-106. |
| Han ZM, Wang YH, Xu MM, et al. Effect of drought stress on physiological characteristics and quality of Saposhnikovia divaricata [J]. J Northwest A F Univ Nat Sci Ed, 2017, 45(11): 100-106. | |
| 17 | Van Rossum MWPC, Alberda M, van der Plas LHW. Role of oxidative damage in tulip bulb scale micropropagation [J]. Plant Sci, 1997, 130(2): 207-216. |
| 18 | Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts [J]. Plant Cell Physiol, 1981, 22(5): 867-880. |
| 19 | Ahmad S, Pritsos C A, Bowen S M, Heisler, et al. Antioxidant enzymes of larvae of the cabbage looper moth, trichoplusia ni: subcellular distribution and activities of superoxide dismutase, catalase and glutathione reductase [J]. Free Radic Res Commun, 1988, 4(6), 403-408. |
| 20 | 张亚敏, 马克明, 曲来叶. 干旱条件下接种AM真菌对小马鞍羊蹄甲幼苗根系的影响 [J]. 生态学报, 2017, 37(8): 2611-2619. |
| Zhang YM, Ma KM, Qu LY. Inoculation with arbuscular mycorrhizal fungi enhances the root system of Bauhinia faberi var. Microphylla seedlings under drought stress conditions [J]. Acta Ecol Sin, 2017, 37(8): 2611-2619. | |
| 21 | 黄小辉, 陈道静, 冯大兰. 不同基质条件下丛枝菌根真菌对桑树生长的影响 [J]. 南京林业大学学报: 自然科学版, 2019, 43(3): 9-16. |
| Huang XH, Chen DJ, Feng DL. The effects of arbuscular mycorrhiza fungi on the growth of mulberry in different nursery substrates [J]. J Nanjing For Univ Nat Sci Ed, 2019, 43(3): 9-16. | |
| 22 | 陈奕璇, 谢坤豪, 王晓芹, 等. 丛枝菌根真菌对大葱幼苗生长和矿质元素吸收的影响 [J]. 中国蔬菜, 2024(8): 80-86. |
| Chen YX, Xie KH, Wang XQ, et al. The effects of inoculated arbuscular mycorrhizal fungi on the growth and mineral element uptake of green onion seedlings [J]. China Veg, 2024(8): 80-86. | |
| 23 | 蒲子天, 张林, 张弛, 等. 丛枝菌根真菌与植物共生影响植物水分状态的研究进展 [J]. 土壤, 2022, 54(5): 882-889. |
| Pu ZT, Zhang L, Zhang C, et al. Research progress of arbuscular mycorrhizal fungi and plant symbiosis affecting plant water regime [J]. Soils, 2022, 54(5): 882-889. | |
| 24 | 冯晓敏, 高翔, 吕慧卿, 等. 抗旱糜子根系生长特性及叶片表皮结构对水分胁迫的响应 [J]. 作物杂志, 2024(4): 172-179. |
| Feng XM, Gao X, Lü HQ, et al. The responses of root growth characteristics and leaf epidermal structure of drought-resistant broomcorn millet to water stress [J]. Crops, 2024(4): 172-179. | |
| 25 | 何建社, 张利, 刘千里, 等. 岷江干旱河谷区典型灌木对干旱胁迫的生理生化响应 [J]. 生态学报, 2018, 38(7): 2362-2371. |
| He JS, Zhang L, Liu QL, et al. Physiological and biochemical response of typical shrubs to drought stress in the Minjiang River dry valley [J]. Acta Ecol Sin, 2018, 38(7): 2362-2371. | |
| 26 | 许亚男. 接种AMF对干旱胁迫燕麦光合特性及解剖结构的影响 [D]. 太谷: 山西农业大学, 2022. |
| Xu YN. Effects of AMF inoculation on photosynthetic characteristics and anatomical structure of oat under drought stress [D]. Taigu: Shanxi Agricultural University, 2022. | |
| 27 | 李芳兰, 包维楷. 植物叶片形态解剖结构对环境变化的响应与适应 [J]. 植物学通报, 2005, (S1): 118-127. |
| Li FL, Bao WK. Responses of the morphological and anatomical structure of the plant leaf to environmental change [J]. Chinese Bulletin of Botany, 2005, (S1): 118-127. | |
| 28 | 刘明, 张晴, 白惠茹, 等. 干旱胁迫对栽培种及野生种北沙参叶片解剖结构及生理特性的影响 [J]. 烟台大学学报: 自然科学与工程版, 2023, 36(1): 28-33. |
| Liu M, Zhang Q, Bai HR, et al. Effects of drought stress on anatomical structure and physiological characteristics of leaves of cultivated and wild Glehnia littoralis [J]. J Yantai Univ Nat Sci Eng Ed, 2023, 36(1): 28-33. | |
| 29 | 李源, 王赞, 刘贵波, 等. 干旱胁迫下胶质苜蓿内源激素及解剖结构的研究 [J]. 华北农学报, 2010, 25(6): 211-216. |
| Li Y, Wang Z, Liu GB, et al. Study on endogenesis hormones and anatomical structures of Medicago glutinosa under drought stress [J]. Acta Agric Boreali Sin, 2010, 25(6): 211-216. | |
| 30 | 宗建伟, 黄小迪, 靳永安, 等. NaCl胁迫下摩西斗管囊霉对文冠果生长及叶片解剖结构和叶绿素荧光参数的影响 [J]. 植物资源与环境学报, 2023, 32(2): 73-81. |
| Zong JW, Huang XD, Jin YA, et al. Effect of Funneliformis mosseae on growth and leaf anatomical structure and chlorophyll fluorescence parameters of Xanthoceras sorbifolium under NaCl stress [J]. J Plant Resour Environ, 2023, 32(2): 73-81. | |
| 31 | Mahmood T, Khalid S, Abdullah M, et al. Insights into drought stress signaling in plants and the molecular genetic basis of cotton drought tolerance [J]. Cells, 2019, 9(1): 105. |
| 32 | Liu XY, Chen Z, Jahan MS, et al. RNA-Seq analysis reveals the growth and photosynthetic responses of rapeseed (Brassica napus L.) under red and blue LEDs with supplemental yellow, green, or white light [J]. Hortic Res, 2020, 7(1): 206. |
| 33 | 谭炯锐, 查同刚, 张泽宇, 等. 猪毛菜响应干旱胁迫的叶片结构、生理及转录组分析 [J]. 草业学报, 2024, 33(1): 75-88. |
| Tan JR, Zha TG, Zhang ZY, et al. Leaf structure, physiology and transcriptome analysis of Salsola collina in response to drought stress [J]. Acta Prataculturae Sin, 2024, 33(1): 75-88. | |
| 34 | 颜巧芳, 单立山, 解婷婷, 等. 珍珠柴幼苗叶片和根系形态特征对干旱胁迫的响应 [J]. 干旱区研究, 2024, 41(1): 92-103. |
| Yan QF, Shan LS, Xie TT, et al. Morphological characteristics of the leaves and roots of Caroxylon passerinum seedlings in response to drought-induced stress [J]. Arid Zone Res, 2024, 41(1): 92-103. | |
| 35 | 邹原东, 高琼, 毕红艳, 等. 不同丛枝菌根真菌对甘草生长和保护酶活性的影响 [J]. 北方园艺, 2017(12): 162-166. |
| Zou YD, Gao Q, Bi HY, et al. Effects of different arbuscular mycorrhizal fungi on growth and protective enzyme activity of Glycyrrhiza uralensis [J]. North Hortic, 2017(12): 162-166. | |
| 36 | Benhiba L, Fouad MO, Essahibi A, et al. Arbuscular mycorrhizal symbiosis enhanced growth and antioxidant metabolism in date palm subjected to long-term drought [J]. Trees, 2015, 29(6): 1725-1733. |
| 37 | 罗艳菊, 谢林艳, 邹清林, 等. 内生菌对干旱胁迫下甘蔗的生理响应及抗旱性评价 [J]. 生物技术通报, 2023, 39(12): 219-228. |
| Luo YJ, Xie LY, Zou QL, et al. Physiological response and drought resistance evaluation of endophytic bacteria to sugarcane under drought stress [J]. Biotechnol Bull, 2023, 39(12): 219-228. |
| [1] | 杨春, 王晓倩, 王红军, 晁跃辉. 蒺藜苜蓿MtZHD4基因克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2025, 41(5): 244-254. |
| [2] | 何卫, 李俊怡, 李新妮, 马雪华, 邢媛, 曹晓宁, 乔治军, 刘思辰. 谷子泛素连接酶U-box E3基因家族的鉴定及响应非生物胁迫分析[J]. 生物技术通报, 2025, 41(5): 104-118. |
| [3] | 田琴, 刘奎, 吴翔纬, 纪媛媛, 曹一博, 张凌云. 转录因子VcMYB17调控蓝莓抗旱性的功能研究[J]. 生物技术通报, 2025, 41(4): 198-210. |
| [4] | 钱祺, 王增辉, 孙荣华, 罗英智, 苏良辰. 花生蛋白磷酸酶AhPDCP37的抗旱性功能研究[J]. 生物技术通报, 2025, 41(3): 98-103. |
| [5] | 刘洁, 王飞, 陶婷, 张玉静, 陈浩婷, 张瑞星, 石玉, 张毅. 过表达SlWRKY41提高番茄幼苗抗旱性[J]. 生物技术通报, 2025, 41(2): 107-118. |
| [6] | 赵长延, 柳延涛, 贾秀苹, 刘胜利, 雷中华, 王鹏, 朱志锋, 董红业, 吕增帅, 段维, 万素梅. 盐碱胁迫下褪黑素对作物生理机制影响的研究进展[J]. 生物技术通报, 2025, 41(2): 18-29. |
| [7] | 孔青洋, 张晓龙, 李娜, 张晨洁, 张雪云, 于超, 张启翔, 罗乐. 单叶蔷薇GRAS转录因子家族鉴定及表达分析[J]. 生物技术通报, 2025, 41(1): 210-220. |
| [8] | 韩凯, 周永顺, 张凯月, 王路, 高剑峰, 陈福龙. 三株小球藻抗旱性能评价[J]. 生物技术通报, 2024, 40(8): 244-254. |
| [9] | 文洁, 杜元欣, 吴安波, 杨广容, 鲁敏, 安华明, 南红. 刺梨SOD基因家族鉴定与表达模式分析[J]. 生物技术通报, 2024, 40(5): 153-166. |
| [10] | 李思琪, 张文臣, 杨柳, 付庆新, 洪新, 张海旺. 基于SSR标记的文冠果遗传多样性分析及指纹图谱构建[J]. 生物技术通报, 2024, 40(5): 74-83. |
| [11] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
| [12] | 刘雯锦, 马瑞, 刘升燕, 杨江伟, 张宁, 司怀军. 马铃薯StCIPK11的克隆及响应干旱胁迫分析[J]. 生物技术通报, 2023, 39(9): 147-155. |
| [13] | 丁凯鑫, 王立春, 田国奎, 王海艳, 李凤云, 潘阳, 庞泽, 单莹. 烯效唑缓解植物干旱损伤的研究进展[J]. 生物技术通报, 2023, 39(6): 1-11. |
| [14] | 王春语, 李政君, 王平, 张丽霞. 高粱表皮蜡质缺失突变体sb1抗旱生理生化分析[J]. 生物技术通报, 2023, 39(5): 160-167. |
| [15] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||